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Abstract We study the bifurcation problem
− div(a(x)|Du|p−2Du) + h(x)ur−1 = f(λ, x, u) in Ω ⊂ RN ,
a(x)|Du|p−2Du · n+ b(x)up−1 = θg(x, u) on Γ,

u > 0, u 6≡ 0 in Ω,

where Ω is an unbounded domain with smooth non-compact boundary Γ , n denotes the unit outward
normal vector on Γ , and λ > 0, θ are real parameters. We assume throughout that p < r < p∗ =
pN/(N − p), 1 < p < N , the functions a, b and h are positive while f , g are subcritical nonlinearities.
We show that there exist an open interval I and λ? > 0 such that the problem has no solution if θ ∈ I
and λ ∈ (0, λ?). Furthermore, there exist an open interval J ⊂ I and λ0 > 0 such that, for any θ ∈ J ,
the above problem has at least a solution if λ > λ0, but it has no solution provided that λ ∈ (0, λ0).
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1. Introduction

Among the great range of processes modelled by nonlinear equations, those leading to
bifurcation problems are of particular difficulty and importance. More precisely, many
models from chemical engineering, mathematical biology, mechanics and engineering may
be written in the form,

ut = F(λ, u, Du, D2u, . . . ) in Ω × (0, T ), (1.1)

where u = u(x, t) is the state of the system under consideration. For instance, if we try
to describe the behaviour of a bacteria culture, then the state variable u might be the
number of mass of the bacteria. In many concrete situations problems like (1.1) represent
a complicated system of equations involving partial differential equations and other oper-
ations, like boundary or initial conditions. Each mathematical model contains (implicitly
or explicitly) parameters corresponding to the real world situation being described. For
example, the outcome of a bacteria-growing experiment will depend on the size of the

527

https://doi.org/10.1017/S0013091500000304 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500000304
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experimental apparatus, the temperature, the composition of the ambient atmosphere,
and other parameters. In such a way, a surprising variety of the problems in applied
mathematics which exhibit multiple steady-state solutions, even systems with infinitely
many degrees of freedom, can be reduced to the form,

ut = F(λ1, λ2, . . . , λk, u, Du, D2u, . . . ) in Ω × (0, T ),

which involves a large number k of parameters. However, even for the biologists, it would
be difficult to figure out how F should depend on all these quantities. In this case, in
order to develop a consistent mathematical theory, one tries to fix as many as possible
parameters and perhaps to vary one of them so as to see the effect of this. Several
parameters in a model, such as Reynold’s number, Lyapunov–Schmidt reduction, etc.,
can often be lumped into a single one by standard scaling procedures. Thus we obtain
the evolution problem (1.1), which depends on a single parameter. The simplest solutions
(1.1) can have are equilibrium solutions. These are time-independent solutions of (1.1),
i.e. the states which satisfy F(λ, u, Du, D2u, . . . ) = 0. Similar problems arise for the
case of several state variables. We refer, for example, to the steady-state Brusselator
model (see [4]), which was developed to describe morphogenesis and pattern formation
in chemical reactions. We assume in this paper that F involves the quasilinear differential
operator,

∆pu = div(|Du|p−2Du), 1 < p <∞.

We are concerned in this paper with the study of the following double bifurcation
quasilinear problem,

− div(a(x)|Du|p−2Du) + h(x)ur−1 = f(λ, x, u) in Ω ⊂ RN ,

a(x)|Du|p−2Du · n + b(x)up−1 = θg(x, u) on Γ,

u > 0, u 6≡ 0 in Ω,

 (Pλ,θ)

where Ω is an unbounded domain with non-compact, smooth boundary Γ , λ > 0, θ are
real parameters and throughout p < r < pN/(N − p), 1 < p < N .

The study of non-trivial solutions in the above problem is motivated by the following
example. Suppose an inviscid fluid flows irrotationally along a flat-bottomed canal. The
flow can be modelled by an equation of the form F(λ, u, Du) = 0, where F(λ, 0, 0) = 0.
One possible motion is a uniform stream (corresponding to the trivial solution u = 0),
but it is of course the non-trivial solutions which are of physical interest.

Problems of this type arise in the study of physical phenomena related to equilibrium of
anisotropic continuous media which possible are somewhere ‘perfect’ insulators (cf. [7]).
For instance, if τ denotes the shear stress and Dpu is the velocity gradient then these
quantities obey a relation of the form τ (x) = a(x)Dpu(x), where Dpu = |Du|p−2Du.
The case p = 2 (respectively p < 2, p > 2) corresponds to a Newtonian (respectively
pseudoplastic, dilatant) fluid. The resulting equations of motion then involve the quasi-
linear operator div(aDpu). We refer in this sense to [2] for the mathematical treatment
of the Hele-Shaw flow of ‘power-law fluids’. The concept of Hele-Shaw flow refers to the
flow between two closely spaced parallel plates, close in the sense that the gap between
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the plates is small compared to the dimension of the plates. Quasilinear problems with a
variable coefficient also appear in the mathematical model of the torsional creep (elastic
for p = 2, plastic as p→∞ [3,14]). This study is based on the observation that a pris-
matic material rod subject to a torsional moment, at sufficiently high temperature and
for an extended period of time, exhibits a permanent deformation, called creep. The cor-
responding equations are derived under the assumptions that the components of strain
and stress are linked by a power law referred to as the creep-law (see [13] and [11,12]).
We also refer to the study of flow through porous media (p = 3/2 [19]) or glacial sliding
(p ∈ (1, 4

3 ] [15]). We mention the recent papers [5,9,10] for the mathematical treatment
of bifurcation problems for several classes of quasilinear elliptic equations on unbounded
domains and with respect to anisotropic spaces.

The purpose of this paper is to study a quasilinear eigenvalue problem with nonlinear
boundary condition in an unbounded domain Ω ⊂ RN , and we generalize in a larger
framework some results from [6]. It is known that for unbounded domains, neither the
embedding W 1,p(Ω) ↪→ Lq(Ω), nor the trace W 1,p(Ω) → Lm(Γ ) are compact. So, it is
natural to look for more general function spaces, e.g. weighted Sobolev spaces, where
compact embeddings can be obtained for suitable weight functions. However, because of
the nonlinear boundary condition, it is not only necessary to have compact embeddings
of weighted Sobolev spaces, but to also use compactness of the trace operator.

Pflüger [17] studied the trace operators W 1,p(Ω; v0, v1)→ Ls(Γ ;w) in weighted Sobo-
lev spaces for sufficiently regular unbounded domains Ω ⊂ RN with non-compact bound-
ary. He established certain conditions on the weight functions v0, v1, w, which ensure the
compactness of this operator.

