
Can. J. Math. Vol. 48 (6), 1996 pp. 1245-1272 

THE RESIDUAL SPECTRUM OF G2 

HENRY H. KIM 

ABSTRACT. We completely determine the residual spectrum of the split exceptional 
group of type G2, thus completing the work of Langlands and Moeglin-Waldspurger on 
the part of the residual spectrum attached to the trivial character of the maximal torus. 
We also give the Arthur parameters for the residual spectrum coming from Borel sub­
groups. The interpretation in terms of Arthur parameters explains the "bizarre" multi­
plicity condition in Moeglin-Waldspurger's work. It is related to the fact that the com­
ponent group of the Arthur parameter is non-abelian. 

1. Introduction. Let F be a number field and (/V) its ring of adeles. Let G be a 
reductive group. A central problem in the theory of automorphic forms is to decompose 
the right regular representation of G(A) acting on the Hilbert space L2(G(F)\G(/V)). It 
has the continuous spectrum and the discrete spectrum: 

L2(G(F)\G(A)) -4 S (G(F) \G(A)) ©Lc
2

ont(G(F)\G(A)). 

We are mainly interested in the discrete spectrum. Langlands [L4] described, using his 
theory of Eisenstein series, an orthogonal decomposition: 

L2
dis(G(F)\G(A)) = 0 4s(G(F)\G(A)) 

(M,7r) 

where (M, ir) is a Levi subgroup with a cuspidal automorphic representation -K taken 
modulo conjugacy. (Here we normalize IT so that the action of the maximal split torus in 
the center of G at the archimedean places is trivial.) L^is(G(F)\G(A)) is a space of 
residues of Eisenstein series associated to (M, 7r). Here we note that the subspace 

0 4S(G(F)\G(A)) 

is the space of cuspidal representations Z^usp (G(F)\G(/V)). Its orthogonal complement in 
Z4S(G(F)\G(/V)) is called the residual spectrum and we denote it by L*QS(G(F)\G(AJ). 
Therefore we have an orthogonal decomposition 

Lls(G(F)\G(A) = L2
cmp(G(F)\G(A)) ®L2

es(G(F)\G(A)). 

Arthur described a conjectural decomposition of this space as follows: 

4S(G(F)\G(A)) = 0£ 2 (G(F) \G(A))^ 
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where ^ runs, modulo conjugacy, through the set of morphism: 

x/j:LFxSL(29C)t->G*, 

where LF is the conjectural tannakian group, G* is the Langlands' Z-group and t/> satisfies 
certain conditions; in particular, ^ restricted to SL(2, C) is algebraic, ty restricted to LF 

parametrize a cuspidal tempered representation of a Levi subgroup and the image of x/j is 
not included in proper Levi subgroups. The space Z2(G(F)\G(A)) is defined by local 
data (See Section 3.7). 

The purpose of this paper is to determine explicitly L^s(G(F)\G(&y) for G the split 
exceptional group of type G2. There are 3 Levi subgroups modulo conjugacy. Let Mi be 
the Levi of the maximal parabolic subgroup P\ attached to the long simple root and M2 

be the Levi of the maximal parabolic subgroup P2 attached to the short simple root. Let 
M0 = 7 be the maximal split torus. Let 

4 s (G(f) \G(A)) M = ®L2
dis(G(F)\G(A)){M^ 

Theorems 3.6.1, Theorem 4.2 and Theorem 5.1 describe the decomposition of 
L|S(G(F)\G(A))M for i = 0, 1,2, respectively. Due to the lack of information on the 
poles of the adjoint cube Z-function of GL2 (symmetric cube Z-function of GL2 twisted 
by a character) and insufficient bound for Fourier coefficients of cuspidal representations 
of GL2, our results onL|s(G(F)\G(A)) , i = 1,2, are incomplete. Also we only con­
sider the AT-finite, A^-invariant subspace of Llis(G(F)\G(&f) . We also give the Arthur 
parameter for automorphic representations in L%s (G(F)\G(A)) T

 a n ( i verify Arthur's con­
jecture, reformulated by Moeglin [M3]. 

In order to obtain the decomposition for L|S(G(F)\G(A))7„ we use the inner product 
formula (3.1) of the pseudo-Eisenstein series as in [M-Wl]. For Z | s (G(F)\G( A)) , / = 
1, 2, we use the method in [Ki], where we calculated the residual spectrum of Sp4. We 
use the notation of [M-Wl]. Let us explain in detail in each of the cases. 

The most interesting one is the analysis of L2
dis(G(F)\G(K))r It was Langlands [L4, 

Appendix 3] who first calculated its K-fixed subspace. It is dimension 2. One is spherical 
and the other is a very interesting residual automorphic representation. Its Archimedean 
component is infinite dimensional, of class one and is not tempered. Moeglin and Wald-
spurger [M-Wl, Appendix III] calculated ^-finite, K^-invariant subspace V of 
L^is(G(F)\G(A)) , where 1 is the trivial character of T, whose cuspidal exponents 
are short roots. They found surprising results that only those which satisfy a certain con­
dition appear in L\{s(G(F)\G(A)) . Let us explain in detail. Let Jv = {TT\V, TT2V} be a set 
of irreducible representations of Gv, where TT\V is spherical. For S a finite set of finite 
places, set 7^ = ®v^7riv <g> ®veS ^2v Then 

V= 0 7T* 
S,card(S)^l 

The condition card(*S) ^ 1 is quite surprising (In Sp4 case [Ki], we have the condition 
"card(S) even"). We can interpret their results in terms of Arthur parameters. In fact, the 
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condition comes from the Springer correspondence (see Section 3.7 for more details) and 
is related to the fact that A(u) is non-abelian, i.e., S3, the symmetric group on 3 letters. 
Recall that the Springer correspondence is an injective map from the set of irreducible 
characters of W, the Weyl group of G, into the set of pairs (0,77), where O is a unipotent 
orbit and 77 is an irreducible character of A(u) = C(u)/C(u)°, u £ O and C(u) is the 
centralizer of u. Let Springer(O) be the set of characters of A(u) which are in the image 
of Springer correspondence. ThenJv is associated with Springer(G2(ai)), where Giifix) 
is the sub-regular unipotent orbit of G2 ([Ca, p.401]). We note that Moeglin [Ml] proved 
that the residual spectrum attached to the trivial character of the torus is parametrized by 
distinguished unipotent orbits O and Springer(0) and we can expect that the same thing 
would happen for all split groups. 

Among non-trivial characters of T(\)/T(F), modulo conjugacy, the following char­
acters of the torus contribute to the residual spectrum (see Section 3.6). Under the iden­
tification, M\ ~ GL2, where M\ is the Levi subgroup of Pi, \ = x O ^ X M a n d v are 
grossencharacters of F. 

(1) fi = 1/, /x2 = 1,/i ^ 1 

(2) /x3 = 1,/x^ l,z/ = /x2. 
For Case (2), there is only one residual spectrum, which is the global Langlands' 

quotient of Ind^ exp(j34,//p,0) ® (mc^0
L2 X)- Case (1) is more interesting. In this case 

the Eisenstein series has a pole at /J2, the sum of two simple positive roots. If /iv is 
not trivial, then the character Xv ® exp(/?2,^( )) is regular and we can apply Rodier's 
result ([R]) to analyze the image of the intertwining operator i?(p2, ft, PiX)- In particular, 
it is irreducible. If /xv is trivial, then the image of R(p2,02,P2X) is the same as the one 
Moeglin and Waldspurger found [M-Wl, Appendix III]. It is the sum of two irreducible 
representations. Let J(Xv) = { îv, ^2v} is the set of irreducible components. We put 
7T2v = Oifxv 7̂  1. For S a finite set of finite places, set 7^ = <8>v£s7riv®®v€S*'2vThen 
the residual spectrum attached to the character (1) is given by 

•/(x) = ©** . 
s 

There is no condition on S. 
For L%s(G(F)\G(h))M , the Levi factor is Mx = GL2. We have to look at Eisen­

stein series associated to cuspidal representations of GL2. The /.-functions in the con­
stant terms of Eisenstein series are the adjoint cube L-fimction and Hecke L-function. 
We analyze the poles and the irreducibility of the images of local intertwining operators 
as in [Ki]. However, the pole of the adjoint cube Z-function of GL2 is not known. We 
assume the location of poles. Also we need to assume certain estimates of Fourier co­
efficients of cuspidal representations of GL2. More precisely, if 7rv = 7r(/x| |r,/x| |~r) is 
a complementary series representation of GL2, we assume that r < £. Right now the 
best known result is that r < \ due to Shahidi [S3]. Assuming these facts, we obtain 
a decomposition of L\{s{G{F)\G{A))M , parametrized by cuspidal representations TT of 
GL2 with trivial central characters and L(^,ir, r§) ^ 0 and by monomial representations 
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of GL2. Recall that a cuspidal representation a of GL2 is called monomial if a ~ a 0 r\ 
for a quadratic grossencharacter r\ of F. 

