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RINGS WITH NO NILPOTENT ELEMENTS AND WITH
THE MAXIMUM CONDITION ON ANNIHILATORS

BY
W. H. CORNISH AND P. N. STEWART

1. Introduction. Rings (all of which are assumed to be associative) with no
non-zero nilpotent elements will be called reduced rings; R is a reduced ring if and
only if x2=0 implies x=0, for all x € R. In 2. we prove that the following con-
ditions on an annihilator ideal I of a reduced ring are equivalent: I is a maximal
annihilator, I is prime, I is a minimal prime, I is completely prime. A characteriza-
tion of reduced rings with the maximum condition on annihilators is given in 3.

Let R be a ring in which xy=0 if and only if yx=0, for all x, ye R. If x e R
and x"=0 for some integer n>1, then any product of elements of R involving »
occurrences of x must be 0. To see this let n;, i=1, . . . , k be positive integers such
that n;+ - - - +m,=n and let r;, i=1, ..., k—1 be elements of R. Then in suc-
cession we obtain: x"=0, rx"=0, x""r;x"=0, ..., X"™r_;x"1 - px"=0.
It follows that if x"=0, then X”=(0) where X is the ideal of R which is generated
by x. Therefore, the set of nilpotent elements of R is an ideal N, N is the prime
radical of R, and R/N is a reduced ring.

In fact, for R to be a reduced ring it is necessary and sufficient that R be semi-
prime (that is, R have no non-zero nilpotent ideals) and xy=0 if and only if
yx=0, for all x, y € R. This follows because in a reduced ring R, if xy=0 then
(yx)*=y(xy)x=0 and so yx=0. Of course, all commutative semi-prime rings are
reduced rings.

Finally we note that every ring R contains a unique smallest ideal I such that
R/I'is a reduced ring. For details see the discussion of the generalized nil radical in
Divinsky [1].

2. Maximal annihilators and minimal primes. An ideal P of a ring R is prime if
and only if P#R and aRb< P implies that ac P or be P, for all a,b e R; P is
completely prime if PR and ab € P implies that ac P or b e P, for all a, b € R.

Let R be a ring in which xy=0 if and only if yx=0, for all x,ye R. If SSR
we shall denote the annihilator of S by S*; that is,

S*={reR:rs=0 forall seS}.

Because of the condition on R, an annihilator S* is a two-sided ideal of R. If
¥ € R we shall denote {y}* by y*. An annihilator S* is maximal if and only if
S*s£R and S*< T*#R implies that S*=T%*, for all TS R. If S*##R then there

35

https://doi.org/10.4153/CMB-1974-006-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1974-006-1

36 W. H. CORNISH AND P. N. STEWART [March

is a y € S such that y*#R. Clearly $*< y* so all maximal annihilators are of the
form y* for some y € R.

PROPOSITION 2.1. Let R be a reduced ring and S = R. Then the following are
equivalent:
(1) S* is a maximal annihilator,
(i) S* is prime,
(ili) S* is a minimal prime,
(iv) S* is completely prime.

Proof. (i)—(ii) Select y €S such that S*=yp*. Since y*<(y?)* and y3#0,
y¥*=0OH* If aeR and (ya)*=R then y%a=0 so a € ()?)*=y*; thus, if a ¢ y*
y¥*=(ya)*. It follows that y* is completely prime, so of course S*=y* is prime.

(ii)—(iii) Suppose that Q is a prime ideal and Q < S*. Since S* is a prime ideal,
S*#R; so we may choose a non-zero y € S. If a € S* in succession we obtain:
ay=0, Ray=(0), yRa=(0)=Q, y € Q or a€ Q. Since Q=S* and y*#0, y ¢ Q.
Therefore a € Q so Q==S*.

(iii)—(iv) Suppose that ab € S*. In succession we obtain, for each y e S:
aby=0, bya=0, Rbya=(0), aRby=(0). Thus aRb< S* and since S* is prime,
a€S*orbeS*

(iv)—(i) Suppose that S*<T*#R. Since T*#R there is a non-zero ye T.
If aeT* then ay=0€ S*, so ae S* or ye S* Because S*<T* and »?#0,
y ¢ S*. Therefore a € S* so S*=T*.

3. Reduced rings with the maximum condition on annihilators. For any two
sets A4 and B, let A—B={x € A:x ¢ B}. We require the following rather technical
lemma.

Lemma 3.1. Let R be a ring and P,, i=1, ..., n any prime ideals of R such that
forall k,1<n, P,& P, if I#k.
If a € R and L is a left ideal of R such that for some k, 0<k<n:

a¢P, if 1<i<k
aeP; if n>j>k+l
LEP, if n>j>k+1,

then there is a d € R— U], P; such that d—a e L N [N5_, P,].
Notice that if k=0, L N [X_, P,]=L.