For a positive measurable function w1 defined in a domain Ω ⊂ RN , let Lq(Ω;w1) be
the space of all measurable functions u such that

‖u‖q,Ω,w1 =
(∫

Ω

|u(x)|qw1(x) dx

)1/q
is finite. If Γ is a submanifold in RN , we denote by Lm(Γ ;w2) the space of all measurable
functions u such that ‖u‖m,Γ,w2 is finite. The weighted Sobolev space W 1,p(Ω; v0, v1)
is defined as the set of all functions u ∈ Lp(Ω; v0) such that all the derivatives uxi
(1 6 i 6 N) belong to Lp(Ω; v1). The corresponding norm is given by

‖u‖1,p,Ω,v0,v1 =
(∫

Ω

|u(x)|pv0(x) dx +
∫
Ω

|Du(x)|pv1(x) dx

)1/p
.

Denote by Ap the Muckenhoupt class which is the set of all positive measurable functions
v in RN satisfying

1
|Q|
(∫

Q

v dx

)1/p(∫
Q

v−1/(p−1) dx

)(p−1)/p

6 C if 1 < p <∞,

1
|Q|

∫
Q

v dx 6 C ess inf
x∈Q

v(x) if p = 1,
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for all cubes Q in RN . For example, the function v(x) = (1 + |x|)β belongs to Ap if
β ∈ (−N, N(p− 1)) (see [20]).

We always assume that the continuous weight functions v0, v1, w0, w1, w2 belong to
Ap. Furthermore, the unbounded domain Ω ⊂ RN and the weight functions are chosen
such that we can apply [17, Theorem 2] and [17, Corollary 6] to guarantee that the
trace W 1,p(Ω; v0, v1) → Lp(Γ ;w0) is continuous and the embedding W 1,p(Ω; v0, v1) ↪→
Lq(Ω;w1) for some p < q < pN/(N − p), respectively the trace W 1,p(Ω; v0, v1) →
Lm(Γ ;w2) for some p < m < p(N − 1)/(N − p) are compact.

Remark 1.1. To give an example of the domain Ω ⊂ RN and of the weight functions
v0, v1, w0, w1 and w2 that satisfy the above assumptions, consider Ω as an infinite
cylinder ω × R where ω ⊂ RN−1 is smooth, bounded and

v0(x) =
1

(1 + |x|)p , v1(x) = 1,

w0(x) = (1 + |x|)α0 , w1(x) = (1 + |x|)α1 , w2(x) = (1 + |x|)α2 , x ∈ RN .

To obtain continuity of the trace operator W 1,p(Ω; v0, v1) → Lp(Γ ;w0) and compact-
ness of the embedding W 1,p(Ω; v0, v1) ↪→ Lq(Ω;w1) respectively of the trace operator
W 1,p(Ω; v0, v1)→ Lm(Γ ;w2) we have to choose

−N < α0 6 1− p, −N < α1 < q
N − p

p
−N and −N < α2 < m

N − p

p
−N + 1.

Denote by C∞δ (Ω) the space of C∞0 (RN )-functions restricted to Ω. We define the
weighted Sobolev space E as the completion of C∞δ (Ω) in the norm ‖ ·‖E , where we shall
use the abbreviation ‖ · ‖E = ‖ · ‖1,p,Ω,v0,v1 .

Remark 1.2. The definition of E and the choice of our weight functions ensure the
continuity of the trace E → Lp(Γ ;w0) and the compactness of the embedding E ↪→
Lq(Ω;w1) respectively of the trace operator E → Lm(Γ ;w2).

2. Main results

Suppose throughout this paper that the following hypotheses are fulfilled.

(H1) v0 ∈ C1(RN ) and there exists a constant 0 < σ < N such that

|x| · |Dv0(x)| 6 σv0(x) ∀x ∈ Ω;

(H2) a is a positive measurable function, locally bounded in Ω and there exist positive
constants a0, a1 such that

a0(|x|pv0(x) + v1(x)) 6 a(x) 6 a1v1(x) a.e. x ∈ Ω;

(H3) b is a positive continuous function on RN and there exist positive constants b0 and
b1 such that

b0|x|v0(x) 6 b(x) 6 b1w0(x) a.e. x ∈ Γ.
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Let f(λ, x, s) : (0,∞) × Ω × R → R be non-decreasing in λ, measurable in x, derivable
in s satisfying

(H4) f(·, ·, 0) = 0, f(λ, x, s) + f(λ, x,−s) > 0 ∀λ > 0, a.e. x ∈ Ω, ∀s ∈ R;

(H5) |fs(λ, x, s)| 6 λϕ(x)|s|q−2 for some p < q < r, ∀λ > 0, a.e. x ∈ Ω, ∀s ∈ R, where
ϕ is a non-negative, measurable function such that

0 6 ϕ(x) 6 cfw1(x) a.e. x ∈ Ω;

(H6) lim
s→0

f(λ, x, s)
λw1(x)|s|q−2s

= 1 uniformly in x and in λ;

(H7) |f(λ1, x, s) − f(λ2, x, s)| 6 |λ1 − λ2|ψ(x)|s|q−1, ∀λ1, λ2 > 0, a.e. x ∈ Ω, ∀s ∈ R,
where ψ is a non-negative, measurable function such that

0 6 ψ(x) 6 Cfw1(x) a.e. x ∈ Ω.

Assume g : Γ ×R→ R is a Carathéodory function that satisfies the following conditions.

(H8) g(·, 0) = 0, g(x, s) + g(x,−s) > 0 a.e. x ∈ Γ, ∀s ∈ R;

(H9) |g(x, s)| 6 g0(x) + g1(x)|s|m−1, for some p < m < p(N − 1)/(N − p), a.e. x ∈
Ω, ∀s ∈ R, where g0, g1 are non-negative, measurable functions such that

0 6 g0(x), g1(x) 6 Cgw2(x) a.e. x ∈ Γ, g0 ∈ Lm/(m−1)(Γ ;w1/(1−m)
2 ).

The following integrability condition of the ratio wr1/hq is inspired by assumption (1.4)
in [1].

(H10) h : Ω → R is a positive and continuous function satisfying∫
Ω

(
wr1
hq

)1/(r−q)
dx <∞.

Remark 2.1. If 0 < a 6 a ∈ L∞(Ω) and b ∈ C(RN ) is a positive function such that

c1

(1 + |x|)p−1 6 b(x) 6 c2

(1 + |x|)p−1 for some constants 0 < c1 6 c2,

then hypotheses (H1)–(H3) are fulfilled if we take weight functions as in Remark 1.1
with α0 = 1− p.