For L\{s(G{F)\G(K)) , the Levi factor is M2 — GL2. The /,-functions in the con­
stant term of the Eisenstein series are just Jacquet-Langlands' /.-function, its twist by 
a character, and a Hecke /.-function. In this case, assuming the fact on the estimates 
of Fourier coefficients of cuspidal representations of GL2, we obtain a decomposition 
of L\h(G{F)\G(K)\ , parametrized by cuspidal representations IT of GL2 with trivial 
central characters and/>(^, IT) ^ 0. 

F. Shahidi brought to our attention the paper by Li and Schwermer [Li-Sc] who studied 
the poles of Eisenstein series attached to the maximal parabolic subgroups over Q. After 
this paper was accepted, the author received a preprint, "The residual spectrum of the 
group of type G2," by S. Zampera. She obtained similar results. But her result does not 
have the interpretation in terms of Arthur parameters. 

ACKNOWLEDGEMENTS. The author would like to thank Prof. F. Shahidi and Prof. 
C. Moeglin for engaging in many helpful conversations. Thanks are due to the referee 
for many helpful comments. 

2. Some facts about G2; roots and parabolic subgroups. Let G be a split group 
of type G2. Fix a Cartan subgroup T in G and let B = TU be a Borel subgroup of G. Let 
KQQ be the standard maximal compact subgroup in G(Aoo) and Kv = G(Ov) for finite v. 
The product K — A^ x n^v is a maximal compact subgroup in G(A). 

We follow Moeglin and Waldspurger [M-Wl, Appendix III]. Let ft be a long simple 
root and ft a short one. Let 

ft = ft + ft, ft = 2ft + 3ft, ft = ft + 2ft, ft = ft + 3ft 

then {f t , . . . , 06 } is a set of positive roots. 
Let fty be a corresponding coroot of ft for / = 1, . . . , 6. Then 

/32
v = 3/3y+/36

v, # = 2fi+pl /?4
v = 3/3y + 2/?6

v, # = # + # . 

Let Pi the maximal parabolic subgroup generated by ft (long root) and P2 be the 
maximal parabolic subgroup generated by ft (short root). Then we have Levi decompo­
sitions (Shahidi [S4]): 

px = MiNu P2 = M2N2, Mi ~ GL2, M2 ~ GL2. 

Under the identification M\ ~ GL2, 

(2.1) ^ W = d ia8('> r l)> $ ( 0 = diagCr1,*2), ftv(0 - d iag( /V ]) 

ftv(0 = diag(/, 1), /#(*) = diag(/,0, / # « = diag(l,0-
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Under the identification M2 ^ GL2, 

(2.2) &® = d ^ 1 ' ' ) ' # (0 = diagft r 1 ) , &{i) = diagft Z2) 

/33
v(0 = diag(r, 0, /?4

V(0 = diagC*2,0, # ( 0 - diag(f, 1). 

Let X(T) (resp. Jf6(T)) be the character (resp. cocharacter) group of T. Since G is simply 
connected, 

X(7) = Zft + Z/34, ^*(7) = Zf3\ + Z/#. 

Let 

a* = X(r) ® R, a£ = X{T) ® C, a = A*(r) ® R = Hom(X(r), R) 

ac = X*( T) ® C. 

Then {/?3, /34} and {/^ / ^ } are the pair of dual bases for a* and a, respectively. 
The positive Weyl Chamber in a* is 

C4" = {A G a* I (A, a v ) > 0 for all a positive roots } 

= {ap3+bp4 \a9b>0}. 

The half sum of positive roots is p# = /% + /?4. 
We list the elements of the Weyl group together with their actions on the positive 

roots. 

w decomposition /?i /fe /?3 ^4 /S5 /?6 

1 ft ft ft ft ft ft 
Pi Pi -ft ft ft ft ft ft 
Pi P1P6P1 -ft -ft -ft ft ft ft 
Pi P1P6P1P6P1 -ft -ft -ft -ft -ft ft 
Pi P6P1P6P1P6 ft -ft "ft -ft -ft -ft 
Ps P6P1P6 ft ft ft -ft -ft -ft 
P6 P6 ft ft ft ft ft -ft 

P6P\ -ft -ft ft ft ft ft 
P6PIP6P1 -ft "ft -ft -ft ft ft 

<r(ir) P6P\P6P\P6Pl -ft -ft -ft -ft -ft -ft 

<r(f) 
PlP6PlP6 ft ft -ft -ft -ft -ft 

<r(f) P\P6 ft ft ft ft -ft -ft 

3. Decomposition of L|S(G(F)\G( A)) r . We fix an additive character^ = ®vV>vof 
A/F and let £(z, /1) be the Hecke L-function with the ordinary T-factor so that it satisfies 
the functional equation £(z, //) = e(z, /i)£(l — z, /x_1), where e(z, /x) = flv e(z, /iv> V>v) is 
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the usual e-factor (see, for example, [Go, pl58]). If \i is the trivial character \i§, then we 
write simply £(z) for £(z, /io). We have the Laurent expansion of £(z) at z = 1: 

m = ^ L + a + .... 
z — 1 

3.1. Definition of Eisenstein Series. For a unitary character \ of T(&)/T(F) and for 
each A G a£, let /(A, x) = Indf x ® exp(A, //#( )) be the induced representation, where 
HB is the homomorphismiTfl! T(\) »—• a defined by 

exp(x,//*(0) = niXv('v)|v. 
V 

We form the Eisenstein series: 

ieB(F)\G(F) 

where/ G /(A, x)- The Eisenstein series converges absolutely for Re A G C* + p5 and 
extends to a meromorphic function of A. It is an automorphic form and the constant term 
of E(g,f, A) along B is given by 

E0(gJ,A)= [ E(ugJ,A)du= £M(w,A ,xy fe ) , 
JU(F)\U(A) w£W 

where W is the Weyl group and for sufficiently regular A, 

JUW(A) 

where Uw = U(l wUw~l, U is the unipotent radical opposed to U. Then M(w, A,x) 
defines a linear map from /(A, x) to 7(wA, w\) and satisfies the functional equation of 
the form 

M(w\ w2, A, x) = M(w\, w2A, w2xW(w2, A, x). 

The Eisenstein series satisfies the functional equation 

£(g,M(w,A,x/,wA) = E(g,f,A). 

Let 5 be a finite set of places of F, including all the archimedean places such that for 
every v ^ S, \v and ipv are unramified and iff = ®fv, for v ^ £,/, is the unique Kv-fixed 
function normalized byfv(ev) = 1. We have 

M(w,A,x) = (g)M(w,A,Xv). 

Then by applying Gindikin-Karpelevic method (Langlands [L4]), we can see that for 
v£S, 

M< A v rr m « v ) , X v ° « v ) ? M(w,A,XvFv = a > n a < o L ( ( A , a v ) + 1 , X v 0 a v / v > 
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where L(s, r)v) is the local Hecke /--function attached to a character ?/v of F* and s e C 
and^, is the Xy-fixed function in the space of I(wA, w\) satisfying/v(ev) = 1. For any v, 
let 

( , TT £( (A,a v ) , X v oq v )  
KvKW} a>olL<o L((K «v) + 1, Xv o aV>((A, a*), Xv o a\^v)' 

We normalize the intertwining operator M(w, A, Xv) for all v by 

M(w, A, Xv) = rv(w)R(w, A, Xv). 

Let R(w, A, x) = ®v (̂w> A, Xv) and R(w, A, x) satisfies the functional equation 

R(w{w2, A,x) = ^(wi,w2A,w2x)^(w2, A,x)-

We know, by Winarsky [Wi] for/?-adic cases and Shahidi [S2, pllO] for real and complex 
cases, that 

M(w,A,Xv) I I A(A,a v ) ,XvOa v r l 

a>0,wa<0 

is holomorphic for any v. So for any v, R(w,A,Xv) is holomorphic for A with 
Re((A, av)) > — 1, for all positive a with wa < 0. 

We note that a character \ of T(F)\T{&) defines a cuspidal representation of T. For 
any w G W, wTw"1 = T and so (T, w\) is conjugate to (7, x). 

Let I(x) be the set of entire functions/ of Paley-Wiener type such that/(A) e /(A, x) 
for each A. Let 

where Ao € ps + C". Then we have 

LEMMA ([L4]). L2(G(F)\G(K))(TX) spanned by Qffor all f G I(wX) as w\ runs 
through all distinct conjugates of\. 

