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Abstract. We establish interior and trace embedding results for Sobolev functions
on a class of bounded non-smooth domains. Also, we define the corresponding
generalized Maz’ya spaces of variable exponent, and obtain embedding results similar
as in the constant case. Some relations between the variable exponent Maz’ya spaces
and the variable exponent Sobolev spaces are also achieved. At the end, we give an
application of the previous results for the well-posedness of a class of quasi-linear
equations with variable exponent.
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1. Introduction. Over the recent years, various mathematical problems with
variable exponent have attracted the attention of many authors. Interest in variational
problems and differential equations with non-standard growth conditions has grown,
highly motivated by various applications, such as electrorheological fluids and image
reconstruction (see [1, 6, 8, 27], among others). For differential equations and boundary
value problems, properties for Sobolev spaces such as embedding and trace results play
an important role on the framework of these equations. The aim of this paper is to
provide the corresponding interior and trace embedding for a class of non-smooth
domains, and to define the ideal variable exponent function spaces needed in order to
obtain the realization of a class of boundary value problems with variable exponent
on general (non-smooth) domains.

The embedding results for Sobolev spaces with constant exponent into the
Lebesgue spaces have been investigated by many authors. In fact, if � ⊆ �N is a
W 1,p-extension domain (for some constant p ∈ [1, N); see [21] for this definition), then
it is well known that the interior embedding

W 1,p(�) ↪→ L
Np

N−p
(�, dx) (1.1)

is bounded (e.g. [20, Theorem 5]). Also, in the variable exponent case, the boundedness
of the embedding (1.1) has been investigated by various authors, where the most general
case known was for � a bounded John domain (see [15]), although the statement for
bounded W 1,p(·)-extension domains follows in a straightforward manner (as we well see
later on). On the other hand, concerning traces, we point out the results obtained by
Biegert [4], where it was established that if p ∈ (1, N) is constant and if � is a bounded
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W 1,p-extension domain whose boundary is an upper d-set with respect to a finite Borel
measure μ (see Section 2 for this definition), then the trace embedding

W 1,p(�) ↪→ L
dp

N−p
(∂�, dμ) (1.2)

is bounded. Moreover, a boundary trace embedding result for variable exponent
Sobolev spaces has been achieved by Fan [17] for Lipschitz domains.

Our first goal in this paper is to obtain similar continuous mappings as in (1.1) and
(1.2) for the variable exponent case, assuming that � is a bounded W 1,p(·)-extension
domain (see Definition 2.3). In fact, we will prove that under these conditions, if
p ∈ C0,1(�) is such that 1 < p∗ := inf� p(x) ≤ p∗ := sup� p(x) < N, then the interior
and trace embedding maps

W 1,p(·)(�) ↪→ L
Np(·)

N−p(·)
(�, dx) and W 1,p(·)(�) ↪→ L

dp(·)
N−p∗ (∂�, dμ), (1.3)

are both bounded. The exponent Np(·)(N − p(·))−1 in (1.3) is optimal. However, the
value q(·) := dp(·)/(N − p∗) may not be the optimal exponent (which we conjecture to
be dp(·)/(N − p(·)) ), but in particular if μ is an upper (N − 1)-Ahlfors measure, then
the optimal exponent is achieved in this article.

In addition, we present the corresponding definitions of the variable exponent
classical and extended Maz’ya spaces, and obtain the corresponding embedding results
analogous as in the constant case. In particular, the classical Maz’ya inequality (e.g.
[23, Corollary 2.11.2]) has been optimally generalized to the variable exponent case.
To be more precise, given p ∈ [1, N) and 1 ≤ r ≤ p(N − 1)(N − p)−1, Maz’ya proved
in [23, Corollary 2.11.2] that there exists a continuous embedding

W 1
p,r(�, ∂�) ↪→ L

rN
N−1 (�, dx), (1.4)

where W 1
p,r(�, ∂�) stands as the space introduced by Maz’ya in [23]. In this paper, we

will show that the continuity of the embedding (1.4) remains valid if one replaces p, r
by corresponding functions p, r ∈ C0,1(�) with 1 ≤ p∗ ≤ p∗ < N and 1 ≤ r∗ ≤ r(x) ≤
(N − 1)p(x)(N − p(x))−1. In our knowledge, variable exponent Maz’ya spaces have not
been investigated, up to the present paper. Moreover, we comment that these results
allowed us to investigate quasi-linear differential equations with variable exponent and
with Robin boundary conditions, even on general bounded domains (see Section 6).
For a treatment of these kind of boundary value problems on general domains in the
constant case, we refer to [5, 10].