Consider the Banach space X = E ∩ Lr(Ω;h) endowed with the norm,

‖u‖pX := ‖u‖pE +
(∫

Ω

|u(x)|rh(x) dx

)p/r
.
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Obviously, the following embeddings

X
i

↪→ E and X
j

↪→ Lr(Ω;h) are continuous. (2.1)

The energy functional corresponding to (Pλ,θ) is given by Φλ,θ : X → R,

Φλ,θ(u) =
1
p

∫
Ω

a(x)|Du|p dx +
1
p

∫
Γ

b(x)|u|p dΓ +
1
r

∫
Ω

h(x)|u|r dx

−
∫
Ω

F (λ, x, u) dx− θ

∫
Γ

G(x, u) dΓ,

where F and G denote the primitive functions of f and g with respect to the last variable,
i.e.

F (λ, x, u) =
∫ u

0
f(λ, x, s) ds, G(x, u) =

∫ u

0
g(x, s) ds.

Solutions to problem (Pλ,θ) will be found as non-negative and non-trivial critical points
of Φλ,θ. Therefore, a function u ∈ X is a solution of the problem (Pλ,θ) provided that
u > 0, u 6≡ 0 in Ω and for any v ∈ X,∫

Ω

a(x)|Du|p−2Du ·Dv dx +
∫
Γ

b(x)|u|p−2uv dΓ

+
∫
Ω

h(x)|u|r−2uv dx− θ

∫
Γ

g(x, u)v dΓ =
∫
Ω

f(λ, x, u)v dx.

Set

Ng :=
{

u ∈ X :
∫
Γ

g(x, u)u dΓ < 0
}

, Pg :=
{

u ∈ X :
∫
Γ

g(x, u)u dΓ > 0
}

θ∗ := sup
u∈Ng

‖u‖pb∫
Γ

g(x, u)u dΓ
, θ∗ := inf

u∈Pg
‖u‖pb∫

Γ
g(x, u)u dΓ

,

where ‖ · ‖b is defined on E as follows:

‖u‖b :=
(∫

Ω

a(x)|Du|p dx +
∫
Γ

b(x)|u|p dΓ

)1/p
. (2.2)

We introduce the convention that if Ng = ∅ then θ∗ = −∞ and θ∗ = +∞, provided
Pg = ∅. Define

NG :=
{

u ∈ X :
∫
Γ

G(x, u) dΓ < 0
}

, PG :=
{

u ∈ X :
∫
Γ

G(x, u) dΓ > 0
}

θ− := sup
u∈NG

‖u‖pb
p
∫
Γ

G(x, u) dΓ
, θ+ := inf

u∈PG
‖u‖pb

p
∫
Γ

G(x, u) dΓ
.

If NG = ∅ (respectively, PG = ∅) then we set θ− = −∞ (respectively, θ+ = +∞).
Our main results are the following.
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Theorem 2.2. Suppose θ∗ < θ < θ∗. Then there exists λ∗ > 0 such that problem
(Pλ,θ) has no solution, provided that 0 < λ < λ∗.

In order to state the next result, let us denote θ = max{θ∗, θ−} and θ̄ = min{θ∗, θ+}.
We observe that θ 6 0 6 θ̄. Set J = (θ, θ̄) and assume that J 6= ∅.

Theorem 2.3. Suppose θ ∈ J . Then there exists λ0 > 0 such that the following hold:

(i) problem (Pλ,θ) admits a solution, for any λ > λ0;

(ii) problem (Pλ,θ) does not have any solution, provided that 0 < λ < λ0.

3. Auxiliary results

We first prove that the energy functional Φλ,θ is well defined on X.

Lemma 3.1. There exist positive constants C1 and C2 such that for every u ∈ E∫
Ω

|u|pv0(x) dx 6 C1

∫
Ω

|Du|pv1(x) dx + C2

∫
Γ

|n · x||u|pv0(x) dΓ.

Proof. Using the divergence theorem we obtain, for any u ∈ C∞δ (Ω),∫
Ω

x ·D(|u|pv0(x)) dx =
∫
Γ

(n · x)|u|pv0(x) dΓ −N

∫
Ω

|u|pv0(x) dx.

This implies

N

∫
Ω

|u|pv0(x) dx 6
∫
Γ

|n · x||u|pv0(x) dΓ

+
∫
Ω

|u|p|x||Dv0(x)|dx + p

∫
Ω

|x||u|p−1|Du|v0(x) dx. (3.1)

Using Hölder’s and Young’s inequality, we get the estimate

p

∫
Ω

|x||u|p−1|Du|v0(x) dx 6 p

(∫
Ω

|u|pv0(x) dx

)(p−1)/p(∫
Ω

|Du|p|x|pv0(x) dx

)1/p
6 ε(p− 1)

∫
Ω

|u|pv0(x) dx + ε1−p
∫
Ω

|Du|p|x|pv0 dx, (3.2)

where ε > 0 is an arbitrary real number. From (3.1), (3.2) and (H1) it follows that

(N − ε(p− 1)− σ)
∫
Ω

|u|pv0(x) dx 6 ε1−p
∫
Ω

|Du|p|x|pv0(x) dx +
∫
Γ

|n · x||u|pv0(x) dΓ.

Using (H2) and choosing ε small enough we find∫
Ω

|u|pv0(x) dx 6 C1

∫
Ω

|Du|pv1(x) dx + C2

∫
Γ

|n · x||u|pv0(x) dΓ, ∀u ∈ C∞δ (Ω).

The conclusion of our lemma follows now by standard density arguments. �
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Lemma 3.2. The quantity ‖ · ‖b defined by (2.2) represents an equivalent norm on E.

Proof. The inequality ‖u‖pE 6 c‖u‖pb follows directly from Lemma 3.1 by using the
left hand side inequalities which appear in hypotheses (H2) and (H3).

By Remark 1.2 we know that the trace E → Lp(Γ ;w0) is continuous. Therefore, we
have that there exists C > 0 such that∫

Γ

|u|pw0(x) dΓ 6 C‖u‖pE ∀u ∈ E. (3.3)

Using the inequalities remained in (H2), (H3) and by (3.3) it follows that

‖u‖pb 6 a1

∫
Ω

|Du|pv1(x) dx + b1

∫
Γ

|u|pw0(x) dΓ 6 c′‖u‖pE .

Hence the desired equivalence is proved. �

For λ > 0 fixed, let fλ be the function defined by

fλ(x, s) = f(λ, x, s) ∀x ∈ Ω, ∀s ∈ R.

Set Fλ(x, u) =
∫ u

0 fλ(x, s) ds. Denote by Nfλ , NFλ , Ng, NG the corresponding Nemytskii
operators.

Lemma 3.3. The operators,

Nfλ : Lq(Ω;w1)→ Lq/(q−1)(Ω;w1/(1−q)
1 ), NFλ : Lq(Ω;w1)→ L1(Ω),

Ng : Lm(Γ ;w2)→ Lm/(m−1)(Γ ;w1/(1−m)
2 ), NG : Lm(Γ ;w2)→ L1(Γ ),

are bounded and continuous.