L2
dis (G(F)\G(A)) is the discrete part of Z2 (G(F)\G( A)) It is the set of iterated 

residues of E[gJ{A), A) of order 2. 

In order to decompose L%S(G(F)\G( A)) we use the inner product formula of two 
pseudo-Eisenstein series: Let x and \' be conjugate characters and/ G I(xXf £ ̂ (x')-
Then 

<*/.fy> = 77^2 £ A A E (Af(w,A)«A)/(-WA))rfA, 
(2TH)2 • / ReA=Aow G^./ )

V ' 

1 _ 

where W(x,x') = ( w € ^ I WX — x'}- Let {a?x | d G D} be the set of distinct 

conjugates of x-
In order to deal with the distinct conjugates of x simultaneously, we consider, for 

/e/(x), 
A(fj';A)=j: £ {M(w,A,xY(A),fX-wA)), 

deD weW(X,dx) 
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where ̂  G I(dx). Since W = \JdeD ^(X> ^X)> for simplicity, we write it as 

(3.1) A{f,f; A) = £ (M(w, A, x / ( A ) , / ( - w A ) ) . 

We also have the adjoint formula for the intertwining operators 

(3 2) (M(w,A,xy(A),/(-wA)) = ( /(A),M(w-1 , -wA,wx/VwA)) 

(tf(w, A, xVW,f'(-wA)) = (/(A), tf (W1 , -wA, wXy'(~- wA)). 

We use this adjoint formula and calculate the residue of A(f,f; A) to obtain the resid­
ual spectrumL|s(G(F)\^(A)) ( rx). 

Let St = {A G a£ : (A, /JV) = 1} and we introduce a coordinate on 5/ as follows: 
A = zw; + &, where wi = ft, w2 = ft, w3 = ft, w4 = ft, w5 = ft, w6 = ft. We note 
that <W/, # 0 = 0. 

In order to get discrete spectrum, we have to deform the contour Re A = Ao to 
Re A = 0. Since the poles of the functions M(w, A, \) all lie on S,- which is defined 
by real equations, we can represent the process of deforming the contour and the singu­
lar hyperplanes 5/ as dashed lines by the following diagram in the real plane as in [L4, 
Appendix 3]. 

The integral at Re A = 0, 

^ / A(f,f;A)dA 
(2TT/): 

gives the continuous spectrum of dimension 2. As can be seen in the diagram, if we 
move the contour along the dotted line indicated we may pick up residues at the points 
A/, / = 1,...,6: 

where A G Si. Then we deform the contours Re A = A/ to Re A = &, i.e., the origin of 
Si. The integrals at Re A — &, 

^-f SiRe&SlAV,f;A)dA 
2iri JRQA=% 

give the continuous spectrum of dimension 1. The square integrable residues which arise 
during the deformation span the discrete spectrum. 

As we see in the diagram, we have to consider 
ReSfrResSlA(f,f;A) 

RQsP2RQsSlA(fJ';A) 
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Resi^Res^vWiA) 
R e s ^ R e s ^ ^ A ) 
ResPBRess6A(f,f;A) 

Res^4Res56^(r,/;A) 
R e s ^ R e s ^ C / ^ A ) . 

For % a character of T(\)/T(F), let X* — X ° Z^-

Then 

Set 

X2 = XlX6,X3 = X?X6,X4 = X^xixS = X1X6-

£(2) 
M > , A, x) = ~ Ress, M(w9 A, x ) . 

L e t ^ = {w<E fF| w/?,-< 0} for / = 1,...,6. Then 

Re S 5 i ^( / - / ,A)= £ (^ ' (w,A,x/(A), / (-wA)). 
weWt 

3.2. Calculation o/Res^ A(f,f; A). M(w, A, x) has a pole at Si if xI = 1. 
On Si, 
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(A,/34
v) = 2z,<A,#> = z - 1,<A,#> = z - | . 

LEMMA 3.2.1. 

M1(p,,A,x) = ^(pi,A,x) 

M'(P2,A,X) 
•i, A gz+{,X6)R(P2,\x) 

M\p3,A,X) 

& + §' X6)e(z + i , xe)e(z + j , Xe) 

a 2 z , X | ) ^ - i , X 6 ) /?(P3,A,x) 

£(* + f>X6)C(2z + 1, x i K z + f > X6)e(z + I, X6)e(2z, xj=Mz - ±, Xe) 

^ + I , X 6 ) 

£(*+5,X6)£(2z,xi) *(<r(f),A,x) 

Z(z + §, X6)C(2z + 1, xlWz + |X6)£(Z + i , X6)e(z + £, XeM2z, X
2
6) 

^+f ,X6)«2z+ l ,x i ) 

*(g(7r),A,X)  

£(*+§> X6M* + 5, X6)e(2z, X6>e(z ~ 5> XeM* - §, X6> 

PROPOSITION 3.2.2. Ifx is not trivial, then Res^ A(f,f; A) /zas a/?o/e atz = ±, i.e. 
A = /?2 w/*e« X6 — L X6 7̂  1 fl«df *Ae residue is given by 

Res^ Res5l ^(f,/; A) = ci(fQ32),R(P2,P2,P2X)) 

ftf(P5,'7fe " > x / ^ i ) + c 2 *(*( j) , /?4,P3x)/(^4) + c3tf (p6, ft, y X^'Cft)), 

w/*ereci,C2,C3 are constants and R(ps, 7V> x) = ®vR(ps, "Pi", Xv) and R(ps, "fii", 

Xv) is the value at /32 of the restriction R(ps, A, Xv)\s{ • It is an isomorphism from 7(/?2, x) 
to 1(02, P5X)-

PROOF. The local intertwining operators are holomorphic at z = j except 
7?(cr(7r),A,Xv) when Xv = 1. However, Moeglin-Waldspurger [M-Wl, Appendix III] 
showed that the restriction R(a(ir),A,Xv)\si is holomorphic at z = \\ Let Xv = 1. By 
the cocycle relation, i?(cr(7r), A, Xv) = R(P5, Pi A, Xv)R(pi,K Xv)- The pole is contained 
in R(p5, p2A, Xv)- However, the restriction R(p5, p2A, Xv)\sx of i?(p5, p2A, Xv) onto S\ is 
holomorphic at /32. If Xv is not trivial, R(p5, p2A, Xv) is holomorphic at /?2. 
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Therefore, all the poles are contained in the normalizing factors. So 

R e s ^ R e s s ^ j U ) = „ , ^ ^ l ' * 6 * n , ( * f o , f t , x / ( f t ) / ( f t ) ) 

«2)C(3,X6M2,X6) 

In order to use the adjoint formula (3.2), we note that pi = P2^(f) and °{^f) l ~ 
or(y) = P2P6- We also note that <j(7r) — P2P5 = P5P2 and so we have i?(a(7r), A, Xv) = 
R(j>2, PsK p5Xv)R(p5,K Xv). By the same reasoning as above, if \v = 1, tf(p5, A, Xv)U 
is holomorphic at ft and we denote its value by R(ps, "ft", Xv). If Xv is not trivial, then 
R(p5, A, Xv) is holomorphic at /32 and in this case, #(/95, ft, Xv) = R(p5, "ft", Xv). 

PROPOSITION 3.2.3. If\ is trivial, then Res5l A(f,f;A) has a pole atz — \, i.e. at 
ft andz — §, /.e., <zf ft. 

(1) Res^ Res^ A(fj'\ A) was calculated by Moeglin-Waldspurger. 
(2) Res f tRes5l^(/ ,,/ ,;A) = 0. 

PROOF. (1) See [M-Wl, Appendix IV]. 
(2) At z = | , Ml (pi, A, x) and Mx (a(7r), A, x) have simple poles. So the residue is 

given by 

Res* R o M ^ A ) = ^ ^ ^ ( ( ^ ( P 3 , f t , x ) - ^ ( ^ ) , f t , x ) ) / ( ^ 3 ) , / 0 5 3 ) ] . 

Buti?(a(7r),ft,x) = R(p3P6,P3,x) = fl(P3,ft,x)*(P6,ft,x) and J?(p6,ft,x) = Wby 
the following Lemma. So Res^ Ress, A(f,f; A) = 0. 

LEMMA 3.2.4. Suppose a characterx v satisfies p^Xv = Xv- Then for any real number 
t, the normalized intertwining operator R(p6, fft, Xv) is a self-intertwining operator of 
1(03 > Xv)- It acts like the identity. 

PROOF. Since p6ft = ft, it is a self-intertwining operator of 7(fft,Xv). Since 
(ft,/?6) = 0> R(p6,tP3,Xv) is actually an intertwining operator for the Levi subgroup 
M2 — GL2, where P2 = M2N2 is the maximal parabolic subgroup attached to ft. Under 
the identification M2 — GL2, R(p6, *ft, Xv) is an intertwining operator of Ind^2 p\ \* x 
p\ \*. Since Ind^2 \i\ \* x p\ |' is irreducible, R(pe, fft, Xv) acts like a scalar. But it acts 
like the identity on the K-fixed vector. Therefore it is the identity. 

