
HOMOTOPY OF NATURAL TRANSFORMATIONS 

K. A. H A R D I E 

1. Introduction. Let C be a full subcategory of T, the category of based 
topological spaces and based maps, and let Cn be the corresponding category 
of n-tuples. Let S, T: Tn —> T be covariant functors which respect homotopy 
classes and let u, v: S —» T be natural transformations, u and v are homotopic 
in C, denoted u ~ v (C), if uX ~ vX: SX -> TX (X 6 Cn), that is to say, 
for every X Ç C, w J and z>X are homotopic (all homotopies are required to 
respect base points), u and v are naturally homotopic in C, denoted u ^ n z; (C), 
if there exist morphisms 

utX: SX ->TX (t£I,Xe C) 

such that, for every X Ç C, utX is a homotopy from uX to z>X and such that, 
for every t Ç 7, ut:S-^T is a natural transformation. As examples, let 
C, C: T —> T be the reduced, unreduced cone functors respectively, and, 
for any S, T, let c: S —> T denote the constant natural transformation (i.e. 
cX = *, the constant map SX —-> TX, for each X G T) . Then we certainly 
have 

^ > n C ( T ) , 

where ic denotes the identity natural transformation C —> C. Since any point 
of a CW-complex is non-degenerate, it follows [7, p. 333, E (proposition)] that 

* V ~ c ( C W ) , 

where CW is the full subcategory of based CW-complexes. However, the 
assertion iC' —n c (C) is false unless C contains only one-point spaces. For 
let X have more than one point and let *: X —> X be the constant map. Then 
it is easy to see that no null homotopy of the identity map CX —•» CX can 
commute with C*. 

One may ask the question: Does any fixed object X of Tn have the property 
that uX ^ cX implies u ^ c (C)? An answer is possible if one also restricts 
the class of functors to which S and T belong. Let P be a based 0-sphere and 
let P Ç Tw also denote the w-tuple each of whose components is P. In this 
paper we shall consider the case X = P G Tn and restrict 5 and T to the class 
of cellular P-functors which we define in § 2. Let W be the full subcategory 
of countable CW-complexes. We shall prove the following result. 
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THEOREM 1.1. If 5, T: Tn —> T are cellular P-functors, if TP is l-connected 
and if u: 5 —» T is a natural transformation such that uP c^ cP: SP —» TP, 
then u~ c (W). Moreover, TY is l-connected ( F £ Ww). 

It would be very satisfactory to be able to replace c in Theorem 1.1 by an 
arbitrary natural transformation v: S —> T satisfying uP c^ vP: SP —* TP 
but in the general case, I have not been able to achieve the desired extension. 
However, if 5 is of the form 25 ' , where 2: T —•> T denotes the reduced suspen­
sion functor, then u — v: 5 —> T is defined and Theorem 1.1 implies that 
u — v c^. c (W) which in turn yields u c^v (W). The stronger result may 
also be obtained if instead there is a weak homotopy equivalence 5 —» 25 ' , 
but this lies outside the scope of the present work. The objective envisaged 
is a method of extending identities known to hold for "ordinary" homotopy 
operations to "generalized" homotopy operations. In particular, I hope to 
give (elsewhere) a proof along these lines of the Jacobi identity for generalized 
higher-order Whitehead products. 

For an application of Theorem 1.1 as it stands, let' 

W(i) e [22 A X, T{2X] (X = (Xh X2, X,)) 

be the universal example for the third-order generalized Whitehead product 
[6]. Here A and T\ denote the smash and the fat wedge functors. Let 
p: T\ —» T1/T2 be the projection which shrinks the thin wedge T2. We have 
the following result. 

THEOREM 1.2. p*W(i) = 0 (Xt Ç W, i = 1, 2, 3). 

Proof. Let 

JX = (CX1 X CX2 X Xz) \J (CX1 XX2X CXZ) \J (Xi X CX2 X CXZ). 

