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FREE ACTIONS OF ABELIAN GROUPS ON A
CARTESIAN POWER OF AN EVEN SPHERE

BY
MICHAEL HOFFMAN

ABSTRACT. We determine an algebraic condition necessary and suf-
ficient for a group G to act freely on the nth Cartesian power of an even
sphere, and characterize the abelian groups that satisfy this condition.

1. Introduction. Let X, be the Cartesian product of n copies of S*, where k is any
positive integer. Then X, has Euler characteristic 2", so any group acting freely on X,
must have order 2/, [ = n. We consider the problem of which of these 2-groups can act
freely on X,,, concentrating on abelian 2-groups. (This paper is ‘orthogonal’ to the ones
by Carlsson [1] and Yogita [2], since they consider only actions trivial on integral
homology. In the situation considered here, all free actions are nontrivial on
homology.)

In §2 we show that deciding whether a given 2-group can act freely on X, reduces
to determining if an appropriate representation of the group on the cohomology algebra
of X, exists. Let S, be the group of n X n signed permutation matrices, i.e. matrices
with exactly one nonzero entry in each row and column and all of whose nonzero entries
are *1. There is a canonical homomorphism {:S, — Z,, where Z, is the symmetric
group on n letters. For u € §,, let 0,0;.. .0, be the decomposition of y(u) into
disjoint cycles. Thinking of u as a linear map R" — R", let K; be the subspace of R"
corresponding to o, and define €; by det(u|K,-) = ¢, sgn o; (Clearly €; = *1). Set

m

MNu) = 1] (0 + ).

i=1
Then we can characterize the 2-groups that act freely on X, as follows.

THEOREM 1. A 2-group G acts freely on X, if and only if G admits a representation
p:G — S, such that, for any g € G with g # 1, N(p(g)) = 0.

REMARK. Note that A(id) = 2", so any representation of the type specified in the
theorem is faithful.

In §3 we construct free actions of cyclic groups on spaces X,,. This gives a free action
of G on some X, for any finite abelian 2-group G. We also show that such a group

Received by the editors March 26, 1986, and, in revised form, October 22, 1986.
Research partially supported by a grant from the Naval Academy Research Council.
AMS Subject Classification (1980): Primary 57525, Secondary 57S17.

© Canadian Mathematical Society 1986.

358

https://doi.org/10.4153/CMB-1987-051-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1987-051-3

FREE ACTIONS 359

cannot act freely on X, for any n smaller than the ‘obvious’ value, and thus obtain the
following result.

THEOREM 2. Let G be an abelian 2-group, so that
G=2,®2;® DL,
Then G acts freely on X, if and only if

1
> 27 < n.
i=1
2. Free actions and Lefschetz numbers. The cohomology ring H*(X,;Z) is the
commutative algebra generated by n 2k-dimensional elements x,, x5, . . ., x, with re-
lations x; = 0 for 1 =i < n. Thus, for any self-map f:X, — X, the endomorphism
f*:H*(X,; Z) > H*(X,;; Z) is determined by the n X n matrix p(f) = (a;), where

) = Z ax;, l=i=n
j=1
Then

0=f*(x}) = 2 2 ayauxx,
i<k
so p(f) has at most one nonzero entry in each row. Thus, there is a function
o:{l,2,...,n}—>{1,2, ..., n} so that f*(x;) = aj,;)Xeq;) for 1 = i < n. Since
H*"(X,;Z) is generated by x,x,* *  x,, we have deg f = 0 if o is not a permutation and

degf = al(r(l)al(r(Z)' : .amy(n)

if it is. In particular, if fis invertible, deg f = *1 and p(f) € S,.
Now suppose a group G acts on X,. By the preceding paragraph, the action gives rise
to a representation p:G — §,. If in addition the action is free, we have

