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PROBABILISTIC PROOFS OF EULER IDENTITIES

LARS HOLST,∗ Royal Institute of Technology

Abstract

Formulae for ζ(2n) and Lχ4 (2n + 1) involving Euler and tangent numbers are derived
using the hyperbolic secant probability distribution and its moment generating function.
In particular, the Basel problem, where ζ(2) = π2/6, is considered. Euler’s infinite
product for the sine is also proved using the distribution of sums of independent hyperbolic
secant random variables and a local limit theorem.
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1. Introduction

Results in mathematical analysis can sometimes be derived and enlightened using probability
theory. As an illustration of this ‘unity of mathematics’, we will see how properties of the so-
called hyperbolic secant distribution can be used to obtain Euler’s exact sum for the Basel
problem from 1735, i.e. the beautiful identity

1 + 1

22 + 1

32 + · · · = π2

6
,

and more generally to obtain formulae for

ζ(2n) =
∞∑

k=1

1

k2n
, n = 1, 2, 3, . . . ,

and

Lχ4(2n + 1) =
∞∑

k=0

(−1)k

(2k + 1)2n+1 , n = 0, 1, 2, . . . .

The same formulae are derived in [2] using products of Cauchy random variables. We also
prove Euler’s infinite product formula for the sine using the hyperbolic secant distribution.

2. The hyperbolic secant probability distribution

A random variable X with the symmetric probability density

f1(x) = 1

π cosh x
= 2

π(ex + e−x)
, −∞ < x < ∞,
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and the distribution function

P(X ≤ x) =
∫ x

−∞
2

π(ey + e−y)
dy = 2

π
arctan(ex),

has a hyperbolic secant (HS) distribution.
Note that, if Y is C(0, 1), that is, standard Cauchy distributed, then

P(ln |Y | ≤ x) =
∫ ex

−ex

1

π(1 + y2)
dy = 2

π
arctan(ex).

Thus, ln |Y | is HS distributed.

Theorem 1. Let X1 and X2 be independent random variables with the HS distribution. Then
the probability density of X1 + X2 is

f2(x) = 4x

π2(ex − e−x)
, −∞ < x < ∞.

Proof. By convolution, the density of X1 + X2, f2(x), is given by
∫ ∞

−∞
2

π(ey + e−y)

2

π(ex−y + e−x+y)
dy

= 4

π2

∫ ∞

0

ue−x

(1 + u2)(1 + u2e−2x)
du

= 4

π2(ex − e−x)

∫ ∞

0

(
u

1 + u2 − ue−2x

1 + u2e−2x

)
du

= 4x

π2(ex − e−x)
,

proving the assertion.

Theorem 2. Let the random variable X have an HS distribution. Then its moment generating
function is

E(etX) = 1

cos(πt/2)
, −1 < t < 1,

and its characteristic function is

E(eitX) = 1

cosh(πt/2)
= 2

eπt/2 + e−πt/2 , −∞ < t < ∞.

Proof. For −1 < t < 1, we have

E(etX) =
∫ ∞

−∞
etx 2

π(ex + e−x)
dx = 2

π

∫ ∞

0

yt

1 + y2 dy = 1

cos(πt/2)
,

using a known integral. Replacing t with it proves the second assertion.

Recall the series expansion of the secant function

1

cos t
=

∞∑
n=0

E2n

t2n

(2n)! , −π

2
< t <

π

2
,
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where E0 = 1, E2 = 1, E4 = 5, E6 = 61, etc. are the Euler numbers, and that of the tangent
function

1

cos2 t
= d

dt
tan t = d

dt

∞∑
n=0

T2n+1
t2n+1

(2n + 1)! =
∞∑

n=0

T2n+1
t2n

(2n)! , −π

2
< t <

π

2
,

where T1 = 1, T3 = 2, T5 = 16, T7 = 272, etc. are the tangent numbers.
For X1 and X2 independent HS random variables, we have

E(et (X1+X2)) = E(etX1)E(etX2) = 1

cos2(πt/2)
, −1 < t < 1.

From the above properties, the following formulae for the moments follow.

Theorem 3. Let X1 and X2 be independent HS random variables. Then

E(X2n
1 ) = E(X2n

2 ) = E2n

(
π

2

)2n

, E((X1 + X2)
2n) = T2n+1

(
π

2

)2n

,

all odd moments are 0, and V (X1) = V (X2) = (π/2)2.

3. The Basel problem and related identities

Euler’s remarkable exact sum from 1735 for the Basel problem, see, e.g. [3, p. 107],
[5, pp. 45–46], [10, p. 38], and [14], has been proved in many different ways; see [4] with
14 ways and [13] with 6 ways for evaluating ζ(2), and the recent notes [9], [11], [15], and [16].
We give another proof using Theorem 1.

Theorem 4. (The Basel problem.) It holds that

ζ(2) = 1 + 1

22 + 1

32 + · · · = π2

6
.

Proof. By symmetry we have

1 =
∫ ∞

−∞
f2(x) dx

=
∫ ∞

−∞
4x

π2(ex − e−x)
dx

= 8

π2

∫ ∞

0

xe−x

1 − e−2x
dx

= 8

π2

∫ ∞

0
xe−x

∞∑
k=0

e−2kx dx

= 8

π2

∞∑
k=0

∫ ∞

0
xe−(2k+1)x dx

= 8

π2

∞∑
k=0

1

(2k + 1)2 .
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Euler’s identity follows from

ζ(2) =
∞∑

k=0

1

(2k + 1)2 +
∞∑

k=1

1

(2k)2 = π2

8
+ 1

4
ζ(2).