Then there is a homotopy equivalent transformation 6: J—» 22A and a 
natural transformation /x: J—» 7 \2 such that W(i) = {/z-0-1}. Let 
u = p- v:J-+ T i 2 / r 2 2 . We shall prove that u ~ c (W). We have JP ^ 52 

and ( r i 2 / r 2 2 ) P ^ 5 2 V 52 V 52, which is l-connected. Since J and 
r i 2 / r 2 2 are cellular P-functors, the required result will follow from 
Theorem 1.1 if we can prove that {uP\ = 0. {uP\ is in effect an element of 
TT2(52 V 52 V 52) and, since TT2(52 V 52 V 52) - Z + Z + Z, we need only 
observe that the projection of {uP) on to one of the copies of 52 is zero. This 
is so since the projection is a class which can be factored through 
{J(iP,ip, *)} = 0 Ç [JP,JP]. We remark that use of Theorem 1.1 is an 
essential feature of the foregoing proof, for whereas it can be argued similarly 
that (7 \2 / : r 2 2)X ^ 22(Xi A X2) V 22(Xx A Xz) V 22(X2 A Xz) and 
similarly that the projections of {uX} onto 22(Xi A X2), 22(Xi A Xz), and 
22(X2 A Xz) are trivial, this is not by itself sufficient to ensure that {uX} = 0 

][A, B] denotes the set of based homotopy classes of based maps from A to B. 
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since by the Hilton-Milnor theorem (see, e.g., [4, p. 13, Theorem 4]), 
[JX, ( r i S / r 2 2 ) X ] contains, in addition to the summand 

[JX, 22(Xx A X2)] + [JX, S2(X! A X*)] + [JX, 22(X2 A Xz)], 

summands of the form [JX, 23(Xi A X2 A X2 A Xz)] which in general are 
non-trivial. The special case of Theorem 1.2 in which each Xx; is a suspension 
was proved by Porter [5, p. 43, Theorem 14.1]. 

I am grateful to Dr. Porter for sending me a copy of the relevant pages 
of his dissertation. 

2. P-iunctors. In this section we recall the definition and principal properties 
of P-functors [1]. If X, Y G T, let \X, Y\ denote their morphism set. Let 
II: Tn —> T be the topological product functor (if n = 1, then II is the identity 
functor) and let TJ G \HX, UX\ denote the projection which leaves unaltered 
all the coordinates of x G TLX except the jth which it replaces by *. Let 
W G T and let the «-tuple $ = (</>i, </>2, . . . , <t>n) be such that 

4>, G \W, W\,4>r4>, = 4>j ( l ^ i ^ » ) , * < • * , = *;•*< (i*j). 

Associated with the pair (W, 4>) is a covariant functor <£: Tn —* T described 
as follows. If F G Tn, then <£F is the space obtained from (the based topo­
logical product) I I F X W by performing the identification 

(2.1) (wjy, w) = (y, 4>JW) ( F G UY, w G IF, 1 Sj^n). 

Let <£F: F X IF-> $ F denote the identification map. Then if / G | F, Z\, 

$/ = 4>Z- ( n / X * V ) - (0F)"1 , 

which is base-point preserving, single-valued, and hence continuous. 
5: Tn —» T is a P-junctor in C if P G G and if, for some (W, </>), the restric­
tions of S and $ to Cw are naturally equivalent. Examples of P-functors were 
given in [1]. We remark here that they include the various wedges, joins, 
suspensions, and their composites; however, Lemma 2.1 (below) yields a test 
for whether a given S: Tn —•> T is a P-functor or not. 

If F G Tn, then a point of I I F may be regarded as an element of \P, Y\. 
Consequently, for every S: Tn —» T and every F G T7*, we may define a 
function fsY:ILYXSP->SY by the rule 

tsY(y, x) = Sy{x) (y G H F, x G SP) . 

yps Y certainly respects base-points. S is valuable in C if \f/s Y is continuous for 
every F G Cw. 