3.3. Calculation ofRess2 A(f,f; A). M(w, A, x) has a pole at 52 if X2 = 1, i-e., X1X6 = 
1. 

OnS2, 

(A,ftv) = 3z + ± , ( A , # ) = 2z,(A,ftv) = 3 z - I 
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LEMMA 3.3.1. 

M2(p2,A,x) r2,_ A , A _ g ( - * + i , X i ) g f r + i , x r ) *(P2,A,X) 

c(-z+|,xi)^+|,xr 'M-^+i,xiMz+|,xr ') 
•2( A

 g (~z +2'X l )^ ( z +?>xr1)^+kxr3x(2z. xr2) 
R{Pi,Kx)  

' e(-z + \,X\)e{z + \,xr'M3z + \,X^YQz,xf) 

*, A x_ ^+^,xr1K(2z,xr2K(3z-i,xr3) M^(p4,A,x) = 
^+f,xr'K(2z+i,xr2)?(3^+f,xr3) 

J?(P4,A,X)  

' £(Z+i,xr'K3z+i,xr3K2z,xr2K3z- i,xr3) 
W'dUx] g

3
("z+^xi)

1 RUI\KX) 
y \3)' ' * J £ ( _ * + § , X l ) e ( _ z + I , X l ) I \3)' ,XJ 

{\3)' >*•) i{-z+l,Xl)Z{z+\,x\x)ZQz+\,X?) 

R{aQf),Kx)  

' e(-z+\,X\)e(z+\,X-{ly(?z+\,xf) 

v ^» •*; ^ ( - z + ^ x o a z + f ^ r ^ ^ z + i . x r ' ^ ^ + i x r 3 ) 
R(a(ir),A,X) 

£(-z+i,XiMz+^xr'M2z,xr2K3z+i,xr3K(3z- ^,xr3) 
PROPOSITION 3.3.2. ResS2 A(f,f; A) /w.s a simple pole atz — \, i.e. A = i/?3 wAen 

Xi = I i-e-, X6 = l W R e s , f t ResS2^(/",/';A) = 0. 

PROOF. All the local intertwining operators are holomorphic at z = g. So all the 
poles are contained in the normalizing factors. Therefore, 

Res,AResS 2^(f , / ;A) 

= (*)( (*(p3,}/?3,x) -R{^\\^,x))f{\^\f'(^a,) I 

with (*) and (**) being constants depending on xi- Here i?(cr(7r), | /3 3 ? \ ) -

/?(P3,^3,x)«(P64/33,X)and/?(p4,^3,x) = * ( * ( T ) > \fo>x)R(P<» 503, X>- Since 
P6X = X, by Lemma 3.2.4, /?(p6, ±/33, x) = w/. Therefore, Res i^ RestS;2 ^(Z',/'; A) = 0. 
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3.4. Calculation ofRess5A(f,f; A). M(w, A, \) has a pole at S$ ifxs = I, i.e. X1X6 = 
I.O11S5, 

<A,/?r> = z - | ,<A,#> = 2z,(A,/?3
v) = z + i 

<A,/tf) = z + | , < A , # > = - z + ^ . 

LEMMA 3.4.1. 

. ,5 , A x gz-±,xi)g2z,xi) R(P3,A,X) 
Afipi, A, x) = 

i{z+\,xx)&2z+\,x])e{z-\,x\)e{2z,x\)e{z+\,x\)z{z+hx\) 

M5, A , «2z ,x fe (*+5 ,Xi )€ ( -*+! ,x r l ) 
M (P4'A'X) e(2z+i,x?^+f,xi)e(-*+f,xrI) 

^(P4,A,x) 

e(2z,x?Kz+ i ,XiMz+ | , X i K - z + | , x r ' ) 
2 „ - h 

Af,o>s,A,x) = 77—n—d:—n—_,, , , 3—w—rr 
&z+§,xi)£(-*+§,xr1Mz+|,xiM-^+f.xr1) 

1 ^.\cn^ A / 2 \ ^ / _ ^ _ L 3 _ . - h 

R(o(it),A,x) 

£(z-\,X\Y(2z,x\)e(z+\,X\y(z+\,X\Y(.--z + l,Xxl) 

fl(<7(f),A,x) 

e C z + ^ x i K z + f . X i M - z + f ^ r 1 ) 

^(-z+f.xr1) 

PROPOSITION 3.4.2. Tjf x w ^0' fri'via/, Ress5 ^(A/ ' ; A) has a simple pole atK — /?4, 
z.e., z = ^, when X\ = 1, Xi 7̂  1 ̂ w^ *& residue is given by 

Res^ Res55 , W ; A) - * (flfo,04, xWtiSiPij) 

+ c2 ( (R(P4, fa, X) + *(^(7r), PA , x ) ) / ( / W ' ( A ) ) , 

wnere cx - mi{Xxx)t{1^Xx) *™. c2 £(2)£(3,x,X(2,xiMi,x.)2' 

PROOF. All the local intertwining operators are holomorphic at z = j . Therefore 
all the poles are contained in the normalizing factors. Our assertion follows from the 
straightforward computation. 
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PROPOSITION 3.4.3. If \ is trivial, ResS5A(f,f;A) has a triple pole at z = ±. 
Moeglin-Waldspurger calculated the residue. 

3.5. Calculation o/Res^6 A(f,f; A). M(w, A, %) has a pole at S^ if X6 = 1 • On Se, 

{Kfi) = z - \ , (A,/32
v> = 3z -A , (A,&v) = 2z, 

(A,/34
v) = 3z+ i , (A,/35

v)=z+i. 

LEMMA 3.5.1. 

^ A «3*-i,XJX(2*,xfXfr+*,X.) 
M (p4,A,x) € ( 3 Z + | > X 3 ) € ( 2 Z + 1 , X 2 ^ + | > X I ) 

i?(/94,A,x) 
£(3z - i,x?)e(2z,Xfc(3z + \,X\)e{z + \,Xi) 

I , , 3w„4 . 1 ^ g(3z+^xf )^+j ,Xi ) *(P5,A,X) 
(P5' ,X) «3z+ | , X ?^+ | ,X iM3z+ i ,X?M^+5 ,Xi ) 

A^(P6,A,x) = «(P6,A,x) 

,* / , % A x ^-s,Xi)$(3z-|,X?)$(2z,X?) 
Ar((T(7r),A,x) = r^ -> -, hr 

V '*> ^+| ,Xi)a3Z+f,X?X(2z+l ,x?) 
*(gQr) ,A> X )  

e(^- 5>XiM3z- 3,XiM2z>Xi)e(3z+ i,x^)e(z+ ±,x,) 

"{-&)•*•*) 
g(2z,Xfe(3z++,Xfc(z+i,Xl) R{<T(4f),A,X) 

£(2z + 1, xXKQz + \, xXM? + | . XiK2z, x?K3z + \, x\Y{z + \, Xi) 

\\3J' ,K) Z(z+\,xi)e(z+\,Xi) \\3)' ,K) 

All the local intertwining operators are holomorphic atz = \,z= j,z = \ and so all 
the poles are contained in the normalizing factors. 

PROPOSITION 3.5.2. Ifx is not trivial, Ress6A(f,f;A)hasasimplepoleatA = \ji5, 
i-e., z = \ ifX\ = 1. Res,, ResSe A(f,f;A) = 0. 

Res1/35Res^(/;/;A) 

-«.(H«.|A.x)*«(»{?).jA.x)Xifty(iA)^ 

+ C 2 Mi?( P 5, j /3 5 ,x ) - J R(^Xj/?5 ,x)) / (^5) , / ( j /35) 
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where c\, C2 depend on x 1 • But 

R(a(7r), i/35 ,x) = Ufa, \PS,X)R(P2, ^ S , X ) . 

Here o^f)x = X and p6pxx = p\x and 

tf^^x)^^/^^ 

By Lemma 3.2.4, #(p6, - | f t , X) and/?(p6, |/?3, P\ x) are the identity. By the cocycle rela­
tion of the normalized intertwining operators, R(p2, \fis, x) is also the identity. Therefore, 
the residue is zero. 

