INDEX

ABDELKADER, M.; see MOHAMED, K.	115
AGRAWAL, R., JANA, D., UPADHYAY, R. K. and SREE HARI RAO, V.;	
Dynamic relationship between the mutual interference and gestation delays	
of a hybrid tritrophic food chain model	370
ALFIFI, H. Y.; Semi-analytical solutions for the Brusselator reaction–diffusion	
model	167
ALMALKI, A.; see VAN BRUNT, B.	293
ALOTAIBI, H., COX, B. and ROBERTS, A. J.; Couple microscale periodic	
patches to simulate macroscale emergent dynamics	313
AMORE, P., BOYD, J. P., FERNÁNDEZ, F. M., JACOBO, M. and	
ZHEVANDROV, P.; Bound states in weakly deformed waveguides:	
numerical versus analytical results	200
ANDERSSEN, R. S.; see HOGAN, A. B.	51
BASSOM, A. P.; see FOWKES, N.	35
BOYD, J. P.; see AMORE, P.	200
BRIDESON, M. A.; see FORBES, L. K.	1
BROOK, B. S.; see HOLDEN, E. C.	499
CAO, JP. and FANG, YB.; An analytical approach for variance swaps with	
an Ornstein-Uhlenbeck process	83
CHIRAT, R.; see ERLICH, A.	581
CHOWDHURY, D. and DEBSARMA, S.; Fifth-order evolution equation of	
gravity-capillary waves	103
CLARK, A. R. and TAWHAI, M. H.; Temporal and spatial heterogeneity in	
pulmonary perfusion: a mathematical model to predict interactions between	
macro- and micro-vessels in health and disease	562
CLARKE, R. J.; Photofocusing of microorganisms swimming in a flow with	
shear	455
COLLIS, J.; see HOLDEN, E. C.	499
COPOS, C. A. and GUY, R. D.; A porous viscoelastic model for the cell	
cytoskeleton	472
COX, B.; see ALOTAIBI, H.	313
CRINGLE, S. J.; see FARROW, D. E.	281
DEBSARMA, S.; see CHOWDHURY, D.	103
DURKIN, S.; see FOWKES, N.	35
DYSON, R. J. and GREEN, J. E. F.; Editorial: Mechanics in biology	413
ERLICH, A., HOWELL, R., GORIELY, A., CHIRAT, R. and MOULTON,	
D. E.; Mechanical feedback in seashell growth and form	581
FANG, YB.; see CAO, JP.	83
FARROW, D. E., HOCKING, G. C., CRINGLE, S. J. and YU, DY.; Modelling	
hydrogen clearance from the retina	281
FERNÁNDEZ F M · see AMORE P	200

FORBES, L. K. and BRIDESON, M. A.; On modelling the transition to	
turbulence in pipe flow	1
FOWKES, N., DURKIN, S. and BASSOM, A. P.; Truck safety barriers for	
mining sites	35
GAGNON, D. A. and MONTENEGRO-JOHNSON, T. D.; Thrifty swimming	
with shear-thinning: a note on out-of-plane effects for undulatory locomotion	
through shear-thinning fluids	443
GLASS, K.; see HOGAN, A. B.	51
GOARD, J.; see KE, Z.	349
GONÇALVES, D. S.; see MAIOLI, D. S.	271
GORIELY, A.; see ERLICH, A.	581
GREEN, J. E. F.; see DYSON, R. J.	413
GUO, I.; see ZENG, X. C.	183
GUY, R. D.; see COPOS, C. A.	472
HAGEDOORN, P.; see NELSON, M. I.	135
HILL, J. M. and STOKES, Y. M.; A note on Navier-Stokes equations with	
nonorthogonal coordinates	335
HOCKING, G. C.; see FARROW, D. E.	281
HOGAN, A. B., GLASS, K. and ANDERSSEN, R. S.; Complex demodulation:	
a novel time series method for analysing seasonal infectious diseases	51
HOLDEN, E. C., COLLIS, J., BROOK, B. S. and O'DEA, R. D.; A multiphase	
multiscale model for nutrient limited tissue growth	499
HOWELL, R.; see ERLICH, A.	581
JACOBO, M.; see AMORE, P.	200
JANA, D.; see AGRAWAL, R.	370
KE, Z., GOARD, J. and ZHU, SP.; An appropriate approach to pricing	
European-style options with the Adomian decomposition method	349
LAMICHHANE, B.; see LE, K. N.	61
LAMICHHANE, B. P.; A new minimization principle for the Poisson equation	
leading to a flexible finite element approach	232
LAVOR, C.; see MAIOLI, D. S.	271
LE, K. N., MCLEAN, W. and LAMICHHANE, B.; Finite element approximation	
of a time-fractional diffusion problem for a domain with a re-entrant corner	61
LI, Y., WAN, Z. and LIU, J.; Bi-level programming approach to optimal strategy	
for vendor-managed inventory problems under random demand	247
LIANG, D.; see LUO, Q.	402
LIU, J.; see LI, Y.	247
LUO, Q., LIANG, D., REN, T. and ZHANG, J.; Calculation of critical	
parameters for spontaneous combustion for some complex geometries using	
an indirect numerical method	402
LYNCH, T.; see VAN BRUNT, B.	293
MAIOLI, D. S., LAVOR, C. and GONÇALVES, D. S.; A note on computing the	_
intersection of spheres in \mathbb{R}^n	271