2kn
L(g) = 2 (=)Tr(g :H'(X,;Z) = H'(X,:2)) = 0

i=0
for every nonidentity element g € G, by the Lefschetz fixed point theorem. To
determine L(g) directly from the matrix p(g), we first assume without loss of generality
that the decomposition of Up(g) contains the cycle (12--+/). Then g* cyclically
permutes the elements x,,x,,...,x in H*(X,;Z), so g* sends no monomial in the
subalgebra of H*(X,;Z) generated by x,,...,x; to a multiple of itself except
X;x2+ ++x;. In fact g* sends this monomial to ajay- - -a, times itself, and this
number is (—1)' " 'det (p(g)|K), where K is the submodule of H*(X,;Z) generated by
Xi,...,x;. Thus, the trace of g* on the subalgebra of H*(X,;Z) generated by
Xiyo.. X 18

1+ (=)' 'det(p(g)|K) = 1 + sgn(12- - -I)det(p(g)|K).

Now let 0,0, * *,, be the decomposition of Yp(g) into disjoint cycles, K; be the
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submodule of H*(X,,; Z) generated by the x; permuted by o;, and
€; = sign o; det (p(8)| K)).
Then by the preceding analysis and the multiplicative property of trace on tensor products,

m

L(g) = 1T (1 + €) = Np(g)).
i=1

We have evidently proved the forward implication of Theorem 1.

REMARK. Henceforth we shall call those cycles o; with €, = —1 essential. We have
just proved that for any g # | in G, the matrix p(g) has an essential cycle.

Now suppose p:G — S, is a representation of a group G such that p(g) has an
essential cycle for all nonidentity g € G. We define an action of G on X, as follows.
Represent an element of X, as an n-tuple (vy, v,, ..., v,) of unit vectors v; € R%**1,
Think of the n-tuple as a column vector and let the matrices p(g) act on it. That is, put

g. (V}, Vo, ..., vn) = (alo(l)vu(lh a20(2)v(r(2)a .. vamr(n)vu(u))’

where p(g) = (a;;) and o = Pp(g). To see that this action is free, suppose g # | fixes
(vi,...,v,). Now p(g) has an essential cycle: without loss of generality we can assume
the cycle is (12 - +/). Then we must have

Vi = apV: = apdypb; = 0= apdy® - tapv, = —Vy,
a contradiction. This completes the proof of Theorem 1.

3. Abelian groups. Let p:G — S, be a representation of an abelian group G. We
think of elements of S, as acting linearly on the free Z-module generated by
X1,X2,...,x, Each g € G gives rise to an element yp(g) € 2,, so we can think of
G as acting on {1,2,...,n}. We say that ¢ € G fixes a G-orbit () if p(g)x; = x; for
all i € Q, and that g negates Q) if p(g)x; = —x, for all i € (). We have the following
result.

LEMMA 1. Let g be a member of G, Q) an orbit under the G-action on{1,2, ... n}.
If bp(g) fixes some i € (), then g either fixes or negates ().

PROOF. Suppose p(g)x; = a;x;, where i € (), and let j be another member of (). Then
there is some element /4 of G with p(h)x; = b;x;. Hence p(hg)x; = b;a;x;. But G is
abelian, so p(hg)x; = p(gh)x; = b;p(g)x;. Thus p(g)x; = a;x;, and the conclusion
follows.

The next result gives a criterion for p(g), g € G, to have an essential cycle in a given
orbit.

LEMMA 2. For g € G, an orbit () contains an essential cycle of p(g) if and only if
some power of g negates (). In this case card {} = p, where g” is the lowest power of
g that negates ().
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Proor. If i € ) is in an essential cycle of g, say of length /, then

p(ghx; = —x,.

Then g’ negates ), by Lemma 1. Conversely, suppose g” negates (), and assume
p minimal. Then no power of Yp(g) lower than the pth can fix anything in
(Lemma 1 again), so yp(g)|Q2 must consist of cycles of length p, each an essential
cycle of p(g).

For any cyclic 2-group Z,:, we can define an embedding in S,-1 by sending a
generator to the element u; given by

ui(xj) = Xjt 1, l=j= 27— 1, ui(xyi-m) = —x,.