Let (IF, 0), (IF7, <£') be pairs. A pair map û: (W, <j>) -» (IF', <£') is a 
morphism ù £ \W, W'\ such that u • <t>j = </>/ • w ( 1 ^ 7 ^ «) . Associated 
with any functor S: Tn —» T is a pair (5P, 05) , where 
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and where g1 £ \P, P\ is the w-tuple such that 

« > * - \ „ (k=j). 

The following result may be found in [1, Lemma 1.4]. 

LEMMA 2.1. If $ is the functor associated with the pair (W, <t>), then $ is 
valuable in T and there exists a pair equivalence v: (<ï>P, $$) —» (W, 0) such 
that \l/$ = <f> • (in X v). 

It follows from Lemma 2.1 that to test whether S: Tn —> T is a P-functor, 
we need only set (W, <t>) — (SP, </>s) and examine whether or not 5 and the 
resulting <ï> are naturally equivalent. The reader may find it helpful to perform 
the test, for example, on the reduced, unreduced cone functors C, C'\ T —> T. 

The proof of Theorem 1.1 proceeds by induction on n. The following result, 
which is that of [1, Lemma 1.5], will be required in § 3 in the proof of the case 
n = 1 of Theorem 1.1. 

LEMMA 2.2. If S is a P-functor in C, if T is valuable in C, and if 
û: (SP, 4>s) —•> (TP, 4>T), is a pair map, then there exists a transformation 
u: S —> T natural in Cn such that uP = û. 

If F 6 Gn, we remark that uY is the unique map which completes the 
following diagram: 

UY X SP tUYXU
) UY X TP 

4>sY f8Y 

SY . . . . ? £ • > TY 

Moreover, if ût: SP —-> TP is a homotopy which is a pair map for each t Ç / , 
then utY: SY -^ TY is a homotopy. 

Let Yf = (Fi, F2, . . . , Fn_i) be a fixed object of C^"1. We define 
(FIS) : T -> T to be such that 

(Y'\S)Yn = S(Y', Yn) = 5(Fx, F2, . . . , Fw) (Fw £ T) , 

(Y'\S)f = S(iY,,f) (je \Yn,Z\). 

Similarly, if X £ C is fixed, we define (S\X): T ^ 1 -> T to be such that 

(S\X)Y' = S(Y;, X) ( F 6 T^-1), 

(s\x)f = s(f,ix) (f e \Y'%z'\). 

(Y'\S) and (S|X) are partial functors of S which arise naturally in certain 
inductive arguments. The following lemma is [1, Lemma 2.6], to which the 
condition SP £ D should be added to the hypothesis. 
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LEMMA 2.3. If C is closed with respect to finite topological products, iffX iw 
is an identification for every W G C and every identification f G C, if SP G C 
and if S is a P-functor in C, then (Y'\S) and (S\X) are P-functor s in C. 

A pair (W, <j>) is cellular if W G W and if <f>j is a cellular map whose image 
4>j(W) is a subcomplex of W (1 ^ 7 ^ n). S is a cellular P-functor if (SP, 0S) 
is a cellular pair and if S is a P-functor in W. Let S be a cellular P-functor and 
let F, Z G Wra. We shall require the following lemma. 

LEMMA 2.4. (i) SY G W; (ii) if f G |F , Z| w aw n-tuple of cellular maps, 
then Sf is cellular; (iii) if X G W and F 6 W*"1, *Aew ( F | S ) and (S|X) ar* 
cellular P-functors. 

The proof of part (i) has essentially been given in [1, pp. 26, 27] and (ii) 
is a corollary of the proof of (i). Finally, Lemma 2.3, together with (ii), 
yields (iii). 

The following lemma concerning adjunction spaces assembles mostly 
well-known results. 

