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ON A CONJECTURE OF GRAHAM CONCERNING A 
SEQUENCE OF INTEGERS 

BY 
E. Z. CHEIN 

Let 0<a1<
m * -<an be integers and (a, b) denotes the greatest common 

divisor of a, b. R. L. Graham [1] has conjectured that 

a, 
(di, Oj) 

for some i and /. In a recent paper Weinstein [2] has improved Winterle's 
result [3] and has proven the following interesting theorem: 

THEOREM. (Weinstein). If A is the sequence a 1 < - - - < a n , where ak = P, a 
prime for some k and P^iOi + a^ll, l < i < / < n , then 

max 

In this paper we prove that the condition P ^ ( a i + aJ)/2 in Weinstein's 
Theorem is unnecessary by modifying Weinstein's argument. We use Wein­
stein's notation throughout the paper. Our principal result is the following 

THEOREM. If A is the sequence 0 < a 1 < * • -<a n , where ak=P, a prime for 
some k, then 

> n 

for some i and j . 

Proof. Assume there exists a sequence A, say 0 < ax < • • • < an, where ak = P 
for some fc and 

<n 

for all i and /. 

Let B be the subsequence bx < • • • < bg < • • • < br of A consisting of all terms 
of A which are not divisible by P. By results of Winterle [3] and Vêlez [4], the 

I am greatly indebted to Professor Christine W. Ayoub and Mr. Patrick Wotus for their kind 
discussion of this problem. 
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conjecture is true if ax is prime or n — 1 is prime, so we can assume that neither 
ax nor n — 1 is prime. Then we have 

fc1 + ( g - l ) < f c g < P < n - l , ( g > l ) 

and so 

This gives 

P P rc-1 
->-bi P~g n-g-l 

«-«-D» .(„-,-!,£*(„-,-,)-? 
(n-g-l)P v * 'bx ' p - g 

> ( n - g - l ) - = rc-1, 
n - g - l 

but ( r c - g - l ) P / ( ( n - g - l ) P , 6x) is an integer, so is greater than or equal to n. 
Hence 

(1) atMn-g-2)P 

for all UiSAXB. Also PJrbh SO 

fcr<rc-l. 

We now define a mapping T(&j) for all bteB by 

(2) T(fcf) = 
PHh-P) if g < î ^ r and P h ' ( ^ - ^ ) ^ A 

rcP if P h i ( W - P ) G A 

L (rc + OP if 1 < Ï < g, 

where h; is the largest non-negative integer such that Phj(bj — P) < (rc — g — 2)P. 
We next show that T is 1 - 1 . If l < i < g , it is clear that the T{bt) are all 

distinct. In the case g<i<r, since bt<n-l and b1 + g^P, it follows that 
^ - P < r c - g - 2 . Then ht>\ so that P\ T(bt). Also, since (Ph*(&i - P ) , ^ ) = 1 
we must have T(6£)/(T(ft£), fe£)= T(6£)- Now if T ( ^ ) < r c - g - 2 , then Tib^P^ 
( r c - g - 2 ) P , which contradicts (2), the definition of T(^) . So 

T ( W U 

except possibly when rc-g-l<T(^)<rc-l. 
Now P\ T(bt) and l + g<fe1 + g < P . Since there is at most one term of P 

consecutive integers which is divisible by P, we have 

\{T(bt)\y>r>l}nA\<zl. 

Now if T(bt) = T(by), then P*«(&4 - P ) = P^ty-P), so bt = fr,. Hence the T{bt) 
are distinct for all /, so that T is 1-1. 
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We next define F(at) for all ateA by 

cv _ f ai ^ P\at 
(fl|) iTfo) if ?Xa-x 

Then P|F(Oj) for all i. In view of (1) and (2), F^^F^) if / # / , so F is 
1-1. From (1) and (2) we see that 

| A | < ( n - g - 2 ) + g + l = n - l , 

which contradicts the fact \A\ = n. This completes the proof of our theorem. 
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