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Abstract. In 1988 Rieger exhibited a differentiable function having a zero at the golden ratio

(−1 +
√

5)/2 for which when Newton’s method for approximating roots is applied with an initial

value x0 = 0, all approximates are so-called “best rational approximates”—in this case, of the form

F2n/F2n+1, where Fn denotes the n-th Fibonacci number. Recently this observation was extended by

Komatsu to the class of all quadratic irrationals whose continued fraction expansions have period

length 2. Here we generalize these observations by producing an analogous result for all quadratic

irrationals and thus provide an explanation for these phenomena.

1 Introduction

Let ϕ =
−1+

√
5

2
denote the golden ratio and write ϕ = [0, 1, 1, 1, . . . ] = [0, 1̄] for its

continued fraction expansion. The best rational approximations (known as the con-

vergents) of ϕ are defined by the truncated continued fractions pn

qn
= [0, 1, 1, . . . , 1],

where the string of 1’s has length n. It follows that
pn

qn
=

Fn

Fn+1
, where Fn denotes the

n-th Fibonacci number. In 1999, Rieger [5] (see also [4]) produced a differentiable
function fϕ with fϕ(ϕ) = 0, such that if Newton’s method for approximating zeros
is applied by declaring x0 = 0 and for n ≥ 0,

xn+1 = xn −
fϕ(xn)

f ′
ϕ(xn)

,

then xn =

p2n

q2n
=

F2n

F2n+1
. That is, the approximations generated by Newton’s method

with initial value x0 = 0 are precisely the even-indexed convergents of ϕ.

Very recently, Komatsu [3] (see also his related work [2]) extended Rieger’s con-
struction to quadratic irrationals whose continued fraction expansions have period

length 2. Specifically, for positive integers a and b, let α(a, b) be the quadratic ir-
rational having continued fraction expansion [0, a, b, a, b, . . . ] = [0, a, b] and let
pn/qn denote its n-th convergent. Then Komatsu constructed a function fα(a,b) such
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that fα(a,b)

(

α(a, b)
)

= 0 and if Newton’s method is applied with x0 = 0 and for
n ≥ 0,

xn+1 = xn −
fα(a,b)(xn)

f ′
α(a,b)(xn)

,

then xn =

p2n

q2n
. Komatsu closed his paper with the remark: “Further generalization

seems nearly impossible. For example, if θ = [0, a, b, c, d], p4n+4/q4n+4 cannot be
expressed by the linear relation of p4n and q4n.”

The purpose of this note is to introduce a construction that generalizes the previ-
ous results to all quadratic irrationals whose reciprocals have purely periodic contin-
ued fraction expansions. That is, we show that the observed phenomenon holds for
the reciprocal of any reduced quadratic irrational.

Let α be a quadratic irrational having continued fraction expansion
[0, a1, a2, . . . , aL] and let pn/qn denote the n-th convergent associated with α. By
repeating the minimal period once, if necessary, we can assume without loss of gen-
erality that L is even. In order to produce the differentiable function having the dio-

phantine structure we seek, we require an auxiliary number. We write α̃ for the
quadratic irrational given by α̃ = [0, aL, aL−1, . . . , a1] and write Pn/Qn for the n-th
convergent of α̃. We note that α̃ = −1/ᾱ, where ᾱ denotes the conjugate of α (see,
for example, [1]). Our result can now be stated as the following theorem.

Theorem Let α be a quadratic irrational having a continued fraction expansion of the

form α = [0, a1, a2, . . . , aL] where, without loss of generality, L is even. Given the

notation of the previous paragraph, let A =
αPL+QL

α−ᾱ and write fα : (ᾱ, α] → R for the

function defined by

fα(x) =

(

1 −
x

α

)A/PL
(

1 −
x

ᾱ

) Ā/PL

.

If the sequence xn is generated by the initial value x0 = 0, and for n ≥ 0,

xn+1 = xn −
fα(xn)

f ′
α(xn)

,

then xn =

pnL

qnL
.

The function fα defined in the theorem agrees with the previously found functions
fϕ and fα(a,b) when suitably specialized. In the case of ϕ, we must consider α =

[0, 1, 1], that is, L = 2.

2 Proof of the Theorem

We begin with the following useful albeit elementary lemma.