The organization of the work is the following. In Section 2, we review the basic
definitions of the variable exponent Lebesgue and Sobolev spaces, and in addition we
present other important definitions and well-known results that will be applied in the
subsequent sections. Section 3 is devoted to the interior trace embedding problem for
non-smooth domains. The crucial result is the validity of the continuous embedding
results in (1.3). Other consequences and compactness results are also achieved. In
Section 4, we define the notion of the variable exponent Maz’ya space, and establish
the corresponding embedding theorems related to these function spaces. In particular,
we prove that in the case of bounded W 1,p(·)-extension domains whose boundaries are
upper d-set with respect to a measure μ, the extended variable exponent Maz’ya space
coincide with the variable exponent Sobolev space, with equivalent norms. Section 5
presents briefly some concrete examples of W 1,p(·)-extension domains. The construction
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of the extension operator is done directly from [21]. Finally, in section 6 we apply the
results of the previous sections to obtain the realization of the p(·)-Laplacian with
Robin boundary conditions on bounded non-smooth domains.

2. Preliminaries and intermediate results. Let � ⊆ �N (N ≥ 2) be a bounded
domain whose boundary ∂� is finite with respect to a Borel regular measure μ.
Given E ⊆ � a positive measure space with respect to a finite Borel measure ν, we
denote by P(E) := {p : E → [1,∞] measurable}, and set Ep

∞ := {x ∈ E | p(x) = ∞}.
Throughout the rest of this article, we assume that p ∈ P(�) is such that 1 ≤ p∗ :=
ess inf� p(x) ≤ p∗ := ess sup� p(x) < ∞, and we also denote by p′(·) the conjugate of
p(·) in the usual sense. In fact, in most cases, we will suppose that the function p lie
on either the log-Hölder continuous space P log(�), or the Lipschitz continuous space
C0,1(�). Here, we recall that P log(�) denotes the set of functions u ∈ P(�) such that
the function v := 1/u is globally log-Hölder continuous, that is, if there exist constants
c1, c2 > 0 and a constant α ∈ � such that

|v(x) − v(y)| ≤ c1

log(e + 1/|x − y|) and |v(x) − α| ≤ c2

log(e + |x|)

for all x, y ∈ �. For properties of the space P log(�), we refer to [15, Section 4.1].
Next, we define

Lp(·)(E, dν) := {
u : E → [−∞,∞] measurable | ρp,E (u) < ∞}

,

where

ρp,E (u) :=
∫

E\Ep
∞

|u(x)|p(x) dν + ‖u‖
L∞ (Ep∞ ,ν)

.

Because of our assumptions on the function p, it is easy to see that in our case Ep
∞ = ∅

and E \ Ep
∞ = E, so Lp(·)(E, dν) becomes the Musielak–Orlicz space Lϕp (E, dν) for

ϕp(x, u) := |u|p(x), endowed with the Luxemburg norm

‖u‖p(·),E := ‖u‖
Lp(·) (E,dν)

:= inf
{
λ > 0 | ρp,E (u/λ) ≤ 1

}
.

(e.g. [24, Theorems 1.6 and 7.7], and [13]). The variable exponent Lp spaces of our
interest will be Lp(·)(�, dx) and Lp(·)(∂�, dμ).

We will also consider the first-order Sobolev space with variable exponent, defined
by

W 1,p(·)(�) :=
{

u ∈ Lp(·)(�, dx) | ∇u ∈ Lp(·)(�, dx)N
}

,

and endowed with the norm

‖u‖
W1,p(·) (�)

:= inf
{
λ > 0 | ρp,�

(u/λ) + ρp,�
(|∇u|/λ) ≤ 1

}
.