LEMMA 2.5. If A is a closed subset of X, if the injection A —> X is a cofibration, 
if f: (X, A) -+ (Y, B) is an identification map which is a relative homeomor-
phism and if f(A) = B, then the injection B —> Y is a cofibration and f induces 
relative homology isomorphisms. Ij\ further, B and (X, A) are 1-connected, then 
Y is 1-connected. 

Proof. It follows from [8, Satz 1 and Definition 2] that there exist maps 
xl/: X X I -> X, v: X ->I, and w: X -» I such that \P(x, 0) = x (x G X), 
f(x, 1) G A if v(x) < 1, ${a, t) = a (a £ A, te I), v(A) = 0, A = wr^O). 
Then if we define \pf(y, i) = ftif^y, t), v'y = vf~xy, w'y = wf~ly (y G Y, 
t G I), we obtain single-valued and hence continuous maps \p': Y X I —* Y, 
v'\ F —> 7, and w'': Y —> I satisfying the conditions iï'(y,0) = y (y G Y), 
V(y, 1) G B ilv\y) < 1, ^ ( i , 0 = b (b G B,t G / ) , i>'(B) = 0, S = «/-^(O). 
Hence 5 —* Y is a cofibration. An application of [2, p. 122, Corollary] now 
proves that / induces relative homology isomorphisms. Finally, let 
U = iri([0, 1)) and let £/' = ^ ( [ O , 1)). Then (X, U) and V are 1-con­
nected since there are deformation retractions of (X, U) onto (X, A) and of 
V onto i3. Since Y = Uf \J (Y — B), every path in Y is the sum of a finite 
number of paths each of which is entirely contained in Ur or entirely contained 
in Y — B. Hence it will suffice to prove that every path 

X': I, / - > Y - B, ( F - B)C\ U', 

is homotopic relative to / to a path entirely contained in Uf. In view of the 
relative homeomorphism, there is a unique path X: I —•» X such t h a t / -X = X', 
and we have X(7) £ [7. Since (X, U) is 1-connected, X is homotopic relative 
to / to a path JJL in U. Such a homotopy composed with / yields a homotopy 
relative to 1 of X' to a path / / completely contained in £/', which completes 
the proof of Lemma 2.5. 

https://doi.org/10.4153/CJM-1970-041-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-041-2


HOMOTOPY OF NATURAL TRANSFORMATIONS 337 

We conclude this section with the inductive argument which reduces the 
proof of Theorem 1.1 to the case n = 1. Suppose that the assertions of 
Theorem 1.1 hold whenever n ^ m — 1 (m ^ 2). Let F G Wm, let 
F = ( F 1 , . . . J m _ 1 ) G W m - 1 and let ( F > ) : (Y'\S) -* (F ' |P ) , be the 
natural transformation such that 

(Y'\u)Ym = uY£ \SY,TY\ = \(Y'\S)Yn, (Y'\T)Yn\ (Yn G W). 

Similarly, if X G W, let (w|X): (5|X) —> (P|X) be the natural transformation 
such that 

{u\X)Yf = u(Yl9 F2, . . . , F m _ b X) ( F ' G W""1). 

Then (u\P)P = uP ~ cP, (S\P) and (P|P) are cellular P-functors and 
(P |P )P = TP is 1-connected. Hence the inductive hypothesis implies that 
( w | P ) ~ c (W) and that ( P | P ) F ' is 1-connected ( F Ç W™"1). Thus 
{Y'\u)P = (u\P)Yf c^cY', for each F G W""1. By Lemma 2.4, ( F | 5 ) and 
(F ' |P) are cellular P-functors and since ( F ' | P ) P = (P|P) Y' is 1-connected, 
a second application of the inductive hypothesis yields (Y'\u) o^ c (W) and 
(F ' |P )Z 1-connected (Z G W), for each F ' G W™"1. It follows that u ~ c (W) 
and that P F is 1-connected ( F G Wm). 