Lemma Let α be a quadratic irrational having a continued fraction expansion of the

form α = [0, a1, a2, . . . , aL], and let pn/qn denote its n-th convergent. Then for n ≥ 0,

q(n+1)L−1

q(n+1)L

=

qL−1qnL + pL−1qnL−1

qLqnL + pLqnL−1
.
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Proof of the Lemma By a fundamental correspondence between 2× 2 matrices and
continued fractions (see, for example, [1] or [6]), we have

(2.1)

(

0 1

1 0

)(

a1 1

1 0

)(

a2 1

1 0

)

· · ·

(

a(n+1)L 1

1 0

)

=

(

p(n+1)L p(n+1)L−1

q(n+1)L q(n+1)L−1

)

.

However, given the periodicity of the continued fraction expansion of α, the previous
product of matrices can also be expressed as

(

0 1
1 0

)((

a1 1
1 0

)(

a2 1
1 0

)

· · ·

(

aL 1
1 0

))n(
a1 1
1 0

)(

a2 1
1 0

)

· · ·

(

aL 1
1 0

)

=

(

pnL pnL−1

qnL qnL−1

)(

qL qL−1

pL pL−1

)

=

(

pnLqL + pnL−1 pL pnL−1qL−1 + pnL−1 pL−1

qnLqL + qnL−1 pL qnLqL−1 + qnL−1 pL−1

)

.

The lemma now follows by examining the corresponding elements of the second rows
of the two equivalent matrices.

Proof of the Theorem If we apply the Lemma to α̃, then for all n ≥ 0,

(2.2)
Q(n+1)L−1

Q(n+1)L

=

PL−1

( QnL−1

QnL

)

+ QL−1

PL

( QnL−1

QnL

)

+ QL

.

By a well-known identity (see [1] or [6]), we have that for all n ≥ 1,

(2.3)
QnL−1

QnL

= [0, (a1, a2, . . . , aL)n] =

pnL

qnL

,

where by (a1, a2, . . . , aL)n we mean that the string a1, a2, . . . , aL is repeated n times.

Next we define the functions N(x) and D(x) by

N(x) =

PL−1x + QL−1

PLx + QL

,

and

D(x) = N(x) − x =

−
(

PLx2 + (QL − PL−1)x − QL−1

)

PLx + QL

.

We now wish to factor the numerator of D(x). We begin by noting that

1

α̃
=

[

aL, aL−1, . . . , a1,
1

α̃

]

,

which in view of the relation α̃ = −1/ᾱ, yields

−ᾱ = [aL, aL−1, . . . , a1,−ᾱ].

https://doi.org/10.4153/CMB-2004-002-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-002-4


Newton’s Method and Rational Approximations 15

The previous identity together with the correspondence between continued fractions
and matrices given in (2.1) implies that

(

aL 1

1 0

)(

aL−1 1

1 0

)

· · ·

(

a1 1

1 0

)(

−ᾱ 1

1 0

)

=

(

QL QL−1

PL PL−1

)(

−ᾱ 1

1 0

)

=

(

−QLᾱ + QL−1 QL

−PLᾱ + PL−1 PL

)

.

It thus follows that

−ᾱ =

−QLᾱ + QL−1

−PLᾱ + PL−1
,

or equivalently,
PLᾱ

2 + (QL − PL−1)ᾱ − QL−1 = 0.

Therefore we conclude that

D(x) = −
PL(x − α)(x − ᾱ)

PLx + QL

.

It is easy to verify that for ᾱ < x < α, D(x) > 0. A direct calculation reveals the
identity

1

D(x)
=

1

PL

( A

α − x
+

Ā

x − ᾱ

)

,

where A =
αPL+QL

α−ᾱ . Thus for 0 ≤ x < α, we have

exp

(

−

∫ x

0

dt

D(t)

)

= exp

(

−
1

PL

ln

(

(

1 −
x

α

)−A(

1 −
x

ᾱ

)−Ā
)

)

= fα(x).

Hence for 0 ≤ x < α, we see that

f ′
α(x)

fα(x)
=

−1

D(x)

and therefore

x −
fα(x)

f ′
α(x)

= x + D(x) = N(x) =

PL−1x + QL−1

PLx + QL

.

Thus given how the sequence xn was defined, we see that x0 = 0 and for n ≥ 0,

xn+1 =

PL−1xn + QL−1

PLxn + QL

.

So x1 = QL−1/QL and therefore by the recurrence in (2.2), for n ≥ 1, xn =

QnL−1/QnL, which by identity (2.3) implies that xn = pnL/qnL. As L is even, we
have that 0 ≤ xn < α, which allows us to iterate this process and thus complete the
proof.
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