MCLEAN, W.; see LE, K. N.	61
MEHDI, A.; see MOHAMED, K.	115
MOHAMED, K., MEHDI, A. and ABDELKADER, M.; An iterative model	
order reduction method for large-scale dynamical systems	115
MONTENEGRO-JOHNSON, T. D.; see GAGNON, D. A.	443
MOULTON, D. E.; see ERLICH, A.	581
NELSON, M. I., HAGEDOORN, P. and WORTHY, A. L.; The demon drink	135
O'DEA, R. D.; see HOLDEN, E. C.	499
OVENDEN, N. C. and SMITH, F. T.; Nonsymmetric branching of fluid flows in	
3D vessels	533
PRICE, C. J.; A direct search quasi-Newton method for nonsmooth unconstrained	
optimization	215
PROMRAK, J., WAKE, G. C. and RATTANAKUL, C.; Predator-prey model	
with age structure	155
RATTANAKUL, C.; see PROMRAK, J.	155
REN, T.; see LUO, Q.	402
ROBERTS, A. J.; see ALOTAIBI, H.	313
SMITH, D. J.; Biological fluid mechanics under the microscope: a tribute to	
John Blake	416
SMITH, F. T.; see OVENDEN, N. C.	533
SREE HARI RAO, V.; see AGRAWAL, R.	370
STOKES, Y. M.; see HILL, J. M.	335
SUMNER, J. G.; Multiplicatively closed Markov models must form Lie	
algebras	240
TAWHAI, M. H.; see CLARK, A. R.	562
UPADHYAY, R. K.; see AGRAWAL, R.	370
VAN BRUNT, B., ALMALKI, A., LYNCH, T. and ZAIDI, A.; On a cell division	
equation with a linear growth rate	293
WAKE, G. C.; see PROMRAK, J.	155
WAN, Z.; see LI, Y.	247
WORTHY, A. L.; see NELSON, M. I.	135
YU, DY.; see FARROW, D. E.	281
ZAIDI, A.; see VAN BRUNT, B.	293
ZENG, X. C., GUO, I. and ZHU, S. P.; Pricing European options on regime-	
switching assets: a comparative study of Monte Carlo and finite-difference	
approaches	183
ZHANG, J.; see LUO, Q.	402
ZHEVANDROV, P.; see AMORE, P.	200
ZHU, SP.; see KE, Z.	349
ZHU, S. P.; see ZENG, X. C.	183

PREPARATION OF MANUSCRIPTS

The ANZIAM Journal is typeset in LATEX. Style files are available from http://www.austms.org.au/Publ/ANZIAM/authorinfo.shtml.

The manuscript should conform to the following rules. In case of any doubt, authors are advised to refer to previous papers in the Journal.