Proof. From hypothesis (H5) we deduce that

|fλ(x, u)| 6 λ

q − 1
ϕ(x)|u|q−1 6 C̃fλ|u|q−1w1(x) a.e. x ∈ Ω, ∀u ∈ R,

|Fλ(x, u)| 6 λ

q(q − 1)
ϕ(x)|u|q 6 C̃f

q
λ|u|qw1(x) a.e. x ∈ Ω, ∀u ∈ R,

 (3.4)

where C̃f denotes cf/(q − 1).
For u ∈ Lq(Ω;w1) we get (setting q′ = q/(q − 1))∫

Ω

|Nfλ(u)|q′w1/(1−q)
1 dx 6 (C̃fλ)q

′
∫
Ω

|u|qw1(x) dx.

Therefore, Nfλ is bounded. Similarly, the boundedness of NFλ follows from the estimate∫
Ω

|NFλ(u)|dx 6 C̃f
q

λ

∫
Ω

|u|qw1(x) dx.
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Let m′ = m/(m− 1) and u ∈ Lm(Γ ;w2). Then, by (H9)∫
Γ

|Ng(u)|m′w1/(1−m)
2 dΓ 6 2m

′−1
(∫

Γ

gm
′

0 w
1/(1−m)
2 dΓ +

∫
Γ

gm
′

1 |u|mw
1/(1−m)
2 dΓ

)
6 2m

′−1
(

C + Cm′
g

∫
Γ

|u|mw2(x) dΓ

)
,

which shows that Ng is bounded. In a similar way, by (H9) and Hölder’s inequality we
obtain∫

Γ

|NG(u)|dΓ

6
∫
Γ

g0|u|dΓ +
1
m

∫
Γ

g1|u|m dΓ

6
(∫

Γ

gm
′

0 w
1/(1−m)
2 dΓ

)1/m′
·
(∫

Γ

|u|mw2(x) dΓ

)1/m
+

Cg
m

∫
Γ

|u|mw2(x) dΓ,

and the boundedness of NG follows.
From the usual properties of Nemytskii operators we deduce the continuity of Nfλ ,

NFλ , Ng and NG (see [21]). �

In view of Lemmas 3.2 and 3.3, Φλ,θ is well defined on X.

Lemma 3.4. The functional Φλ,θ is Fréchet-differentiable on X.

Proof. We use the notation,

I(u) =
1
p
‖u‖pb , J(u) =

1
r
‖u‖rr,Ω,h,

KG(u) =
∫
Γ

G(x, u) dΓ, KFλ(u) =
∫
Ω

Fλ(x, u) dx.

Then the Gâteaux derivative of Φλ,θ is given by

〈Φ′λ,θ(u), v〉 = 〈I ′(u), v〉+ 〈J ′(u), v〉 − 〈K ′Fλ(u), v〉 − θ〈K ′G(u), v〉,

where

〈I ′(u), v〉 =
∫
Ω

a(x)|Du|p−2Du ·Dv dx +
∫
Γ

b(x)|u|p−2uv dΓ,

〈J ′(u), v〉 =
∫
Ω

h(x)|u|r−2uv dx,

〈K ′Fλ(u), v〉 =
∫
Ω

fλ(x, u)v dx,

〈K ′G(u), v〉 =
∫
Γ

g(x, u)v dΓ.

We need only to show the continuity of Φ
′
λ,θ and the assertion is proved.
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Clearly, I
′

: E → E′ and J
′

: Lr(Ω;h) → (Lr(Ω;h))′ are continuous. By using (2.1)
we see immediately that I

′
: X → X ′ and J

′
: X → X ′ are continuous.

The operator K
′
G is a composition of operators

X
i

↪→ E
γ→ Lm(Γ ;w2)

Ng−−→ Lm/(m−1)(Γ ;w1/(1−m)
2 ) k−→ E

′ i′
↪→ X

′
,

where 〈k(u), v〉 =
∫
Γ

uv dΓ . Obviously, k is a linear operator. By Hölder’s inequality and
Remark 1.2, ∫

Γ

|uv|dΓ 6
(∫

Γ

|u|m′w1/(1−m)
2 dΓ

)1/m′
·
(∫

Γ

|v|mw2 dΓ

)1/m
6 C‖u‖

m/(m−1),Γ,w1/(1−m)
2

‖v‖E ,

which shows that k is continuous. As a composition of continuous operators, K
′
G is

continuous, too. Moreover, it is compact since the trace operator γ is compact. In a
similar way we obtain that K

′
Fλ

is continuous such that the Fréchet-differentiability of
Φλ,θ follows. �

4. Proof of Theorem 2.2

Assume θ∗ < θ < θ∗ and let λ > 0 be chosen such that problem (Pλ,θ) possesses at least
a solution. We claim that there exists λ∗ > 0 such that λ > λ∗. Suppose that u is a
solution of problem (Pλ,θ). Then, using (3.4) we find

‖u‖pb − θ

∫
Γ

g(x, u)u dΓ +
∫
Ω

h(x)|u|r dx =
∫
Ω

f(λ, x, u)u dx

6 λC̃f

∫
Ω

|u|qw1(x) dx. (4.1)

Now, Young’s inequality implies the following estimate:

λC̃f

∫
Ω

|u|qw1(x) dx =
∫
Ω

λC̃fw1

hq/r
· hq/r|u|q dx

6 r − q

r
(C̃fλ)r/(r−q)

∫
Ω

(
wr1
hq

)1/(r−q)
dx +

q

r

∫
Ω

h|u|r dx.

This inequality combined with (4.1) gives

‖u‖pb − θ

∫
Γ

g(x, u)u dΓ 6 r − q

r
(C̃fλ)r/(r−q)

∫
Ω

(
wr1
hq

)1/(r−q)
dx +

q − r

r

∫
Ω

h|u|r dx

6 r − q

r
(C̃fλ)r/(r−q)

∫
Ω

(
wr1
hq

)1/(r−q)
dx. (4.2)

On the one hand, θ < θ∗ implies the existence of a constant C1 ∈ (0, 1) such that

θ 6 (1− C1)θ∗ 6 (1− C1)
‖u‖pb∫

Γ
g(x, u)u dΓ

for all u ∈ Pg,
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which yields

‖u‖pb − θ

∫
Γ

g(x, u)u dΓ > C1‖u‖pb for all u ∈ Pg. (4.3)

On the other hand, θ∗ < θ shows that there exists C2 ∈ (0, 1) such that

‖u‖pb − θ

∫
Γ

g(x, u)u dΓ > C2‖u‖pb for all u ∈ Ng. (4.4)

From (4.3) and (4.4) we conclude that

‖u‖pb − θ

∫
Γ

g(x, u)u dΓ > C0‖u‖pb for all u ∈ X, (4.5)

where C0 = min{C1, C2}.
The continuity of the embedding E ↪→ Lq(Ω;w1) implies the existence of C̄ > 0 such

that
C̄‖u‖pq,Ω,w1

6 ‖u‖pb for all u ∈ E.

