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FURTHER INEQUALITIES FOR CONVEX SETS
WITH LATTICE POINT CONSTRAINTS IN THE PLANE

P.R. SCOTT

Let K be a bounded closed convex set in the plane containing

no points of the integral lattice in its interior and having

width w , area A , perimeter p and circumradius R . The

following best possible inequalities are established:

(u-l)X 5
2

(w-l)p s 3w ,

(w-l)R S u/\/3 .

1. Introduction

Let K be a bounded, closed, convex set in the euclidean plane,

containing no points of the integral lattice in its interior. We denote

the diameter, width, perimeter, area, Inradius and circumradius of K by

d, w, p, A, r and R respectively.

It is known [3] that the width satisfies

(1) w < %(2+V3)

with equality when and only when K is an equilateral triangle E , of

side length (2+V/3)/v'3 . It has also been recently established [5] that

or equivalently,

(2) (w-l)d < w
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with equality when and only when K is a triangle of diameter d and

width W = d/(d-l) (Figure l ) .

Figure 1

We shall prove several analogous results.

THEOREM 1. {w-l)A < %w , with equality when and only when K is a

triangle of width w and diameter w/(w-l) (Figure l).

THEOREM 2. (w-l)p £ 3U with equality when and only when K = E .

THEOREM 3. (u-l)if £ w/V3 with equality when and only when K = E .

According to Blaschke's Theorem [/], every bounded convex figure of

width w contains a circle of radius u/3 . It follows that w £ 3r ;

equality holds here when and only when the figure is an equilateral

triangle. Using this result and (l), we obtain the following corollaries.

COROLLARIES.

(w-l)A £ 3wr/2 < 9r2/2 ;

(w-i)A < (7+W3)/8 (-1.7*0 ;

(u-l)p £ 9r ;

(w-l)p £ (6+3V3)/2 ;

(u-l)i? £ V3.r ;

(w-l)R < (3+2V3)/6 .

In each case we have equality when and only when K = E .
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2. Proof of Theorems 2 and 3

To establ ish Theorem 3, we r eca l l a theorem of Jung [2] which s ta tes

that any set of diameter d i s contained in a c i rcular disc of radius

if S d/V3 . Theorem 3 now follows immediately from (2) , since

(w-l)if £ (w-l)d/V3 « W/V3 .

For equality in Jung's resu l t we require K to be an equ i la te r i a l

t r i ang le ; for equality in (2 ) , K must be as in Figure 1. Hence equality

occurs in Theorem 3 when and only when K = E .

We now show that Theorem 2 can be deduced from Theorem 1. If K i s

any convex polygon, we can pa r t i t ion K into t r iangles by joining each

vertex to the (an) in-centre of K . Summing the areas of these t r iangles

easily gives for K the inequality

A 2 %pr .

Since any convex set K in the plane can be approximated as closely as we

please by a convex polygon, we conclude that this inequality is valid for

any convex set K in the plane.

Assuming the validity of Theorem 1, we now have

(u-l)p < 2(w-l)A/r 5 w2/v 5 3w

since u 5 > by Blaschke's Theorem. Hence (w-l)p S 3u as required. It

is easily seen that equality occurs here when and only when K = E .

We notice that the inequality of Theorem 2 follows easily from (2) in

the special case when K is a triangle, for then p 5 3d , and

(u-l)p < (w-l)3d 2 3u .

3. Some preliminary results

We observe that the statement of Theorem 1 can be written as

24 " 2 " ° •

w
We shall assume therefore that K is a set for which the left hand side of

this inequality is as small as possible. Since (w-l)/w is an increasing

function of w , we choose K with A, w as large as possible.
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Let V be a largest circular disc contained in K , having radius

It is known [4] that for any convex set K ,

(w-2r)A £ w2r/V3 .

Hence if r 5 % ,

{w-l)A £ (w-2r)A £ w2r/V3 £ u2/(a/3) < w2/2 .

We may therefore assume that K contains a disc V of radius r > % .

By suitably translating K we may assume that the centre of V lies

in the interior of the square with vertices 0(0, 0), B(l, 0), C(l, l),

0(0, l) . Since K is convex, K is bounded by lines through the points

0, B, C, D . If these lines form a convex quadrilateral Q , then Q

contains no lattice points in its interior, and we may assume that K is

Q . On the other hand, these lines may determine a triangular region T ,

as for example a degenerate quadrilateral, or when a line through D

separates K from C . Such a region T may contain interior lattice

points; nevertheless, it will be sufficient for us to establish the

theorem for T .

4. Proof of Theorem 1

First let K be the convex quadrilateral Q . The following result

is established in C3].

LEMMA.. The quadrilateral Q can be transformed into a kite Q'

having the following properties:

(a) w(Q') > w{Q) ;

(b) Q' contains no lattice point in its interior;

(c) Q' has its axis along the line x = % ,

(d) the sides of Q' pass through 0, B, C, D respectively;

(e) A(Q') > A(Q) .

Property (e) is not stated explicitly in [3], but follows from the

fact that Q' is obtained from Q by Steiner symmetrization and

enlargement with scale factor s 5 1 .

Clearly we may take K to be the kite Q' = XYZW (Figure 2). Let
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XZ = t , YW = u . Then 2A = tu .

Also, computing the areas of the

component parts of Q' gives

24 = 2 + ( t - l ) . l + ( M - I ) . I

= t + u .

Hence

tu = t + u .

Suppose that 0 < t £ u ; then

t £ 2 . Now

A = %tu = ht2/{t-\) < %b)2/(w~l) ,

since w < t , and t /(i-l) is a

decreasing function of t for

0 < t £ 2 . A similar argument holds

for 0 < u £ t .

Hence if K is the quadrilateral Q ,

A(w-l) < %u2 .

Now let K be the triangle T . In this case

2
A = %<iw £ %u /(u-l)

using (2).

Thus for any K ,

o

Equality occurs here when and only when K is a triangle as in Figure 1.
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