PROPOSITION 3.5.3. A(f,f';A) has a simple pole at A = /34, z.e., z = £ */xi = 1> 

X2\¥lorX2\ = lX\ ¥ I-
W Xi = 1' Xi 7̂  1- The residue is given by 

Resp4Ress6A(f,f';A) = ci/iP^Rip^^p^W'm^RiPu^xY'm), 

where c = c(F)ai,x]K(i,Xl)  

^ ) x] — 1̂  Xi 7̂  1- The residue is given by 

Resp4ResS6A(f,f;A) = c^(i?(p4,/34,x) + ^(^) , /34,x)) / (^4) / / (^4)] 

+ c2l7?^(y),/34,xy084),/,(^2)J, 

WAiereci - (̂2,Xl)4(2,xiMi,xiM2,xiMUxi)C(2) d n u C 2 C(2)C(3,xiM2,xiMi,xi)' 

PROOF. It follows from Lemma 3.5.1 and straightforward computation. 

PROPOSITION 3.5.4. Ifx is trivial, ResS6A(f,f;A) has a triple pole at A = /34. 
Moeglin-Waldspurger calculated the residue. 

PROPOSITION 3.5.5. Ifx is trivial, Res^6 A(f,f; A) has a simple pole atA = pB, i.e., 
z=\. The residue is given by 

Res,, ResS6 A(f,f; A) = ^ ^ (R(O{*\ pB, X)f(PB),ApB)). 
£(§W 

This gives the constant. 

3.6. Conclusion. Let J(x) be the subspace of Llis(G(F)\G(\)) which is ^-finite 
and i^oo-invariant. 
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3.6.1. x is trivial. We can see from the above calculation (Propositions 3.2.3, 3.3.2, 
3.4.3, 3.5.4, 3.5.5) that Moeglin and Waldspurger obtained all the residual spectrum at­
tached to the trivial character of the torus. We summarize their results; J(l) is isomorphic 
to the sum of the trivial representation and the image (1 + ^E)R(p2, (32)1(02)/, where /(ft)/ 
is the /^-invariant subspace of 1(02) and E = ®VEV. Here Ev is defined as follows: Let 
R(p5, P2A)|^ be the restriction of R(ps, P2A) to Si. It is holomorphic at ft. Let Ev be the 
value of R(p5, p2A)\Sl at ft. 

Then Rv(p2, ft)A>(ft) = n\v © ^2v, where ir\v is spherical and 

(3.3) Ev(fv) = 
fv, lffv G 7Tiv 

-2fV9 if/v <E 7r2v. 

Let S be a finite set of finite places and 7T5 = <g>v(£S TT\V ® (g)v(Es 7T2V. Then 

J(l) = ^0 0 © 7T5, 
5,card(5)^l 

where 7ro is the trivial representation. 
3.6.2. x is non-trivial. From Propositions 3.2.2, 3.4.2 and 3.5.3, only the following 

characters contribute to the residual spectrum: 

(1) X-X\ = l,xl=l>X6^l 

(2) x' = P6X:Xi2 = Ux'i¥hX6 = Xi 
(3) x» = plP6X:X»2=l9X»Jl9X»=l 

(4) x :x 3 = l,Xi ¥ 1>X6= 1 
Under the identification M\ ~ GL2, where M\ is the Levi subgroup of Pi, the above 

characters are given by x = x(M, V\ where /i, v are grossencharacters of F: 

(1) X = x(P>v)> V = ", V2 = 1 , / i ^ 1 
(2) P6X = XO^) , / i = i y = l , ^ l 
(3) pip6X = X(p,9v\ p2 = 1, /i ^ 1,1/ = 1 

(4) X = x(w\ p? = \,p^\,v = p2 

CASEl. X^Xl = 1,X6= 1>X6^ 1 

From Proposition 3.2.2, 

Res^2Res5l^(/",/;A) = ci(A(ft),*(p2,ft,P2X) 

where cuc2,c3 are constants and#(p5, "ft", x) = ®v^(Ps> "ft", Xv) and #(p5, "ft", 
Xv) is the value at ft of the restriction R(p$,A, Xv)\si • It is an isomorphism from /(ft, x) 
to/(ft,P5X)-

Here we recall the inner product formula (3.1) and our short-hand notation. Note that 
a(7r) G W(x,X),p3 e W(X,p6X) and a^f) £ W(X,pxp6X). Therefore, the above/"s 
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are all in different spaces. Since ^(cr(|),/34,p3x) and i?(p6,/?4, yX) are intertwining 
operators and R(ps, " /V, x) is an isomorphism, J{\) is isomorphic to the image 

R(P2,P2,p2XW2,P2X)f = <8> ̂ v(P2,/32,P2Xv)/v(/32,P2Xv). 
v<oo 

We already know from Moeglin-Waldspurger that if xv is trivial, 

Rv(P2, Pi, P2XV)IV(P2, P2XV) = TTlv 0 7r2v. 

Suppose Xv is not trivial. Then Xv ® exp(/?2,//#()) is a regular character of T. So we can 
apply Rodier's result as follows: By the cocycle relation, 

Rv(P2, /?2, P2Xv) = ^v(P5,-/?2,P5Xv)^v(^(7T),ft,P2Xv). 

From Rodier [R, Cor 3 in p417], ^v(o"(7r),/?2,P2Xv)̂ v(/?2,P2Xv) and the unique irre­
ducible subrepresentation of Iv(—/?2,P2Xv) have the same Jacquet module. There­
fore, ^v(cr(7r),/̂ 2,P2Xv)^v(/?2,P2Xv) is the unique irreducible subrepresentation of 
/V(-/?2,P2XV). Since Rv(p5,-(32,p5Xv) is an isomorphism, Rv(p2,P2,P2Xv)Iv(p2,p2Xv) 
is the unique irreducible subrepresentation of /(—/fe, Xv)-

Let Jv = {7Tiv, 7T2v}. If Xv is not trivial, we take 7r2v = 0. Let S be a finite set of finite 
places and 7T5 = ®vgs 7riv 0 <g)v€ls- ̂ 2v Then 

•/(x) = ©**. 

There is no condition on 5. 

CASE 2. x' = P6X'Xl2=hXl¥UX6 = Xl 

From Proposition 3.4.2 and the adjoint formula (3.2), 

R e s ^ R e s ^ ^ A ) 
= cl(f(P4),R(p39l32,P3xY(lhj) 

+ c2(f(P4), R(P4,P4, PAX')) if'(PA) + ̂ (Pi, 04, X V'OM • 

Recall the inner product formula (3.1). We note that p4 G W(p6x,P\P6X) since 
P4P6X = P1P6X andcr(Tr) G W(j>6x, PeX), P3 G ^(P6X,X)- Therefore, the above/"s 
are all in different spaces. Here 

R(P4,/34,P4X'W4,P4X') = ®RV(J>4,P49P4XV)IV(PA,PVXV)> 
v 

Under the identification M\ ~ GL2, p6X — x O ^ X / / = l , ^ 2 = l , ^ ^ l . B y 

inducing in stages, 7(/34,P4Xv) = IndP! e x p ^ / Z ^ O ) ® ^ ^ p4xv, whereto isaBorel 

subgroup of GL2. TTV = Ind^2 p4Xvis irreducible. Therefore, Rv(p4, /34, P4Xv>W4, PvXv) 

is the Langlands' quotient of Ind^ exp(/34,//p, ()) ® 7rv. In particular, it is irreducible. 

We have p3 = P1P4P6 and p4x' = X- So 

R(P3,p2,Xv) = R(j>U-P4,p4P6Xv)R(P4,P4,p6Xv)R(p6,P2,XvY 
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If Xv is not trivial, thenR(p\,—04,p4peXv) andR(p^,02,Xv) are isomorphisms. There­
fore, the image of R(p^,02, Xv) is irreducible. 

If Xv is trivial, R(pe,02,Xv) is not an isomorphism and we proceed as follows: 
Since ^3 = pM2fl R(P3,Pi,Xv) = R{PI,-P4MT)>XV)R(°(T)>P2,XV). As in 
Lemma 3.2.4, we can show that R(p\, — 04, °0f)Xv) is the identity. Also from [M-Wl, 
equation(15)],^v(p6,-/32)(^v(P2,/32)-^v^v(P2,/32)) - 0. From (3.3), £ / = -If for 
/ G 7r2v and so Rv(p6, -02V = 0 for/ G 7r2v. Therefore Rv(p6, -02)RV(02, 0i)l{02) is ir­
reducible. Since p^p2 = cr(y), the image of i?v(cr(y), /32) is irreducible. It is isomorphic 
to the image Rv(p4, 04)I(04)> 

Therefore, / (x ' ) is isomorphic to the image R(p4, 04, P4x')l{04> PAX')- Since P6/34 = 
/?2? «/(x0 is isomorphic to none other than ®v 7riv in Case 1. 

CASE 3. X" = PiPeX- xf = 1, x" ¥ h X'l = 1 
From Proposition 3.5.3 and the adjoint formula (3.2), 

ReS/34 ResS6 Atf,f; A) = c, ( f t^) , * ( * , ft, P4x")(/"C84) + * (pi, ft, x ' V (ft)) 

We proceed in the same way as Case 2. J(x") is isomorphic to the image 
R(P4,04, p4x")I(fi4,p4x")- ^ is irreducible and it is isomorphic to the one in Case 2. 