By (4.1) and (4.5) we have

C0C̄

(∫
Ω

|u|qw1(x) dx

)p/q
6 C0‖u‖pb 6 λC̃f

∫
Ω

|u|qw1(x) dx, (4.6)

which implies

(C̄C0C̃
−1
f λ−1)q/(q−p) 6

∫
Ω

|u|qw1(x) dx.

This combined with (4.6) yields

C0C̄(C̄C0C̃
−1
f λ−1)p/(q−p) 6 C0‖u‖pb . (4.7)

Using (4.7) together with (4.2) and (4.5) we obtain

C0C̄(C̄C0C̃
−1
f λ−1)p/(q−p) 6 r − q

r
(C̃fλ)r/(r−q)

∫
Ω

(
wr1
hq

)1/(r−q)
dx.

We see that our claim follows if we take

λ∗ = C∗
(∫

Ω

(
wr1
hq

)1/(r−q)
dx

)−(q−p)(r−q)/q(r−p)
,

where C∗ denotes

C̃−1
f

[
C0C̄

(
r

r − q

)(q−p)/q](r−q)/(r−p)
.

�
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Corollary 4.1. Suppose θ∗ < θ < θ∗ and λ > 0 such that (Pλ,θ) has a solution u.
Then

C0‖u‖pb +
r − q

r

∫
Ω

h|u|r dx 6 r − q

r
(C̃fλ)r/(r−q)

∫
Ω

(
wr1
hq

)1/(r−q)
dx

and
‖u‖b > Kλ−1/(q−p),

where K > 0 is a constant independent of u.

Proof. The first part of the assertion follows by (4.2) and (4.5). The second one
is implied by (4.7), which shows that the constant K can be chosen, for example, as
C̄q/p(q−p)(C0C̃

−1
f )1/(q−p). �

5. Properties of Φλ,θ

Proceeding in the same manner as we did for proving (4.5), we can show that if we take
θ− < θ < θ+, then there exists c > 0 such that

1
p
‖u‖pb − θ

∫
Γ

G(x, u) dΓ > c‖u‖pb for all u ∈ X. (5.1)

We shall employ in what follows the following elementary inequality:

s|u|µ − t|u|ν 6 Cµ,νs

(
s

t

)µ/(ν−µ)

∀u ∈ R, ∀s, t ∈ (0,∞), ∀0 < µ < ν. (5.2)

Lemma 5.1. Suppose θ− < θ < θ+ and λ > 0 is arbitrary. Then the functional Φλ,θ
is coercive.

Proof. From (3.4) we have that there exists C > 0 such that

F (λ, x, u) 6 Cλ|u|qw1(x) a.e. x ∈ Ω, ∀u ∈ R. (5.3)

By virtue of (5.2) and (H10) we obtain∫
Ω

(
Cλw1|u|q − h

2r
|u|r
)

dx 6 Cr,q

∫
Ω

λw1

(
λw1

h

)q/(r−q)
dx

= Cr,qλ
r/(r−q)

∫
Ω

(
wr1
hq

)1/(r−q)
dx 6 C ′.

Using (5.1), (5.3) and the above estimate we find

Φλ,θ(u) =
1
p
‖u‖pb − θ

∫
Γ

G(x, u) dΓ −
∫
Ω

F (λ, x, u) dx +
1
r

∫
Ω

h|u|r dx

> c‖u‖pb −
∫
Ω

(
Cλ|u|qw1 − h

2r
|u|r
)

dx +
1
2r

∫
Ω

h|u|r dx

> c‖u‖pb +
1
2r

∫
Ω

h|u|r dx− C ′

and the coercivity of Φλ,θ follows. �

https://doi.org/10.1017/S0013091500000304 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500000304


On a double bifurcation quasilinear problem 539

Lemma 5.2. Suppose θ− < θ < θ+, λ > 0 is arbitrary and {un} is a sequence in X

such that Φλ,θ(un) is bounded. Then there exists a subsequence of {un}, denoted again
by {un}, such that

un ⇀ u0 in X, un → u0 a.e. in Ω and Φλ,θ(u0) 6 lim inf
n→∞ Φλ,θ(un).

Proof. In view of Lemma 5.1, the boundedness of Φλ,θ(un) shows that {un} must be
bounded in X. Using (2.1) and Remark 1.2 we may assume (up to a subsequence) that

un ⇀ u0 in X, un → u0 in Lq(Ω;w1) and un → u0 a.e. in Ω.

Set
Ξ(x, u) = F (λ, x, u)− 1

r
h|u|r and ξ(x, u) = Ξu(x, u).

By hypothesis (H5) and (5.2) we obtain

ξu(x, u) = fu(λ, x, u)− (r − 1)h|u|r−2

6 λcfw1|u|q−2 − (r − 1)h|u|r−2

6 Cλw1

(
λw1

h

)(q−2)/(r−q)
.

It follows that∫
Ω

(Ξ(x, un)−Ξ(x, u0)) dx =
∫
Ω

(∫ 1

0

∫ s

0
ξu(x, u0 + t(un − u0)) dt ds

)
(un − u0)2 dx

6 C ′
∫
Ω

w
(r−2)/(r−q)
1

h(q−2)/(r−q) (un − u0)2 dx.

This inequality will be used to get the estimate for Φλ,θ(u0)− Φλ,θ(un):

Φλ,θ(u0)− Φλ,θ(un) =
1
p
(‖u0‖pb − ‖un‖pb) + θ

∫
Γ

(G(x, un)−G(x, u0)) dΓ

+
∫
Ω

(Ξ(x, un)−Ξ(x, u0)) dx

6 1
p
(‖u0‖pb − ‖un‖pb) + θ

∫
Γ

(G(x, un)−G(x, u0)) dΓ

+ C ′
∫
Ω

w
(r−2)/(r−q)
1

h(q−2)/(r−q) (un − u0)2 dx.

The compactness of the trace operator E → Lm(Γ ;w2) and the continuity of the Nemyt-
skii operator NG : Lm(Γ ;w2)→ L1(Γ ) imply that NG(un) → NG(u0) in L1(Γ ), i.e.∫
Γ
|NG(un)−NG(u0)|dΓ → 0 as n→∞. It follows that

lim
n→∞

∫
Γ

G(x, un) dΓ =
∫
Γ

G(x, u0) dΓ. (5.4)

https://doi.org/10.1017/S0013091500000304 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500000304
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By Hölder’s inequality we find∫
Ω

w
(r−2)/(r−q)
1

h(q−2)/(r−q) (un−u0)2 dx 6
(∫

Ω

(
wr1
hq

)1/(r−q)
dx

)(q−2)/q

·
(∫

Ω

|un−u0|qw1(x) dx

)2/q
.