Proof. Let j>k+1. By assumption LE P; and P, £ P; for i#j, so
LN [ N Pi} ¢ P,
i3

because P; is a prime ideal. Thus we may choose u; € (L N [(;..; P.)—P;.
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Let
n
d=a+ Y u;

i=k+1

Now, u; € L N [Ns_, P,] for all j>k+1 so d—ae L N [N, P].

If d € P, for some i<k, then a=d—>} ., u; € P, contrary to assumption.

If d e P, for some I>k+1, then u,;=d—a—2] ;. ;. ; € P, contrary to the
way in which u, was chosen.

Therefore, d € R—U;; P;.

An element d of a ring R is regular if and only if for every r € R, rd=0 or dr=0
implies that r=0. A ring R is an integral domain if and only if every non-zero
element of R is regular. Finally, R is a ring with max—a (the maximum condition
on annihilators) if and only if every non-empty set of annihilators has a maximal
element.

THEOREM 3.2. For any ring R#(0) the following are equivalent:
() R is a reduced ring with max—a,
(i) R has only a finite number of distinct minimal prime ideals P;, i=1, . .., n;
Ni1 P;=(0), and all elements in R—;_, P; are regular,
(iii) R has a finite number of completely prime ideals Q;, i=1, ..., k such that
Nz 0:=(0),
(@iv) R is isomorphic to a subring of a direct product of a finite number of integral
domains.

Proof. (i)—(ii) Choose a non-zero y € R. Since y2#0, y*s#R; so y* is contained
in a maximal annihilator of R. Thus R has maximal annihilators.

Let P,=y;, i=1,...,k+1 be maximal annihilator ideals of R. Suppose that
Vi1 € [Ni—1 PJ*. Then P, =yr . 2[Ni,PI**2NL, P, Since, by 2.1,
Py, is prime, P, P, for some j<k. By the maximality of P;, P;=P,,;. There-
fore, if the annihilators P,, i=1,..., k41 are distinct, y,.; ¢ [NE, P.]* and
consequently [H] P,1* 2 [N, P1*.

Since R is a ring with max—a, there are only a finite number P,= y:‘ ,i=1,...,n
of distinct maximal annihilators, and by 2.1 they are all minimal prime ideals.

If x € R and x50 then x*< P; for some j<n, so if x € ;_, P; then y; e x*<
P;=y} and hence yf=0. Since R is a reduced ring, N;_; P,=(0).

It follows that for any prime ideal P of R, P;<P for some j<n. Thus P;, i=
1, ..., n are the only minimal prime ideals of R.

Ify,z€ R, yz=0and z7#0 then z*#R so y € z*< P; for some j<n. Therefore,
if ye R—U7; P; then y is regular.

(ii)—(iii) It is sufficient to prove that each P;, j<n, is completely prime.

First notice that R—J;_, P,=the set of regular elements of R. This follows
because we are assuming that all elements in R— |J;._, P; areregular; and no element
in U7, P; can be regular because for each j<n, P,[,.; P:]< Ni-1 P;=(0), and
Ni; P;#(0) since the minimal prime ideals P, i=1, ..., n are distinct.
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Suppose that a, b € R—P; for some j<n. Taking L=R in 3.1 we find regular
elements d, d, € R—;_, P; such that d—a, d,—b € P;. Now (d—a)b=db—ab € P;
and d(d,—b)=dd,—db € P;; so if ab € P; then db € P; and dd, € P;. But dd, ¢ P;
because dd, is regular, so ab € R—P;. Therefore each P;, j<n, is completely
prime.

(iii)—>(iv) The ring R is isomorphic to a subdirect product of the integral
domains R/Q;, i=1,...,k.

(iv)—(@) A finite direct product of integral domains has no non-zero nilpotent
elements and only a finite number of annihilators. Both properties are inherited by
subrings.

We note that these results can be applied to obtain the following version of
Goldie’s Theorem for reduced rings (see [2] for definitions).

THEOREM 3.3 (Goldie). 4 ring R#(0) has a classical left quotient ring which is
isomorphic to a finite direct product of division rings if and only if R is a reduced
ring with max—a and Rd is essential for each regular d € R.

To summarise: if R#(0) is a reduced ring with max—a, then R has only a
finite number of distinct minimal prime ideals P;, i=1, ..., n and

P,=y*i=1...,n
are maximal annihilators,
Pi ’ i= l, [ (]
are completely prime,
n
N P; = (0), and
=1

n

R— | P; = the set of regular elements of R.
i=1

i=

If R satisfies the conditions of 3.3, then

O(R) == TT QRIQRP, = IT O®/P)

where for any ring 4, Q(4) denotes a classical left quotient ring of A. The last
isomorphism is due to Goldie, a proof can be found in Lambek [2, 4.6].
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