CASE4. x-x\ = hx2i¥ hxe = 1 
From Proposition 3.5.3, 

residue = Res^4 Res^6 A(f,ff; A) 

= c(ftf4),R(P4,04,P4X){f'm+R(PU04,Xy,(04))-

So J(x) is isomorphic to the image R(p4,04, P4X)I(04, P4X). By inducing in stages, 
1(04, P4Xv) = hid^ exp(/34,///^O) ® Ind^2 p4xv, where B0 is a Borel subgroup of GL2. 
7rv = Ind^2 p4Xv is irreducible. Therefore, Rv(p4,04, P4Xv)Iv{04, PvXv) is the Langlands' 
quotient of Indp, exp(/34,//p1()) ® 7rv. SO J(X) is irreducible. 

We have proved 

THEOREM3.6.1. LetJ(x)bethesubspaceofL2
dis{G(F)\G(^) which isK-finite, 

KoQ-invariant. Then the K-finite, Koo-invariant subspace ofL\^(G(F)\G(K)\ is the di­
rect sum of the following space: 

(1) J(\) = 7r0 © ©s,card(S#i Vs, where T^ = ®v£57riv ® ®vesn2v, TTIV w spherical. 
(2) J(x) = Qs^, where xi = 1, xl = I X6 ^ 1. ** = ®v^7riv ® ®ves*"2v. ^X6v 

w «o/ trivial, we set iT2v = 0. 
(3^ J(x) = the Langlands' quotient of lndp{ exp(04,HPl()) (8)(Ind ô

L2 x), w/*erex3 = 

1, Xi ^ 1. X6 = 1. 

3.7. Arthur Parameters. In this section, we give the Arthur parameters for the residual 
spectrum of L%S(G(F)\G(&)) . We say that a unipotent element w is distinguished if all 
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maximal tori of Cent(w, G) are contained in the center of G°, the connected component 
of the identity. This is equivalent to the fact that the unipotent orbit O of u does not meet 
any proper Levi subgroup of G (Spaltenstein [Sp, p67]). (i.e., if I is a Levi subgroup of 
a parabolic subgroup of G and u G L for a u G O, then L° = G°.) 

JACOBSON-MOROZOV THEOREM. Suppose u is a unipotent element in a semi-simple 
algebraic group G. Then there exists a homomorphism </>:SL2 •—> G such that 

LEMMA ([B-V, PROP. 2.4]). Let u be a unipotent element and <j>: SL2 »—• G be a 

homomorphism such that <j>\ n . I = u. Let S^ = Cent(im </>, G) C Su — Cent(w, G) 

and W be the unipotent radical ofSu. Then 
(1) Su = Sf U", a semi-direct product. S^ is reductive. 
(2) The inclusion S^ C Su induces an isomorphism between S^/STIZG andSu/S^Zc. 

Let F be a number field and let WF be the global Weil group of F. For G a split 
group of type G2, we can take the dual group G* = G2OC). An Arthur parameter is a 
homomorphism 

ip: WF x SL2(C) h - G\ 

defined modulo conjugacy, with the following properties: (The usual definition of Arthur 
parameter uses Langlands' hypothetical group LF. But since we are only dealing with 
principal series, WF is enough.) 

(1) i)(WF) is bounded and included in the set of semi-simple elements of G*. 
(2) The restriction of t/> to SL2(C) is algebraic. 
Let S$ = Cent(im t/>, G*) and 

c,i, — s^/s%zG*. 

Now we recall Moeglin's reformulation of Arthur's conjecture ([M3]): For each place 
v of F, we have local Arthur parameters t/>v = i\WFv x SL2(C), as well as S^v, C^v. It 
is a part of local Arthur's conjecture that for each irreducible character rjv of C^v, there 
exists an irreducible representation 7r(V>v, VV\ For each v, let Yl^v be the set of 7r(^v, f]v)-

We define the global Arthur packet U^ = L2 (G(F)\G(A)) to be the set of irreducible 
representations IT = ®v 7rv of G(A) such that for each v, 7rv belongs to n^v and for almost 
all v, 7rv is spherical. 

ARTHUR'S CONJECTURE (GLOBAL). (1) The representations in the packet corre­
sponding to i/> may occur in the discrete spectrum if and only if C^ is finite, i.e.,S^= 1. 
We call such an Arthur parameter elliptic. 
(2) For an elliptic Arthur parameter V>, any TT G IT^ occurs discretely in I2(G(F)\G(A)) 
if and only if 

(3.4) £ r M * v ) ^ 0 , 
xec,p v 
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where IT = ®v 7r(/0v, r\v), x = (xv). 

REMARK 3.7.1. If C^ is abelian, then the above condition is equivalent to: the charac­
ter Ilv?7v | Q of C^ is trivial. This is what happens in split classical groups [Ml]. However, 
it is not true in our G2 case since C^ is not abelian as we see below. It is S3, the symmetric 
group on 3 letters. 

Let nreSv be the subset of n ^ , parametrizing the local components of the residual 
spectrum. We will find nreSv and verify (3.4) for a representation 7T — & v 7I"v> TTy ^ f I r e S v 

for all v, 7rv spherical for almost all v. 

REMARK 3.7.2. A representation in n^v but not in nreSv will appear as a local com­
ponent of a cuspidal automorphic representation. Suppose we know the local packet n^v 

completely. Then it is a very difficult problem to determine when a representation TT £ n^ 
is a cuspidal representation. Moeglin [M5] has a partial result on that in the case of split 
classical groups. 

3.7.1. x trivial. 
The Arthur parameter is given by 

V>: WF x SL2(C) h-> G2(C), 

where \j)\wF = 1 and t/>: SL2(C) H-» G2(C) is given by a unipotent orbit of G2OC). In order 
that xjj be elliptic, the unipotent orbit has to be distinguished. There are two distinguished 
unipotent orbits of G2(C), namely, G2(C) and G2(ai) ([Ca, p401]). 

CASE 1. The unipotent orbit G2(C). 
The unipotent orbit G2(C) gives the constant which corresponds to the residue 

ResPBResS6A(f,f';A). 

CASE 2. The unipotent orbit G2(<zi). 
If V> is determined by the unipotent orbit G2(#i), then Q, = C^ = S3, the symmetric 

group on 3 letters. There are 3 irreducible characters of S3, namely, i/>3, ̂ 21 and i/^in. 
Here t/>in is the sign character of S3. They are class functions and the character table is 
given by 

^ 3 ^ 2 1 'Am 
Ci 1 2 1 
c2 1 0 -1 
c3 1 - 1 1 

Character table of S3 

Here C\, C2 and C3 are the conjugacy classes in S3, namely, C\ = {1}, C2 = 
{(1,2),(1,3),(2,3)}, C3 = {(1,2,3),(1,3,2)}. From Section 3.6.1, we know that 
^v(P2,/32)/(/32) = TTIV © TT2V, where ir\v is spherical. We attach TT\V to i/>3 and ir2v to 
i>2\. Therefore, in this C a s e , n r e S y — {7Tiv, 7T2v}. 
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Then ir = ®v^5 TT\V 0 <g)vGiS 7r2v appears in l|s(G(F)\G(A)) if and only if 

® ^ 3 ( l ) ® ® ^ 2 i ( l ) + 2(g)^3(( l ,2 ,3) )®® ^21 (0,2,3)) 
(3.5) v^s vis ves 

= 25 + 2 ( - l / T ^ O , 

i.e., s ^ 1, where s = \S\. This coincides with Moeglin-Waldspurger [M-Wl, Ap­
pendix III]: In Moeglin-Waldspurger, there is an operator Ev which acts on TT\V and 7r2v 

(See Section 3.6.1). Since we attached ir\v to fo and 7r2v to V21, £v acts on the irre­
ducible characters of S3 as follows: Ev(xp^) = 1 and Ey(x/j2\) = —2. Then we can see that 
Ev(r]) = r/(l)r/((123)) for 7/ = ^3, V>2i • Therefore we can write (3.5) as follows: 

2®^3( ( l , 2 ,3 ) )®®^2 i ( ( l , 2 ,3 ) ) ( l + ^ ® ® £ v ( ^ 3 ) ® ® £ v W 2 i ) ) ^ 0 
v$S v£S A vpvp ves 

i.e.,ir = (8)V7TV appears in L2
dis(G(F)\G(A)) ifandonlyif(l+±£)7r ^ 0, where E = ®EV. 

REMARK 3.7.3. According to Arthur's local conjecture, the sign character ipn\ 
should give an irreducible representation which is a local component of a cuspidal auto-
morphic representation. We do not know what it is. 