For the classical properties of the variable exponent Lebesgue and Sobolev spaces,
refer to [9, 15, 18, 22, 24], among others. Finally, for r > 0 and x ∈ �N , we will denote
by Br(x) the ball of radius r and center x, and uBr (x) will denote the average of u over
Br(x).
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DEFINITION 2.1. For a function u ∈ L1
loc(�

N, dx), the precise representation of u is
defined by

ũ(x) :=
{

lim
r→0

uBr (x) , if this limit exists,

0, otherwise.

For properties about the precise representation of a measurable function, refer to
[11].

DEFINITION 2.2. Let d ∈ (0, N) and μ a Borel measure supported on a compact
set F ⊆ �N . Then, μ is said to be an upper d-Ahlfors measure, if there exist constants
M, R0 > 0 such that

μ(Br(x)) ≤ Mrd, for all 0 < r < R0 and x ∈ F. (2.5)

If the condition (2.5) is fulfilled, then the set F ⊆ �N is called an upper d-(regular)
set with respect to the measure μ (cf. [4]). Moreover, the above condition can be
reformulated as

μ(Br(x)) ≤ M
mN(Br(x))

rN−d , 0 < r < R0 and x ∈ F, (2.6)

where mN(·) denotes the N-dimensional Lebesgue measure on �N .

DEFINITION 2.3. Let p ∈ L∞(�N), 1 ≤ p∗ ≤ p∗ < ∞. A domain � ⊆ �N is called a
W 1,p(·)-extension domain, if � has the W 1,p(·)-extension property, that is, if there exists
a bounded linear operator P : W 1,p(·)(�) → W 1,p(·)(�N) such that Pu = u a.e. on �.
Thus, there exists a constant C > 0 such that

‖u‖
W1,p(·) (�N )

:= ‖Pu‖
W1,p(·) (�N )

≤ C‖u‖
W1,p(·) (�)

,

for every u ∈ W 1,p(·)(�).

We conclude this section by stating some known results that will be applied in the
subsequent sections.

THEOREM 2.4 see [11]. Given a bounded set D ⊆ �N, there exist constants δ ≥
1, C > 0 such that for any x0 ∈ D, 0 < r ≤ R0, and u ∈ W 1,1(Bδr(x0)), one has

∣∣∣u(x) − uBr (x0)

∣∣∣ ≤ C
∫

Bδr(x0)

θ (x, y)
mN(B

θ (x,y) (x))
|∇u(y)| dy (2.7)

(where θ (x, y) := |x − y| and mN(·) denotes the usual N-dimensional Lebesgue measure
on �N), whenever x ∈ Br(x0) is such that limr→0 uBr (x) = u(x). In particular, (2.6) holds
for a.e. x ∈ Br(x0).

THEOREM 2.5 see [11]. Under the same notation as in Theorem 2.4, let D ⊆ �N be a
bounded set, let μ be an upper d-Ahlfors measure on D for d ∈ [0, N), and let α > N − d
be a fixed constant. Then for any x ∈ D and 0 < r ≤ R0/2, there exists a constant C > 0
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such that ∫
Br(x)

θ (x, y)α

mN(B
θ (x,y) (x))

dμ ≤ Crα−N+d . (2.8)

If μ(·) = mN(·), then the above conclusion holds for d = 0.

REMARK 2.6. If the measure μ in Theorem 2.5 is an upper (N − 1)-Ahlfors measure,
then by virtue of [12, formula (3.9)] it follow that there exists a constant C > 0 such
that ∫

Br(x0)

∣∣∣u − uBr (x0)

∣∣∣ dμ ≤ C
∫

B2r(x0)
|∇u| dx , (2.9)

for each x0 ∈ D and u ∈ W 1,1(B2r(x0)).

REMARK 2.7. Let p ∈ (1, N) be constant, let d ∈ (N − p, N) and set q := dp/(N −
p). If μ is an upper d-Ahlfors measure on a compact set F ⊆ �N , then it follows from
the proof of Theorem 1.9 in [12] that there exists a constant C > 0 such that

(∫
Br(x0)

|u|q dμ

) 1
q

≤ C ‖u‖
W1,p (B2r (x0))

, (2.10)

for each x0 ∈ F and u ∈ W 1,1(B2r(x0)).