Since un → u0 in Lq(Ω;w1) we obtain

lim
n→∞

∫
Ω

w
(r−2)/(r−q)
1

h(q−2)/(r−q) (un − u0)2 dx = 0. (5.5)

The lower semicontinuity of ‖·‖b with respect to the weak topology, (5.4) and (5.5) finish
the proof. �

Lemma 5.3. Suppose θ∗ < θ < θ∗ and λn ↘ λ0 > 0 such that problem (Pλn,θ) has a
solution un for each n. Then {un} converges weakly (up to a subsequence) in X to some
u0 which is a non-negative critical point of Φλ0,θ.

Proof. By Corollary 4.1, {un} is bounded in X. Therefore, in view of Remark 1.2,
Lemma 3.2 and (2.1), we may assume (passing eventually to subsequences) that

un ⇀ u0 in X, un ⇀ u0 in Lr(Ω;h), un ⇀ u0 in E, un ⇀ u0 in Lp(Γ ; b),
∂un
∂xi

⇀
∂u0

∂xi
in Lp(Ω; a), (5.6)

un → u0 in Lq(Ω;w1), un → u0 in Lm(Γ ;w2),

un → u0 a.e. in Ω, un → u0 a.e. in Γ. (5.7)

We now observe that the embedding E ↪→ Lsloc(Ω) is compact for all p 6 s < p∗. This
and (5.6) imply

un → u0 in Lsloc(Ω), ∀p 6 s < p∗. (5.8)

Since un is a non-negative critical point of Φλn,θ for each n, we derive by (5.7) that
u0 > 0 in Ω and for any v ∈ X we have∫

Ω

a|Dun|p−2Dun ·Dv dx +
∫
Γ

b|un|p−2unv dΓ +
∫
Ω

h|un|r−2unv dx

=
∫
Ω

f(λn, x, un)v dx + θ

∫
Γ

g(x, un)v dΓ.

By (5.6) we find that {|un|r−2un} is bounded in Lr/(r−1)(Ω;h), while by (5.7) we have
that |un|r−2un → |u0|r−2u0 a.e. in Ω. Combining these facts we get

|un|r−2un ⇀ |u0|r−2u0 in Lr/(r−1)(Ω;h). (5.9)

For v ∈ Lr(Ω;h) fixed, set lv(u) =
∫
Ω

huv dx, for all u ∈ Lr/(r−1)(Ω;h). It is easy to
verify that lv ∈ (Lr/(r−1)(Ω;h))′. This together with (5.9) implies

lim
n→∞

∫
Ω

h|un|r−2unv dx =
∫
Ω

h|u0|r−2u0v dx, ∀v ∈ X. (5.10)
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Similarly,

lim
n→∞

∫
Γ

b|un|p−2unv dΓ =
∫
Γ

b|u0|p−2u0v dΓ, ∀v ∈ X. (5.11)

Taking into account (5.7) and Lemma 3.3 we infer that

Nfλ0
(un)→ Nfλ0

(u0) in Lq/(q−1)(Ω;w1/(1−q)
1 ) (5.12)

and

Ng(un)→ Ng(u0) in Lm/(m−1)(Γ ;w1/(1−m)
2 ). (5.13)

By Hölder’s inequality and (H7) we derive the estimates∫
Ω

|(f(λn, x, un)− f(λ0, x, u0))v|dx

6
∫
Ω

|(f(λn, x, un)− f(λ0, x, un))v|dx +
∫
Ω

|(f(λ0, x, un)− f(λ0, x, u0))v|dx

6 Cf |λn − λ0|
∫
Ω

|un|q−1|v|w1 dx +
∫
Ω

|(Nfλ0
(un)−Nfλ0

(u0))v|dx

6 Cf |λn − λ0|‖un‖q−1
q,Ω,w1

‖v‖q,Ω,w1

+ ‖Nfλ0
(un)−Nfλ0

(u0)‖q/(q−1),Ω,w1/(1−q)
1

‖v‖q,Ω,w1

and∫
Γ

|(g(x, un)− g(x, u0))v|dΓ 6 ‖Ng(un)−Ng(u0)‖m/(m−1),Γ,w1/(1−m)
2

‖v‖m,Γ,w2 .

Then, in virtue of (5.12) we find

lim
n→∞

∫
Ω

f(λn, x, un)v dx =
∫
Ω

f(λ0, x, u0)v dx, ∀v ∈ X.

lim
n→∞

∫
Γ

g(x, un)v dΓ =
∫
Γ

g(x, u0)v dΓ, ∀v ∈ X.

 (5.14)

We now claim that Dun → Du0 a.e. in Ω. Set

ΩR =
{

x ∈ RN : |x| < R and dist(x,RN \Ω) >
1
R

}
.

It is clear that there exists R0 > 0 such that ΩR 6= ∅ for all R > R0. Since ΩR ⊂ ΩR′ ⊂⊂
Ω for all R0 6 R < R′ and ∪R>R0ΩR = Ω we need only to show

Dun → Du0 a.e. in ΩR for any R > R0.
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For this purpose we use the following inequalities (see [8, Lemma 4.10]) that hold for
any ξ, ζ ∈ RN

|ξ − ζ|p 6 C(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ), for p > 2; (5.15)

|ξ − ζ|2 6 C(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ)(|ξ|+ |ζ|)2−p, for 1 < p < 2. (5.16)

Therefore, it is sufficient to prove that

(|Dun|p−2Dun− |Du0|p−2Du0) · (Dun−Du0)→ 0 a.e. in ΩR for any R > R0. (5.17)

For a fixed R > R0, choose ϑ ∈ C∞0 (RN ) with 0 6 ϑ 6 1 in RN , ϑ ≡ 1 on ΩR and ϑ ≡ 0
on RN \Ω2R. Then by (5.6) and (5.7) we have that ϑun ⇀ ϑu0 in E which yields∫

Ω

a|Du0|p−2Du0 ·D(ϑun − ϑu0) dx +
∫
Γ

bϑ|u0|p−2u0(un − u0) dΓ → 0. (5.18)

By Hölder’s inequality and (5.8) we find∣∣∣∣∫
Ω

a(un − u0)|Du0|p−2Du0 ·Dϑ dx

∣∣∣∣
6 C1

(∫
Suppϑ

a|Du0|p dx

)(p−1)/p(∫
Suppϑ

|un − u0|p dx

)1/p
→ 0.

Using this fact in (5.18) we obtain∫
Ω

aϑ|Du0|p−2Du0 ·D(un − u0) dx +
∫
Γ

bϑ|u0|p−2u0(un − u0) dΓ → 0. (5.19)

On the other hand, since 〈Φ′λn,θ(un), ϑ(un − u0)〉 = 0 we have∫
Ω

aϑ|Dun|p−2Dun ·D(un − u0) dx +
∫
Γ

bϑ|un|p−2un(un − u0) dΓ

+
∫
Ω

a(un − u0)|Dun|p−2Dun ·Dϑ dx =
∫
Ω

hϑ|un|r−2un(u0 − un) dx

+
∫
Ω

f(λn, x, un)ϑ(un − u0) dx + θ

∫
Γ

g(x, un)ϑ(un − u0) dΓ.