REMARK3.7.4. ForOadistinguishedunipotentorbit,let^(w) = C(u)/C(u)°9 where 
u G O and C(u) is the centralizer of u. Let Springer(O) be the set of irreducible characters 
of A(u) which are in the image of the Springer correspondence which is an injective map 
from the set of irreducible characters of W into the set of pairs (0,77), where O is a 
unipotent orbit and 77 is an irreducible character of A(u) = C(u)/C(uf, where u G O. 
We note that by [Ca, p427], Springer(G2(tf 1)) = {V>3> ^21} in G2(C). Therefore the local 
component nreSv of the residual spectrum attached to the trivial character of the torus is 
parametrized by Springer(G2(ai)). Moeglin [Ml] showed that for split classical groups, 
the residual spectrum attached to the trivial character of the torus is parametrized by 
distinguished unipotent orbits O and Springer(O). In other words, if the Arthur parameter 
0 is given by the distinguished unipotent orbit 0, then nreSv = Springer(O) and the 
multiplicity formula (3.4) holds. 

Therefore we believe that the same thing would happen for all split groups. We state 
this as follows: 

CONJECTURE. Let G be a split group over a number field F and T be a maximal 
torus of G. Then the residual spectrum attached to the trivial character of T(K)/T(F) 
is parametrized by distinguished unipotent orbits O of G*(C), the L-group of G and 
Springer(O). More precisely, if the Arthur parameter ip: SL2(C) 1—> G*(C) is given by 
the distinguished unipotent orbit 0, then nreSv = Springer(O) and the multiplicity for­
mula (3.4) holds. 

We give an example of this conjecture in the case of split exceptional group F4 and we 
hope to settle this example in the near future: Suppose the Arthur parameter -0: SL2(C) \—+ 
F4(C) is given by the distinguished unipotent orbit F4(a3). By [Ca, p401],^4(w) = S4, the 
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symmetric group on 4 letters. There are 5 irreducible characters of S4, namely, t/>4 = 1, 
V>3i, V>22, V>2ii and Vim- BY tCa> P428l> Springer(F4(a3)) = {^4,^31,^22,^211}. The 
character table of ^4 is given by 

c, c2 c3 c4 c5 
y>4 1 1 1 1 1 

V'llll 1 1 1 - 1 - 1 

^211 2 2 - 1 0 0 
V>22 3 - 1 0 1 - 1 

V>31 3 - 1 0 - 1 1 
Character table of £4 

Here Q9i = 1 , . . . , 5, are the conjugacy classes in S4, with representatives 1, (12)(34), 
(123), (12) and (1234), respectively: |Ci| = 1, \C2\ = 3, |C3| = 8, \C4\ = 6and|C5 | = 
6. According to the conjecture, there will be 4 irreducible representations TT\V, . . . , 7r4V 

attached to V>4, V>2ii, fe and i/>3i, respectively. We divide Springer(F4(a3)) as follows: 
Springer(F4(tf3)) = n i U Yl2 U n 3 , where n i = {^4, V>2ii}, n 2 = {V>4, V>22> and n 3 = 
{V>4> V>3i }• The residual spectrum factors through 11/, i.e., it is the set of all ir — ® irv such 
that there exists i, irv £ 1% for all v. Let S be a finite set of finite places and s = 15|. If TT = 
®vts'n\v®<8)ves'K2v, it appears inZ&S(G(F)\G(A)) ifandonlyif25+3(2*)+8(-l)s ^ 0, 
/.e., s ^ 1. If 7r = ®vgs7riv 0 ®VG5^3V, it appears in L|S(G(F)\GW) if and only if 
35 + 3(— If + 6 + 6(—1/ 7̂  0, i.e., s ^ 1. If 7r = <8>v£s7Tiv ® ®v&s7r4v, it appears in 
L2

dis(G(F)\G(AJ) if and only if 35 + 3(—1/ + 6 ( - l / + 6 ^ 0 , i.e., s^\. 

3.1.2. x non-trivial. In order to find Arthur parameters for non-trivial characters, we 
have to look for endoscopic groups of G2(C), since Arthur parameters will factor through 
the endoscopic groups. 

There are two equivalence classes of proper cuspidal endoscopic groups of (72(C), that 
is, SL3(C) and SL2(C) x SL2(C)/{±1} ([Al, p30]). They are given as follows: Under 
the identification Mi ~ GL2, by (2.1), 0%(t) = diagftf). Then by [Ca, p93], C(/%(u))9 

the centralizer of0^(u) in G2(C), where u? = 1, UJ ^ 1, is reductive and its root system 
is a>! = {±/Ji,±/?3,±/?5}, i.e., C(0%(ijj) ~ SL3. The other one is C ( / ^ ( - l ) ) . By [Ca, 
p93], its root system is Q>{ = {±pu ±/34}, i.e., C ( / ^ ( - l ) ) ~ SL2(C) x SL2(C)/{±1}. 

The center of SL3(C) is Z3 = {ujh,u? = 1} ~ Z3 and the center of SL2(C) x 
SL2(C)/{±1} is Z2 = {±/ 2}. Moreover, S3 = Z3 x Z2. 

CASE 1. The conjugacy class of x: Xi = 1, xl = 1, Xe ^ 1 

Under the identification M\ ~ GL2, x = x(M, AO, ^ = 1, ^ 1, where /i is a 
grossencharacter of F. We have the embedding SL3(C) C G2(C). 

The Arthur parameter factors through SL3(C): 

X/J: WF x SL2(C) H-> SL3(C) <-> G2(C). 

//*(") \ 
I / I | ^ : W I - > /x(*v) and ^: SL2(C) 1—• SL3(C) is determined by the principal 

unipotent orbit of SL3(C). Here we note that under the embedding SL3(C) «̂-» G2(C), 
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the principal unipotent orbit of SL3(C) corresponds to the distinguished unipotent orbit 
G2(a\) in G2(C) ([Ca, p401]). Then S^ = Z2, Q = Z2 and Q v = Z2 if/xv is not trivial. 
C^v = S3 if/iv is trivial. 

If jiv is trivial, then nreSv = {7riv,7T2v}. If/xv is not trivial, then nreSv = {7riv}. Then 
any IT — ®v^^iv ® ®ves7r2v appears in L^(G(F)\G(A)) since 

® ^ 3 ( l ) ® 0 ^ 2 i ( l ) + ® ^ 3 ( r ) 0 ® ^ 2 i ( r ) ^ O , 
v^S veS vgS v€S 

where r is the non-trivial element in Z2. 

CASE 2. The conjugacy class of \: \\ = 1, xi ^ 1, X6 = 1 
Under the identification, M\ ~ GL2, x = xi^^X A*3 = 1 > M 7̂  1, ^ = /x2. The Arthur 

parameter factors through SL2(C) x SL2(C)/{±1}: 

V>: 0> x SL2(C) i-> SL2(C) x SL2(C)/{±1} --> G2(C), 

where </>k:w •-> ^ ( w ) ^ _ 1 ( w ) ) x ( J J j and V>:SL2(C) ^ SL2(C) x SL2(C) 

is determined by the principal unipotent orbits of SL2(C). We note that under the em­
bedding SL2(C) x SL2(C)/{±1} <-* G2(C), the principal unipotent orbit of SL2(C) x 
SL2(C)/{±1} corresponds to the unipotent orbital inG2(C)([Ca,p401]).Then5't/; = Z2, 
C^v = Z2 for pv non-trivial and C v̂ = 1 for ptv trivial. In this case, nreSv consists of the 
Langlands' quotient which corresponds to the trivial character of C^ = Z2. Therefore 
n r e s consists of one element. 

REMARK 3.7.5. Arthur associated to an Arthur parameter xjj, an associated Lang-
lands' parameter ^ and conjectured that we could enlarge the L-packet 1 1 ^ to n ^ . We 
note that in each of our cases, the associated Langlands' Z-packet consists of only one 
element. 

4. Decomposition of L%8(G(F)\G(lkj) . We have 

a*Pl = X{MX) ® R = R/?4, aPl = Rffi 

pPl is the half sum of roots generating N\. Then pPl = |/J4. 
Let a = fa and identify s G C with sa G ct£. Let n = ® 7rv be a cusp form on 

M\ = GL2. Given a A'-finite function ip in the space of IT, we shall extend ip to a function 
<p on G and set 

Define an Eisenstein series 

E(s9g,g9Pl)= £ ®,(7g). 