- 1. Abstract, title and author details. An abstract not exceeding 300 words should be included in the manuscript. If the title is long, supply also a shortened form of the title not exceeding 40 characters, including spaces. Addresses should be shown under the authors name, including e-mail address if available.
 - **2. Main headings.** Main headings should be numbered, centred and shown thus:

2. Preliminary results

- **3. Theorems.** The titles LEMMA, THEOREM, COROLLARY, REMARK, DEFINITION *etc.* should be left-justified and numbered consecutively with arabic numerals, *e.g.*
- LEMMA 1.1. The content of the lemma, theorem etc. should follow, as here.
- **4. Acknowledgements.** If acknowledgements of support and assistance are made, these should be given at the end of the article. Footnotes should be avoided.
- **5. Equations.** Equations should be punctuated to conform to their place in the syntax of the sentence. Equation numbers should be shown on the right in round brackets.
- **6. References.** The reference list should be in ALPHABETICAL ORDER by name of first author, preceded by a reference number in square brackets. These references should be cited in the text by giving the appropriate number in square brackets. The following layout for books, journal articles, theses, articles in books, and conference proceedings respectively, must be followed.
- [1] M. Abramowitz and I. A. Stegun (eds), *Handbook of mathematical functions* (Dover, New York, 1970).
- [2] S. N. Biswas and T. S. Santhanam, "Coherent states of para-Bose oscillators", *J. Austral. Math. Soc. Ser. B* 22 (1980) 210–217.
- [3] F. H. Busse, "On the mean field problem of thermal convection", *Max-Plank Inst. Phys. Astrophys. Rep. MPI-PAE/Astro* **31** (1970) 1–31.
- [4] E. M. Casling, "Slender planing surfaces", Ph. D. Thesis, University of Adelaide, 1978.
- [5] R. H. Day, "Adaptive process and economic theory", in *Adaptive economic models* (eds R. H. Day and T. Groves), (Academic Press, New York, 1975) 1–38.
- [6] J. W. Miles, "Resonant response of harbors (the harbor paradox revisited)", *Proc. 8th Symp. Naval Hydro.* (1970) 95–115.
 - **7. Tables.** Each should be preceded by a caption beginning: TABLE 1 (or 2, 3, etc.)
 - **8. Figures.** Each figure should have a caption beginning: FIGURE 1 (or 2, 3, etc.).

Authors should provide diagrams drawn to professional standards in the form of encapsulated Postscript files. Other forms of diagrams drawn to professional standard may be acceptable, however this may also necessitate a payment from the author(s) to cover additional cost involved in processing them.

SUBMISSION OF MANUSCRIPTS

Prior to submission authors are asked to read the section "Preparation of Manuscripts" on the previous page.

Authors of articles submitted for publication in The ANZIAM Journal are asked to ensure that their manuscripts are in a form suitable for sending to the printer. Editors reserve the right to return poorly presented material to authors for revision.

The author should submit a pdf file if possible to the Online Journal System. Follow the instructions at http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/user/register.

It will speed up processing of accepted papers if a LATEX version of the manuscript is available. It is not necessary to send such a file with the submitted paper. This will be requested if the paper is accepted.

Authors of accepted papers will be provided with a complimentary electronic version of their paper as published.

Excessive costs incurred by the Australian Mathematical Society through corrections to or withdrawal of articles may be charged to the authors concerned.

Submission of a paper to The ANZIAM Journal is a representation by the author that the manuscript has not been copyrighted or published, and that it is not being considered for publication elsewhere.

THE ANZIAM JOURNAL AND THE ELECTRONIC SUPPLEMENT

The Journal of the Australian Mathematical Society began publication in 1959, and from 1975 appeared in two series, Series A (Pure Mathematics and Statistics) and Series B (Applied Mathematics). Series B is now The ANZIAM Journal and is published in volumes comprising four quarterly parts. There is also a fifth (electronic) part designed for rapid publication (http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ). The Editor-in-Chief is A. J. Roberts, School of Mathematical Sciences, The University of Adelaide, ADELAIDE, SA 5005; anthony.roberts@adelaide.edu.au. All five parts are refereed. All accepted papers have the option of publication in the electronic part.

It is the editorial policy of The ANZIAM Journal to consider papers in any field of applied mathematics and related mathematical sciences. Novel applications of mathematics in real situations are especially welcome. All papers must include some indication of applicability, and an introduction that can be understood by non-specialist readers from the whole applied mathematical community.