Then evidently u; has order 2' and N(u;) = 0. In fact, AN(u]) = 0 for all powers
r < 2'. This is immediate for i = 1, so assume i = 2. Then u; has determinant 1: for
odd powers r, {(u;) is a single cycle and 1 = det(u;) = esgnd(u;) = (—1)'¢, so
e = — 1. For even powers, note that w = u; ' negates the single orbit, and some power
of u! is w, for any even r < 2. Thus every power u;, r < 2', has an essential cycle.
By Theorem 1, this means that Z,:, acts freely on X,-1. Then any abelian 2-group

G=27DZLr @ DZ,
acts freely on

ny ny

n
l_[ X, X H Xy XreX H Xy-1r = Xn|+2nz+--~+2"‘n,-
j=1 =1 j=1

Now suppose an abelian group G acts on X,,, so there is a representation p:G — S,
such that p(g) has an essential cycle for every g # 1. Let G, be the set of elements of
order = 2 in G. Then G is a vector space over Z,, and Lemma 2 implies that every
nonidentity element of G, negates some orbit. (Though we shall think of G, as a vector
space, we shall continue to use multiplicative notation.)

LEMMA 3. Let hy, h,, . . ., hs be a basis for a subspace V C Gy. Then there are orbits
Q,Q0,,...,Q,in{1,2,...,n} and a basis {g,,82,...,8,} for V such that, for
each i,

1. uh; negates Q);, where u € span {h,,...,h;_}, and

2. g, negates (;, and no product of the g;, j # i, does so.

ProOOF. We proceed by induction on s, the case s = 1 being immediate. By the
induction hypothesis there exist orbits );, | =i < s — 1, and a basis {k,, ..., k,_}
for span {A,, ..., h,-} such that (1) and (2) (with g replaced by k) hold. Let N be the
set of k; such that something in span {k,, ..., k;_,ki+\,...,k,-, h,} negates (};, and
let u be the product of the elements of N. Now suppose something in span
{kys ..o kiz1, kiv1s - - . kg1, uhg} negates €, for some 1 < i < s — 1. By the induction
hypothesis, it must have form wuh,, where w € W; = span{ky, . . . , ki—1, kiv1, - - - » ks—1}-
If k; € N, then u = k;v for v € W, and something of form yh,, y € W;, negates ();: but
then wvh, fixes {); and yh; negates it, so wvy € W, negates ();, contradicting the
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induction hypothesis. But if k; & N, then u € W, and having wuh, negate (), contradicts
the definition of N. Let g, = uh,.

Now choose an orbit ), that g, negates (This evidently satisfies (1) for i = s). Let
W = span {kj, ..., ks—1}. Then there is a homomorphism f:W — §,,, where m =
card (), defined by fiw) = p( w)|€), (Here €, is the Z-module generated by {xili € Q,}).
We identify W = W/ker f with the image of f in the usual way, and denote the class
of w € Win W by {w}. Now if p = p(g_‘)|flj. is not in W we can set g; = k;, so assume
otherwise. Choose a basis B for W that includes . Now define g, | =i=s—1,to
be k;g, if u occurs in the representation of {k;} in terms of B, and k; otherwise. Then
{g1,82,...,8} is the required basis for V.

Now we can finish the proof of Theorem 2. Since G is a 2-group,

G=ZyDZy D - DZy

for some n, ...,n;. Choose generators r,,r,, ..., r; for the summands, arranged so
that r; has order greater than or equal to r;, ,. If we raise each generator r; to half its
order, we obtain a basis for Gy. Now apply Lemma 3 with V = G,: we obtain distinct
orbits €, ...,€, and (1) of the lemma implies that, for each i, there is an element
w; that when raised to half the order of r; negates ();. Hence, by Lemma 2, card (), is
at least half the order of r,. Now we have n, generators of order 2, n, of order 4,
etc., so

i

k
i— 1
n= 2 card ), = Z 27 'n,.
i=1 i=1
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