It is known that £(.?, <p,g,p\) converges for Re(s) » 0 and extends to a meromorphic 
function of s in C, with a finite number of poles in the plane Re(s) > 0, all simple and 
on the real axis. 
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It is also known that L^is(G(F)\G(A)) is spanned by the residues of the Eisenstein 
series for Re(s) > 0. We know that the poles of the Eisenstein series coincide with those 
of its constant terms. So it is enough to consider the constant term along P\, which is 

E0(s,(p,g9Pi) = J2 M(s>n,wy(g) 

where Q. = {l,p6P\P6P\P6} and 

M(s,ir9w)f(g) = J f(w~lng)dn 

where 

K= n ua, 
a>0 

w-1a<0 

Ua is the one parameter unipotent subgroup and/ G I(s, IT) = lndp{ ir ® exp(s, Hpx ()). 
We note that for each s, the representation of G(A) on the space of 0 5 is equivalent to 

Then 

M(S, 7T, W) = (g) M(5, 7TV, W), M(s, 7TV, w/vfe) = / fv(\V~~l Tig) dfl 
JNW(FV) 

where/ = ® / v , / is the unique ATv-flxed function normalized byfv(ev) = 1 for almost 
allv. 

Let LM\ — GL2(C) be the L-group of Mi. Denote by r the adjoint action of LM\ on 
the Lie algebra L n i of LN\, the Z-group of N\. 

Then 

r = r i 0 r 2 

r\ = r§, r2 - A2p2 

where r° = r3 ® (A2p2)_1 is the adjoint cube representation of GL2(C) (See [S4]). Here 
r3 is the symmetric cube representation of GL2(C) and p2 is the standard representation 
ofGL2(C). 

Then it is well-known ([S3]) that for w = peP\P6p\P6 

M(s,7r,w/=(g)M(s,7rv,w/v(g)(g) —>fv x
 v ' 

VG^ v^s Ls( 1 + ̂  fl", H ) ^ ( 1 + 2y, 7r, r2) 

where S is a finite set of places ofF, including all the archimedean places such that for 
every v ^ S, TTV is a class 1 representation and if/ = <g)v/, for v fi S , / is the unique 
Kv-fixed function normalized byfv(ev) = l ./v is the ATv-fixed function in the space of 
/(-J,W(7TV)). 

Finally, Ls(s,ir,n) = nv£5Z,(s,7rv, r,-), where Z(s,7rv,r/) is the local Langlands' I -
function attached to TTV, rf. 
(1) Analysis of Ls(s9ir,r\) 
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We know ([S4]) that Ls(s, n, r\) is absolutely convergent for Re(s) > 1 and hence has 
no zero there. It is expected ([S4, Bu-G-H, Ik]) that the completed Z-function L(s, ir, r\) 
has a pole for Re(s) > 0 if and only if s — 1, o^ = 1, oun ^ 1 and 7r is the monomial rep­
resentation corresponding to the quadratic character^, where UJ^ is the central character 
of 7r. We assume this fact. 

REMARK. Ikeda [Ik] calculated the poles of the Rankin triple Z-function L(s, ir ® n 0 
7r) for 7r cuspidal representation of GL2. It is related to the symmetric cube Z-function of 
7r as follows: 

L(S9 IT (g) 7T <g) 7r) = L(S9 7T, r 3 ) (Z(s , 7T (g) U^)) . 

The symmetric cube Z-function is given by 

L(s9 7T, r3) = Z(s, 7T <g> o^, r°). 

L(.s, 7r, r3) has a pole at s = 1 when a;£ = 1 and c4 7̂  1 a nd s o L(s9 ir, r%) has a pole when 
<4 = 1 ando;^ ^ l.1 

(2) Analysis of ̂ (5,7r, r2) 
For v £ 5, 

L(s9irV9r2) = L(s,uVy) = (1 - ^ ( ^ v T 1 

so Z^s,7r, r2) is the (partial) Hecke Z-function. It has no zero for Re(s) > 1. The com­
pleted Z-function L(s9 ir9 r2) has a pole for Re(s) > 0 if and only if s = 1, UJ^ = 1. 
(3) Analysis of M(s, 7rv, W) for v G £. 

For 7rv tempered, the local factors L(s9 irv, rt) and M(s9 7rv, w) are holomorphic for 
Re(s) > 0. We show that for any v G S, 

L(S9 7TV, r i ) _ 1 Z(25 ' , 7TV, r 2 ) - 1 M ( s , 7TV, W) 

is holomorphic. It is enough to show it for TTV complementary series. We follow [Ki]. 
Under the identification Mi ~ GL2, by (2.1), for TTV = ir(ji\ | r , / i | |~r), 0 < r < \9 

complementary series of GL2, 

Ind% TTV ® Qxp((sa9HPlQ)) = Indf X(M,M) ® exp( (A,//*())), 

where A = (2r)/?3 + (s — 3r)/?4. From this we have our assertion. 

Now we assume that r < £. Right now the best known result is r < \ due to Shahidi 
[S3]. Then A is in the positive Weyl chamber for s — \ and s = 1 and we have 

LEMMA 4.1. For each v, the images ofM{\9 irV9 w) andM(\9 irV9 w) are irreducible. 

Thanks to F. Shahidi who pointed this out. 
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Conclusion. E(s, (p,g,P\) has a pole in the half plane Re(s) > 0 if and only if 
(1) a;ff = l , 5 = i , L ( i , 7 r , ^ ) ^ 0 , 
(2) J^ = 1 , ^ ^ l9s = 1,7r monomial representation attached to u^. 
Let Ji(7rv) be the image of M(^,7rv,w) and J2(TTV), the image of M(l,7rv,w). They 

are the unique irreducible quotients of/(^,7rv) and 7(1,7rv), respectively. Let Ji(7r) = 
®vJ\{nv) and J2W = ®vJi{^v)- We have proved 

THEOREM 4.2. 

L|s(G(F)\G(A))Mi = ©Ji (7r i )e©J 2 (7r 2 ) 
7Ti 7T2 

where TT\ runs over cuspidal representations of Gh2 w/Y/z trivial central characters and 
L({,ir,r°3)^0and 7T2 raws over monomial representations. 

5. Decomposition of L%s(G(F)\G(\j)M . 

In this case a*Pi = X(M2) ® R = R/}3, <*P2 = R/?3, PP2 = f ft. 
Let a = ft and identify s EC with ^d G a^. In this case, for IT cuspidal representation 

of GL2, the constant term of Eisenstein series is given by 

E0(s, <p,g9 P2) = X) M(s> *> wV(g) 
wen 

where Q = {l,pip6Pip6pi}-
The adjoint action r ofLM2 on Ln2 is given as 

r — r\ 0 r2 0 r3 

r\ = P2,r2 = A2p2,r3 = P2 ® A2p2-

Therefore for w = piP6PiP6Pi, 

M(s, 7T, w / = 0 M(S, 7TV, W/V <g> <g)/v 

ves ves 
Ls(s, ir, r\ )Ls(2s, TT, r2)Ls(3s, TT, r3) 

Ls(s + 1, 7r, r\ )Ls(2s + 1, 7r, r2)Ztf(3.s + 1, 7r, r3) 

where £ is the same as in the case L^is(G(F)\G(A)) . 
Here 

L(s, 7rv, n ) = L(s, 7rv), the standard L-function for GL2. 

L(s, 7rv, r3) = Z(s, 7rv ® o;^), twisted by the central character. 

L(s,irv,r2) = L(s,ujnv), Hecke L-function. 

We know that Ls(s, 7r (g) 0) is absolutely convergent for Res > 1 for any grossencharacter 
0. So it has no zero there. We know also that the completed L-function L(s, ir ® 0) is 
entire for any 0. Under the identification M2 ~ GL2, by (2.2), for 7rv = 7r(/x| |r, p | \~r) 
complementary series of GL2, 

Ind%7rv® exp((sa,//p2())) = Indf X(P,M) ® exp((A,//5())), 
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where A = (s — 3r)/?3 + 6r/34. Therefore, for any v G S, 

3 

[J Z,(w, 7rv, r,-)
_1 Af(s, TTV, w) 

1=1 

is holomorphic. Also if we assume r < | , A is in the positive Weyl chamber and the 
image of M(^, 7rv, W) is irreducible. Therefore, E(s, <p,g9P2) has a pole in the half plane 
Res > Oif and only if UJ^ = l,s = \ andl(^,7r,ri) ^ 0. 

Let J(7rv) be the image ofM(^,7rv, w) and J{K) = ®vJ(7rv). Then we have 

THEOREM 5.1. 

4s(G(F)\G(A))M2-0J(7r) 
7T 

where TT runs over cuspidal representations 0/GL2 with trivial central characters and 
L(±,7r)^0. 

REMARK 5.1. The referee suggested the problem of finding a connection between 
Arthur's conjecture and the non-vanishing of L-functions at s = ^. Arthur [Al] did it for 
the group P Sp4. It would be interesting to do so in the above case. 
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