3. The case of n = 1. For the proof of the case n = 1 of Theorem 1.1 we 
shall require the notion of a singular homotopy equivalence of functors. Let 
u: S —> T be a natural transformation, u is a singular homotopy equivalence 
(SHE) in C if, for each X G Cw, wJf is an SHE. We recall that this means 
that uX induces a one-to-one correspondence between the path components 
of SX and TX and that, for every x G SX, 

OX)*: irQ(SX, x) -> vQ(TX, (uX)x) (q > 0) 

are isomorphisms. 
For the remainder of this section we shall assume that n = 1. If (W, fa is 

a pair, let W0 = fa(W), let j : TF0 —
> IF be the injection, and let fa IF—> IF0 

also denote the map which agrees with fa. (IF, fa is cofibrant if j is a cofibra-
tion. Thus every cellular pair is cofibrant. (W, fa is fibrant if 0 is a Hurewicz 
fibration and bifibrant if it is both fibrant and cofibrant. We shall prove the 
following lemma. 

LEMMA 3.1. If (IF, <£) is a cellular pair, then there exists a bifibrant pair 
(E, p) and a pair map v. (IF, fa) —> (P, p) such that v0 = v\Wo: W0 —-> E0 is a 
homeomorphism and v: W —> E is a homotopy equivalence. 

Using Lemma 3.1 we shall prove the following result. 

LEMMA 3.2. If T is a cellular P-junctor {with n = 1), then there exists a 
P-functor R in W, and a natural transformation v: T —> R such that (RP, <t>B) is 
fibrant and such that v is an SHE in W. 
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One further basic lemma will be needed, the proof of which we postpone. 

LEMMA 3.3. Let u: (W, </>) —> (V, \p) be a pair map, where (W, </>) is cofibrant 
and (V, \f/) isfibrant. If u: W —> Vis null-homotopic, then there exists a homotopy 
ut:W—+ Vwithuo = uandui = * such that, for each t Ç I,ut: (W, 0)—>(F, \p) 
is a pair map. 

Proof of Theorem 1.1 (n = 1). Let v\ T -+R be as in Lemma 3.2. Then 
vP -uP c^vP • cP = *: SP -> RP. Applying Lemma 3.3 with 

(W, </>) = (SP, 0S), (V, *) = (RP, 0B), and u = v u, 

it follows that there exists a homotopy wt with wQ = vP • ziP and Wi = * 
such that ?£>*: (SP, <j>s) —•» (PP, <Ais;) is a pair map, for each / G 7. By the 
remarks following Lemma 2.2 we have, for every Y Ç W, 

vY • « F ~ *: 5 F -* RY. 

But 5 F is a CW-complex and vY is a singular homotopy equivalence, hence 
there is no obstruction to defining a homotopy uY"~ *: SF—> P F and we 
may conclude that u c^ c (W). Since P is a P-functor in W, we see that 

xpTY: Y X TP, (Y X P*) \J (* X PP) -> P F , P* 

is a relative homeomorphism and an identification map (here * denotes a 
space with just one point), for every F £ W. P* is 1-connected, since it is 
a retract of PP , and hence, in view of Lemma 2.5, it will be sufficient to 
prove that (X, A) is 1-connected, where X = Y X TP and 

A = ( F X P*) U (* X PP) . 

We recall that the pair (X,A) is 1-connected if every point of X can be 
joined by a path to some point of A, and if every map (I, 1) —» (X, ^4) is 
homotopic relative to 7 to some map of I into A. Since P P is 1-connected, 
the first condition is certainly satisfied. For the second condition we can 
assume without loss of generality that F is arcwise-connected. In that case 
A is arcwise-connected, and therefore any path beginning and ending in A 
is homotopic to a path in A followed by a loop in X based at (*, *) followed 
by a path in A. Since TP is 1-connected, the loop in X is homotopic to a loop 
in F X (*). Hence the original path is homotopic relative to / to a path in A, 
as required. 