By Hölder’s inequality, (5.6) and (5.8) we derive∣∣∣∣∫
Ω

a(un − u0)|Dun|p−2Dun ·Dϑ dx

∣∣∣∣
6 C1

(∫
Suppϑ

a|Dun|p dx

)(p−1)/p(∫
Suppϑ

|un − u0|p dx

)1/p
→ 0

and ∣∣∣∣∫
Ω

hϑ|un|r−2un(u0 − un) dx

∣∣∣∣
6 C2

(∫
Suppϑ

h|un|r dx

)(r−1)/r(∫
Suppϑ

|un − u0|r dx

)1/r
→ 0.
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By (3.4), (5.7), (5.12) and Hölder’s inequality we see that∣∣∣∣∫
Ω

f(λn, x, un)ϑ(un − u0) dx

∣∣∣∣ 6 C̃f sup
n>1

λn

∫
Ω

|un|q−1|un − u0|w1 dx

6 C̃f sup
n>1

λn‖un‖q−1
q,Ω,w1

‖un − u0‖q,Ω,w1 → 0

and ∣∣∣∣∫
Γ

g(x, un)ϑ(un − u0) dΓ

∣∣∣∣ 6 ‖Ng(un)‖m/(m−1),Γ,w1/(1−m)
2

‖un − u0‖m,Γ,w2 → 0.

It follows that∫
Ω

aϑ|Dun|p−2Dun ·D(un − u0) dx +
∫
Γ

bϑ|un|p−2un(un − u0) dΓ → 0. (5.20)

Since

0 6
∫
Ω

aϑ(|Dun|p−2Dun − |Du0|p−2Du0) · (Dun −Du0) dx

6
∫
Ω

aϑ(|Dun|p−2Dun − |Du0|p−2Du0) · (Dun −Du0) dx

+
∫
Γ

bϑ(|un|p−2un − |u0|p−2u0)(un − u0) dΓ

we deduce by (5.19) and (5.20) that

lim
n→∞

∫
ΩR

a(|Dun|p−2Dun − |Du0|p−2Du0) · (Dun −Du0) dx = 0.

Hence (5.17) holds. Therefore, the claim that Dun → Du0 a.e. in Ω is proved. This
combined with the fact that {|Dun|p−2∂un/∂xi} is bounded in Lp/(p−1)(Ω; a) implies

|Dun|p−2 ∂un
∂xi

⇀ |Du0|p−2 ∂u0

∂xi
in Lp/(p−1)(Ω; a).

It follows that

lim
n→∞

∫
Ω

a|Dun|p−2Dun ·Dv dx =
∫
Ω

a|Du0|p−2Du0 ·Dv dx, ∀v ∈ X. (5.21)

By (5.10), (5.11), (5.14) and (5.21) we conclude that u0 is a critical point of Φλ0,θ. �

6. Proof of Theorem 2.3

Let θ ∈ J and λ > 0 be arbitrary. From Lemma 5.1 we see that mλ,θ := infu∈X Φλ,θ(u) is
real. Let {un} be a sequence such that limn→∞ Φλ,θ(un) = mλ,θ. According to Lemma 5.2,
we can assume (up to a subsequence) that

un ⇀ u0 in X and Φλ,θ(u0) 6 lim inf
n→∞ Φλ,θ(un) = mλ,θ.
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This shows that infu∈X Φλ,θ(u) is attained in u0. From (H4) and (H8) we deduce that
G(x, |u0|) > G(x, u0) a.e. x ∈ Γ and F (λ, x, |u0|) > F (λ, x, u0) a.e. x ∈ Ω. It follows
that Φλ,θ(|u0|) 6 Φλ,θ(u0). Therefore, we may assume that u0 > 0 on Ω. To ensure that
u0 6≡ 0 we shall prove that mλ,θ is negative provided that λ > λ̃ for some λ̃ > 0.

By hypothesis (H6) we deduce that there exists δ > 0 independent of x and λ such
that

F (λ, x, u(x)) > λ

2q
|u(x)|qw1(x) a.e. x ∈ Ω, ∀u ∈ X with sup

x∈Ω
|u(x)| 6 δ. (6.1)

Set ζ > 0 with the property that

Y =
{

u ∈ X \ {0} : sup
x∈Ω
|u(x)| 6 ζ‖u‖q,Ω,w1

}
6= ∅

and denote η = (δ/ζ)q. Define

λ̃ := inf
{

2q

ηp
‖u‖pb −

2q

η
θ

∫
Γ

G(x, u) dΓ +
2q

ηr

∫
Ω

h|u|r dx : u ∈ Z

}
,

where

Z =
{

u ∈ X : sup
x∈Ω
|u(x)| 6 δ,

∫
Ω

|u|qw1(x) dx = η

}
.

It is easy to verify that Z 6= ∅. Indeed, if y ∈ Y , then

u =
η1/q

‖y‖q,Ω,w1

y ∈ Z.

We now claim that λ̃ > 0. For this aim, we consider the constrained minimization
problem,

M := inf
{
‖u‖pb : u ∈ E,

∫
Ω

|u|qw1(x) dx = η

}
.

Since the embedding E ↪→ Lq(Ω;w1) is continuous, it follows that M > 0. Thus

‖u‖pb >M for all u ∈ X with
∫
Ω

|u|qw1(x) dx = η.

By applying the Hölder inequality we find∫
Ω

|u|qw1 dx =
∫
Ω

w1

hq/r
hq/r|u|q dx 6

(∫
Ω

(
wr1
hq

)1/(r−q)
dx

)(r−q)/r
·
(∫

Ω

h|u|r dx

)q/r
.

(6.2)
By virtue of (5.1) and (6.2) we have

2q

ηp
‖u‖pb −

2q

η
θ

∫
Γ

G(x, u) dΓ +
2q

ηr

∫
Ω

h|u|r dx

> 2q

η
c‖u‖pb +

2q

ηr

∫
Ω

h|u|r dx

> 2q

η
cM +

2q

ηr
ηr/q

(∫
Ω

(
wr1
hq

)1/(r−q)
dx

)−(r−q)/q
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for all u ∈ X with
∫
Ω
|u|qw1 dx = η. It follows that

λ̃ > 2q

η
cM +

2q

r
η(r−q)/q

(∫
Ω

(
wr1
hq

)1/(r−q)
dx

)−(r−q)/q

and our claim follows.
Let λ > λ̃. Then there exists a function u1 ∈ Z such that

λ >
2q

ηp
‖u1‖pb −

2q

η
θ

∫
Γ

G(x, u1) dΓ +
2q

ηr

∫
Ω

h|u1|r dx.