The new home of Cambridge Journals cambridge.org/core

Cambridge Core

THE AUSTRALIAN MATHEMATICAL SOCIETY

President: K. A. SMITH-MILES School of Mathematics and Statistics

The University of Melbourne Parkville, VIC 3010, Australia

Secretary: P. J. STACEY Department of Mathematics and Statistics

La Trobe University

Bundoora, VIC 3086, Australia

Treasurer: A. HOWE Department of Mathematics

Mathematical Sciences Institute The Australian National University Canberra, ACT 0200, Australia

Membership and correspondence: Applications for membership, notices of changes of address or title or position, members' subscriptions and correspondence related to accounts should be sent to the Treasurer. All other correspondence should be sent to the Secretary.

Subscriptions: Four parts are planned for 2018. Subscription prices for 2018 are £361 (\$663 in USA, Canada and Mexico) which includes print and electronic access. The electronic-only access price for 2018 is £294 (\$535 in USA, Canada and Mexico). Single parts cost £104 (\$191 in USA, Canada and Mexico). Prices include delivery by air where appropriate. EU subscribers who are not registered for VAT should add VAT at their country's rate. VAT registered subscribers should provide their VAT registration number. Orders, which must be accompanied by payment, should be sent to a subscription agent, book-seller, or direct to the publishers: Cambridge University Press, University Printing House, Shaftesbury Road, Cambridge CB2 8BS or, in the USA, Canada and Mexico, Cambridge University Press, Journals Fulfilment Department, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. Japanese prices are available from Kinokuniya Company Ltd, PO Box 55, Chitose Tokyo 156, Japan. Periodicals postage is paid at New York, NY and additional mailing offices. POSTMASTER: send address changes in USA, Canada and Mexico to *The ANZIAM JOURNAL*, Cambridge University Press, Journals Fulfilment Department, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA.

This journal is included in the Cambridge Journals Online service. Further information, and online access for subscribers, is available at http://journals.cambridge.org/anz.

Copying: This journal is registered with the Copyright Clearance Centre, 222 Rosewood Drive, Danvers, MA 01923, USA. Organizations in the USA who are registered with the CCC may therefore copy materials beyond the limits permitted by sections 107 and 108 of US copyright law subject to payment to CCC of the per-copy fee of \$16.00. This consent does not extend to multiple copying for promotional and commercial purposes. Code 1446-1811/2018 \$16.00.

Organizations authorized by the Copyright Licensing Agency may also copy material subject to the usual conditions. For all other use, permission should be sought from Cambridge or the American branch of Cambridge University Press.

Published by Cambridge University Press for the Australian Mathematical Publishing Association Incorporated. Printed in the United Kingdom at Bell & Bain Ltd, Glasgow.

© 2018 Australian Mathematical Publishing Association Inc.

MIX
Paper from
responsible sources
FSC® C007785

This journal issue has been printed on FSC-certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the world's forests. Please see www.fsc.org for information.

Table of Contents

Editorial: Mechanics in biology	
Dyson, R. J. & Green, J. E. F.	413
Biological fluid mechanics under the microscope: a tribute to John Blake	
Smith, D. J.	416
Thrifty swimming with shear-thinning: a note on out-of-plane effects for undulatory locomotion through shear-thinning fluids	
Gagnon, D. A. & Montenegro-Johnson, T. D.	443
Photofocusing of microorganisms swimming in a flow with shear	
Clarke, R. J.	455
A porous viscoelastic model for the cell cytoskeleton	
Copos, C. A. & Guy, R. D.	472
A multiphase multiscale model for nutrient limited tissue growth	
Holden, E. C., Collis, J., Brook, B. S. & O'Dea, R. D.	499
Nonsymmetric branching of fluid flows in 3D vessels	
Ovenden, N. C. & Smith, F. T.	533
Temporal and spatial heterogeneity in pulmonary perfusion: a mathematical	
model to predict interactions between macro- and micro-vessels in health and disease	
Clark, A. R. & Tawhai, M. H.	562
Mechanical feedback in seashell growth and form	
Erlich, A., Howell, R., Goriely, A., Chirat, R. & Moulton, D. E.	581
Author Index	607

https://doi.org/10.1017/51446181117000487 Published online by Cambridge University Press