In the proof of Lemma 3.3 we shall need certain results concerning separa­
tion elements. Let H : W X I —> V be a homotopy. The reverse homotopy 
rH: W X I -» V is such that 

rH(w, t) = H(w, 1 - t) (w e W,t G I). 

H is 3. null homotopy if H(W X (1)) = * G V. H H, W are homotopies such 
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that H\W X (1) = H\W X (0), then their conjunction is the homotopy 
H ® Hr such that 

We recall that the reduced suspension of IF is the space XW = (W X I)/A, 
where 

A = (W X (0)) U (IF X (1)) U ((*) X / ) . 

Let H, H'\ W X I -> F be null homotopies such that 

J91TFX (0) = H'\WX (1). 

Then their separation element is the class 

d(H, H') = {(rH ® H') • q'1} £ [2IF, 7], 

where q: W X I —» 2 IF is the identification. We recall that the track addition 
in [2 IF, V] is given by the rule 

{H • q-i} + {H> • gr-i} = {(H ® H') • g"1}, 

where H (A) = H'(A) = *. The proofs of the following two lemmas are 
straightforward and will be omitted. 

LEMMA 3.4. If d(H,Hf) is defined and H"(A) = *, then d(H, H) = 0, 
d(H', H) = -d(H, H'), and d(H, H' ® H") = d(H, Hf) + {H" • g"1}. 

LEMMA 3.5. d(H,H') = 0 if and only if there exists a homotopy 
6: W X I X I -> V such that d(w, 1, /) = *, 0(w, 0, 0 = H(w, 0) = H'(w, 0), 
0(Wf t, 0) = H(w, t), 0(w, t, 1) = H'(w, t) for all w £ W and all t Ç I. 

Proof of Lemma 3.3. Let F: u c^ *: W X I ~» F be a homotopy. We first 
show that F can be replaced by a homotopy F': uczi *: W X I —> F such 
that ^(TFo X / ) Ç F0. Let ^ = F\W0 X I. Then, since w is a pair map, 
F0|T7o X (0) = fa • F0\ Wo X (0) and if we set 

H = F® ((rFo ® fa • F0) • (<t> X iz)): W X I-> V 

and Ho = i?|TF0 X I we find, after expanding by means of Lemma 3.4, that 

d(H0, fa • ffo) = d(fa • Fo, *i • /*o) = 0 6 [2IFo, F]. 

In consequence of Lemma 3.5, there exists 6: Wo X I X I—> V such that 
0(w, 1, 0 = *, 6(w, 0, 0 = u(w), d(w, t, 0) = HQ(W, t), and 6(w, t, 1) = 
^ • H0(w, t) (w G Wo, t e I). Let 

B = (WX (0)) U (IFo X / ) U (IF X (1)) 

and let 0 be extended to a map 0: 5 X I —» F by defining 0(w, 1, /) = *, 
d(w, 0, /) = u(w) (w £ W, t £ I). Since the injection B —> IF X I is a cofi-
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bration, 6 may be extended further to a map 6: W X / X / —> V. If we now 
set 

F'(w, t) = d(w, t, 1) (w £ W, t e I), 

we obtain a homotopy Ff:uo^^ with the desired property. 
The next stage of the proof is to replace F' by a homotopy 

G: u~*: WX J - » V 

such that G (Wo X / ) Q VQ and for which there exists a homotopy 

»: f - G ~ G - ($ X ij): W X I X I -+ Vo 

such that n(w, 0, t) = \[/ - u(w) and n(w, 1, /) = * (w G ^ ^ / ) . Let 
H = rFf - (<j>X ii) ® $• F':WX I->V0. Then 

{#o • go"1} = W , /V) = 0 ç [st^o, Fo]. 