This inequality and (6.1) imply

Φλ,θ(u1) =
1
p
‖u1‖pb − θ

∫
Γ

G(x, u1) dΓ +
1
r

∫
Ω

h|u1|r dx−
∫
Ω

F (λ, x, u1(x)) dx

6 1
p
‖u1‖pb − θ

∫
Γ

G(x, u1) dΓ +
1
r

∫
Ω

h|u1|r dx− λ

2q

∫
Ω

|u1|qw1 dx < 0.

Consequently, infu∈X Φλ,θ(u) < 0. Thus, the problem (Pλ,θ) has a solution if θ ∈ J and
λ > λ̃. Set

λ0 = inf{λ > 0 : (Pλ,θ) admits a solution}.
By Theorem 2.2, we see that λ0 > λ∗ > 0.

We now show that for each λ > λ0 problem (Pλ,θ) admits a solution. Indeed, for every
λ > λ0 there exists ρ ∈ (λ0, λ) such that problem (Pρ,θ) has a solution uρ which is a
subsolution of problem (Pλ,θ). We consider the variational problem,

inf{Φλ,θ(u) : u ∈ X and u > uρ}.

By Lemmas 5.1 and 5.2 this problem admits a solution ū. This minimizer ū is a solution
of problem (Pλ,θ). It remains to show that problem (Pλ0,θ) also has a solution. Let
λn → λ0 and λn > λ0 for each n. Problem (Pλn,θ) has a solution un for each n. Then,
in virtue of Lemma 5.3, we may assume (up to a subsequence) that un ⇀ u0 in X,
un → u0 in Lq(Ω;w1), un → u0 in Lm(Γ ;w2), where u0 is a non-negative critical point
of Φλ0,θ. To conclude that u0 is a solution of problem (Pλ0,θ) it remains only to prove
that u0 6≡ 0. Since un and u0 are critical points of (Φλn,θ) and (Φλ0,θ), respectively, we
have

〈I ′(un), un−u0〉− 〈I ′(u0), un−u0〉+ 〈J ′(un), un−u0〉− 〈J ′(u0), un−u0〉 = J1,n +J2,n,

where

J1,n =
∫
Ω

(f(λn, x, un)− f(λ0, x, u0))(un − u0) dx,

J2,n = θ

∫
Γ

(g(x, un)− g(x, u0))(un − u0) dΓ.
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It is easy to see that

0 6 〈I ′(un), un − u0〉 − 〈I ′(u0), un − u0〉 6 J1,n + J2,n. (6.3)

Using (3.4) we get the estimate

|J1,n| 6 C̃f

(
λn

∫
Ω

|un|q−1|un − u0|w1(x) dx + λ0

∫
Ω

|u0|q−1|un − u0|w1(x) dx

)
and it follows from the Hölder inequality that

|J1,n| 6 C̃f

(
sup
n>1

λn‖un‖q−1
q,Ω,w1

+ λ0‖u0‖q−1
q,Ω,w1

)
‖un − u0‖q,Ω,w1 → 0. (6.4)

By (5.12) and Hölder’s inequality we find

|J2,n| 6 |θ|‖Ng(un)−Ng(u0)‖m/(m−1),Γ,w1/(1−m)
2

‖un − u0‖m,Γ,w2 → 0. (6.5)

Relations (6.3), (6.4) and (6.5) yield

〈I ′(un), un − u0〉 − 〈I ′(u0), un − u0〉 → 0 as n→∞.

We show that ‖un − u0‖b → 0 as n→∞. We distinguish two cases which may occur.

Case 1. p > 2. Using (5.15) we obtain

‖un − u0‖pb 6 C(〈I ′(un), un − u0〉 − 〈I ′(u0), un − u0〉)→ 0 as n→∞,

which shows that ‖un‖b → ‖u0‖b as n→∞.

Case 2. 1 < p < 2. We observe that it is enough to show that

‖un − u0‖2b 6 C ′(〈I ′(un), un − u0〉 − 〈I ′(u0), un − u0〉)(‖un‖2−pb + ‖u0‖2−pb ). (6.6)

In order to prove (6.6) we recall the following result: for all s > 0 there is a constant
Cs > 0 such that

(x + y)s 6 Cs(xs + ys) for any x, y ∈ (0,∞). (6.7)

Then we obtain

‖un − u0‖2b =
(∫

Ω

a(x)|Dun −Du0|p dx +
∫
Γ

b(x)|un − u0|p dΓ

)2/p

6 Cp

[(∫
Ω

a(x)|Dun −Du0|p dx

)2/p
+
(∫

Γ

b(x)|un − u0|p dΓ

)2/p]
. (6.8)
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Using (5.16), (6.7) and the Hölder inequality we find∫
Ω

a(x)|Dun −Du0|p dx

=
∫
Ω

a(x)(|Dun −Du0|2)p/2 dx

6 c1

∫
Ω

(a(|Dun|p−2Dun − |Du0|p−2Du0) · (Dun −Du0))p/2

× (a(|Dun|+ |Du0|)p)(2−p)/2 dx

6 c1

(∫
Ω

a(|Dun|p−2Dun − |Du0|p−2Du0) · (Dun −Du0) dx

)p/2
×
(∫

Ω

a(|Dun|+ |Du0|)p dx

)(2−p)/2
6 c2

(∫
Ω

a(|Dun|p−2Dun − |Du0|p−2Du0)(Dun −Du0) dx

)p/2
×
(∫

Ω

(a|Dun|p + a|Du0|p) dx

)(2−p)/2
6 c3

(∫
Ω

a(x)(|Dun|p−2Dun − |Du0|p−2Du0) · (Dun −Du0) dx

)p/2
× (‖un‖pb + ‖u0‖pb)(2−p)/2

6 c4

(∫
Ω

a(x)(|Dun|p−2Dun − |Du0|p−2Du0) · (Dun −Du0) dx

)p/2
× (‖un‖(2−p)p/2b + ‖u0‖(2−p)p/2b ).

Using the last inequality and (6.7) we have the estimate,

(∫
Ω

a(x)|Dun −Du0|p dx

)2/p
6 cp(〈I ′(un), un − u0〉 − 〈I ′(u0), un − u0〉)(‖un‖2−pb + ‖u0‖2−pb ). (6.9)

In a similar way we can obtain the estimate,

(∫
Γ

b(x)|un − u0|p dΓ

)2/p
6 c

′
p(〈I

′
(un), un − u0〉 − 〈I ′(u0), un − u0〉)(‖un‖2−pb + ‖u0‖2−pb ). (6.10)

It is now easy to observe that inequalities (6.8), (6.9) and (6.10) imply the estimate (6.6).

In both cases, by Corollary 4.1, u0 6≡ 0. This concludes our proof. �

https://doi.org/10.1017/S0013091500000304 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500000304
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