3. Embedding results for Sobolev spaces on non-smooth domains. The main
purpose of this section will be to establish the following two results.

THEOREM 3.1. Let � ⊆ �N be a W 1,p(·)-extension domain domain, where p ∈ P log(�)

fulfills 1 < p∗ ≤ p∗ < N. Then there is a linear mapping W 1,p(·)(�) ↪→ L
Np(·)

N−p(·) (�, dx) and
a constant C1 > 0 such that

‖u‖ Np(·)
N−p(·) ,�

≤ C1‖u‖
W1,p(·) (�)

, for all u ∈ W 1,p(·)(�). (3.11)

Proof. The proof is done basically by following the approach in [20, proof of
Theorem 2], and in [14, proof of Corollary 5.3]. Indeed, we begin with the important
observation, that by [15, Proposition 4.1.7], p ∈ P log(�) can be extended to a function
p ∈ P log(�N). Having said this, under the above conditions, it follows from [14, Theorem

5.2] that the embedding W 1,p(·)(�N) ↪→ L
Np(·)

N−p(·) (�N, dx) is continuous. Thus, it follows
from this facts together with the W 1,p(·)-extension property that

‖u‖ Np(·)
N−p(·) ,�

≤ ‖u‖ Np(·)
N−p(·) ,�N

≤ c‖u‖
W1,p(·) (�N )

≤ c′‖u‖
W1,p(·) (�)

,

for some constants c, c′ > 0 and for all u ∈ W 1,p(·)(�), where we recall that we are
writing u := Pu (P the extension operator in Definition 2.3) on �N for simplicity. This
finishes the proof. �

THEOREM 3.2. Given p ∈ C0,1(�) with 1 < p∗ ≤ p∗ < N, let � ⊆ �N be a bounded
W 1,p(·)-extension domain whose boundary is an upper d-set with respect to μ, for d ∈
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(N − p∗, N). Then there exists a linear mapping W 1,p(·)(�) ↪→ L
dp(·)

N−p∗ (∂�, dμ) and a
constant C2 > 0 such that

‖u‖ dp(·)
N−p∗ ,∂�

≤ C2‖u‖
W1,p(·) (�)

, for all u ∈ W 1,p(·)(�). (3.12)

Moreover, if p∗ ≥ 1 and d ∈ [N − 1, N), then there is a bounded linear operator

W 1,p(·)(�) ↪→ L
(N−1)p(·)

N−p(·) (∂�, dμ).

If p ∈ (1, N) is a constant, then Theorem 3.2 has been by obtained by Biegert [4]
(for d ∈ (N − p, N)), and for the variable exponent case, and Theorems 3.1 and 3.2
have been investigated in [17, 19] if � is a bounded or unbounded Lipschitz domain.
Because any Lipschitz domain is a W 1,p-extension domain whose boundary is an upper
(N − 1)-set with respect to the (N − 1)-Hausdorff measure μ(·) := HN−1(·), the above
result is a generalization of the result in [17] for a large class of domains that include
among others, some examples of (ε, δ)-domains (see section 5 for the definition of such
domain) and John domains. (refer to [15] for the definition and treatment on these
spaces). In fact, the conclusion of Theorem 3.1 has been achieved for John domains
(e.g. [15]). For N = 2, we stress out that W 1,p(·)-domains are contained class of John
domains (assuming � at least simply connected). Also is known that for bounded John
domains, the classical Sobolev–Poincaré inequality holds (e.g. [7]). However, for N ≥ 3,
it remains an open problem to relate both class of domains, that is, it still not known
if the class of W 1,p-extension domains is contained in the class of John domains.

To prove Theorem 3.2, we will employ some arguments in a similar way as in
[17, 19]. We start with the following estimate.