Since the injection 4 —» PF X i* is a cofibration, there exists a homotopy 
relative to A from H to iî7, where i 7 ' : l ^ X / - + F o is such that 
H'(WQ X I) = *. Moreover, it follows that 

{H' • (pi} = {H • g"1} = d(F' • (0 X *7), * • F7) 6 [2W, ^o]. 

Now let 67 = i7' 0 r # ' . Then 

d(G • (0 X ij), * • G) = d (F ' • (0 X *7) 0 rH' • (0 X ij), f • F' ® rf • H') 

= d(F' • (0 X *7) 0 rff7 • (0 X *7), ^'F,) + {rH' • y-i} 

= -d(* • F' , F ' - (0 X */)) - {rH' • (0 X ij) • g"1} - { # ' • q-1} 

= {ff'-ir1} - {••<r1} - {^-r 1 } =o, 
so that a homotopy /z with the required properties does exist. Finally, we 
recall that \p: V —» V0 is a fibration and that i? —> W X I is a cofibration. By 
a lifting homotopy extension property [10, Theorem 4] it follows that we may 
lift M to a homotopy v: W X I X I —> V such that 

f-v = n, v(w, t, 0) = G(w, t), v(x, t) = GX (w £ W,t £ I,x £ B). 

If we now set 

ut(w) = v(w, t, i) (w e w, t e i), 
then we obtain a homotopy with the desired properties, for we have 

ut • <j>iw = v(<j>w, t, 1) = G(4>w, t) = JJL(W, t, 1) = \f/ • v(w, t, 1) = \f/i - utw, 

as required. 

Proof of Lemma 3.1. If x G W0, let 7* £ Wo1 denote the constant path 
at x, let E = {O, X) 6 TF X HV|X(0) = <M and let 

p!(w, X) = (X(l), 7X(D), VW = (w, y+w) (w £ W,\ £ Wo1). 

Then z; is a pair map, z;0 is certainly a homeomorphism, and it is well known 
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[9, p. 99, Theorem 9], that v is a homotopy equivalence and p is a fibration. 
It remains to prove that the injection E0 —> E is a cofibration. Since (W, </>) 
is cellular, W0 —> WK is a cofibration. But (W, W0) and (E, JE0) are homotopy 
equivalent pairs and therefore, by [8, p. 85, Corollary 1], (E, E0) has the 
weak homotopy extension property. By [8, p. 85, Corollary 3], it is sufficient 
to demonstrate the existence of a continuous function / : £ — > / such that 
y-i(O) = EQ. NOW W0 is a countable CW-complex, and hence is an Xo-space. 
By [3, p. 984, property (J)], Wo1 is an Xo-space, hence paracompact and 
hence normal. Hence [3, p. 983, property (D)] implies that Wo1 is perfectly 
normal. Therefore W0

f, the subspace of constant paths, is a closed G5 in Wo1. 
It follows that there exists a continuous function h: Wo1 —> / such that 
h~1(0) = Wo. If we now set f(w, X) = \{gw + h\), where g: W —» / is such 
that Wo = g-1(0)> w e obtain the desired function, which completes the 
proof of Lemma 3.1. 

Proof of Lemma 3.2. Applying Lemma 3.1 to the cellular pair {TP, </>T), 
let R be the functor corresponding to the associated pair (E, p). Then 
(RP, <pR) is fibrant, being equivalent to the pair (E, p). Moreover, the pair 
map v determines a unique natural transformation v: T —± R. It remains to 
prove that v is an SHE in W. An application of Lemma 2.5 shows that 

$TY: Y X TP, ( F X T*) U (* X TP) -> TY, T*, 
and 

4,BY: YXRP, (YXR*)V (* X ^ P ) - ^ i ^ F , i ^ * 

induce relative homology isomorphisms ( F Ç W). 2"F and similarly i^F are 
1-connected, as proved earlier; hence we may argue as in [1, p. 27, proof of 
Theorem 4.1, case n = 1] that z; is an SHE. This completes the proof of 
Lemma 3.2 and Theorem 1.1. 
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