The following theorem, which partly goes back to Euler, is proved in a similar way. A slightly
different proof is given in [2]; cf. [16].

Theorem 5. For n = 1, 2, 3, . . . ,(
1 − 1

22n

)
ζ(2n) = 1

2

(
π

2

)2n
T2n−1

(2n − 1)! ,

and, for n = 0, 1, 2, . . . ,

Lχ4(2n + 1) =
∞∑

k=0

(−1)k

(2k + 1)2n+1 = 1

2

(
π

2

)2n+1
E2n

(2n)! .

Proof. From Theorem 1 and Theorem 3, we obtain

T2n−1

(
π

2

)2n−2

= E((X1 + X2)
2n−2)

=
∫ ∞

−∞
x2n−2f2(x) dx

= 8

π2

∞∑
k=0

∫ ∞

0
x2n−1e−(2k+1)x dx

= 8

π2

∞∑
k=0

(2n − 1)!
(2k + 1)2n

.

The first assertion follows as in the previous theorem.
In a similar way the second assertion follows from

E2n

(
π

2

)2n

=
∫ ∞

−∞
x2nf1(x) dx = 4

π

∞∑
k=0

(−1)k
∫ ∞

0
x2ne−(2k+1)x dx.

4. Sums of independent HS random variables

Theorem 6. Let X1, X2, . . . , Xn be independent HS random variables, and let fn(x) be the
probability density of X1 + · · · + Xn. Then, for k = 1, 2, . . . ,

f2k+1(x) = (2k − 1)!!
(2k)!!

k∏
j=1

(
1 +

(
2x

(2j − 1)π

)2) 2

π(ex + e−x)
,

f2k+2(x) = (2k)!!
(2k + 1)!!

k∏
j=1

(
1 +

(
x

jπ

)2) 4x

π2(ex − e−x)
,

and, uniformly in y,

π
√

n

2
fn

(
π

√
n

2
y

)
→ 1√

2π
e−y2/2 as n → ∞.
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Proof. Using Theorem 2, we have, for −1 < t < 1,

d2

dt2 E(et (X1+···+Xn)) = d2

dt2

∫ ∞

−∞
etxfn(x) dx

=
∫ ∞

−∞
etxx2fn(x) dx

= d2

dt2

1

cosn(πt/2)

= n(n + 1)π2

4 cosn+2(πt/2)
− n2π2

4 cosn(πt/2)

= n(n + 1)π2

4

∫ ∞

−∞
etxfn+2(x) dx − n2π2

4

∫ ∞

−∞
etxfn(x) dx.

Thus, ∫ ∞

−∞
etxfn+2(x) dx =

∫ ∞

−∞
etx n

n + 1

(
1 +

(
2x

nπ

)2)
fn(x) dx, −1 < t < 1,

which implies the recurrence

fn+2(x) = n

n + 1

(
1 +

(
2x

nπ

)2)
fn(x).

This is satisfied by

f2k+1(x) = (2k − 1)!!
(2k)!!

k∏
j=1

(
1 +

(
2x

(2j − 1)π

)2)
f1(x)

and

f2k+2(x) = (2k)!!
(2k + 1)!!

k∏
j=1

(
1 +

(
x

jπ

)2)
f2(x),

proving the first two assertions.
By the central limit theorem, (X1 + · · · + Xn)/(π

√
n/2) converges in distribution to a

standard normal distribution as n → ∞. From Theorem 2 we see that the characteristic function
of X is integrable, which implies that the probability densities converge to the standard normal
probability density

π
√

n

2
fn

(
yπ

√
n

2

)
→ 1√

2π
e−y2/2 as n → ∞,

uniformly in y; see [6, Theorem 2, p. 489].

By other methods, the formulae for f2k+1(x) and f2k+2(x) are derived in, e.g. [1] and [8].

Remark. Recall that ln |Y | has an HS distribution for Y standard Cauchy distributed. Thus,
products and ratios of independent C(0, 1) random variables can be studied using sums of
independent HS random variables; cf. [2, Proposition 2], [8], and [16].
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5. Euler’s product formula for the sine

Using the results for sums of HS random variables, we now prove Euler’s infinite product
formula for the sine from 1735. For other proofs, see, e.g. [7], the references therein, and the
recent note [12].

Theorem 7. For all complex z,

sin z = z

∞∏
j=1

(
1 − z2

j2π2

)
.

Proof. Using Theorem 6, we obtain

f2k+2(x) = 22k+1(k!)2

(2k)! (2k + 1)π2

2

ex − e−x
x

k∏
j=1

(
1 + x2

j2π2

)
.

By Stirling’s formula,
22k+1(k!)2

(2k)! √2k + 1
→ √

2π as k → ∞.

The uniform convergence of the densities implies that, for every fixed x,

π
√

2k + 1

2
f2k+2(x) → 1√

2π
as k → ∞.

Thus,
(2k)! (2k + 1)π2

22k+1(k!)2 f2k+2(x) → 1 as k → ∞.

Combining the above limits, we obtain

sinh x = ex − e−x

2
= x

∞∏
j=1

(
1 + x2

j2π2

)
.

As this holds for all real x, it holds by analytical continuation for all complex x. With x = iz,
Euler’s product formula follows.
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