LEMMA 3.3. Let F ⊆ �N be a compact upper d-set with respect to μ, for d ∈ [N −
1, N). Then there exist a ∈ �N, and constants C3, ρ > 0 such that

‖u‖1,F ≤ C1‖u‖
W1,1(Bρ (a))

, for all u ∈ W 1,1(�N). (3.13)

Proof. We first deal with the case d ∈ (N − 1, N). For this part, it suffices to show
(3.13) for the precise representation of u ∈ W 1,1(�N), namely ũ ∈ W 1,1(�N). Indeed,
let F be as in the theorem, fix x0 ∈ F , select a constant δ ≥ 1 such that the conclusion
of Theorem 2.4 holds, and choose r ∈ (0, R0]. Since ũ ∈ W 1,1(Bδr(x0)), we apply the
inequalities (2.6)–(2.8) to deduce that∫

Br(x0)
|ũ(x)| dμx ≤

∫
Br(x0)

∣∣∣ũBr (x0)

∣∣∣ dμx +
∫

Br(x0)

∣∣∣ũ(x) − ũBr (x0)

∣∣∣ dμx

≤ μ(Br(x0))
∣∣∣ũBr (x0)

∣∣∣ +
∫

Br(x0)

(∫
Bδr(x0)

θ (x, y)
mN(B

θ (x,y) (x))
|∇ũ(y)| dy

)
dμx

≤ Mrd−N‖ũ‖1,Br (x0) +
∫

Bδr(x0)

(∫
Br(x0)

θ (x, y)
mN(B

θ (x,y) (x))
dμx

)
|∇ũ(y)| dy

≤ Mrd−N‖ũ‖1,Br (x0) + Cr1−N+d‖∇ũ‖1,Bδr (x0) ≤ Cr‖ũ‖
W1,1(Bδr (x0))

,

where Cr := max{Mrd−N, Cr1−N+d}. Now the compactness of F entails that there is
a finite set {x0, . . . , xm} ⊆ F with F ⊆ ⋃m

j=0 Br(xj). This fact together with the above
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estimate imply the inequality (3.13) for d ∈ (N − 1, N). It remains to prove (3.13) for
d = N − 1. In fact, taking into account (2.6) and (2.9), one has∫

Br(x0)
|u| dμ ≤

∫
Br(x0)

∣∣∣u − uBr (x0)

∣∣∣ dμ +
∫

Br(x0)

∣∣∣uBr (x0)

∣∣∣ dμ

≤ C
∫

B2r(x0)
|∇u| dx + Mr−1‖u‖1,Br (x0) ≤ C′

r‖u‖
W1,1(B2r (x0))

,

for each u ∈ W 1,1(B2r(x0)), and where C′
r := max{C, Mr−1}. This gives the estimate

(3.13) for d = N − 1. Finally, since B := ⋃m
j=0 Br(xj) is an open bounded set, we can

find a ∈ F and ρ > 0 large enough, such that B ⊆ Bρ(a), as desired. �
Now let � ⊆ �N be a bounded W 1,p(·)-extension domain and let μ be an

upper d-Ahlfors measure supported on ∂�, for d ∈ [N − 1, N). Clearly, W 1,p(·)(�N) ⊆
W 1,1(�N), and thus the W 1,p(·)-extension property together with Lemma 3.3 imply that
for every u ∈ W 1,p(·)(�) there already holds u|

∂�
∈ L1(∂�, dμ). Therefore, the trace u|

∂�

of each function u ∈ W 1,p(·)(�) has definite meaning.
The next result will be established using similar techniques as in [17], but we spell

out the details here for completeness.

LEMMA 3.4. Given p ∈ C0,1(�) with 1 ≤ p∗ ≤ p∗ < N, let � ⊆ �N be a bounded
W 1,p(·)-extension domain and let μ be an upper d-Ahlfors measure supported on ∂�, for
d ∈ [N − 1, N). For each u ∈ W 1,p(·)(�), if

v := |u|
(N−1)p(·)

N−p(·)
,

then v ∈ W 1,1(Bρ(a)), where Bρ(a) denotes the ball appearing in (3.13).

Proof. We begin by noticing from the fact d ∈ [N − 1, N), q(·) := (N − 1)p(·)/(N −
p(·)) < Np(·)/(N − p(·)), and also we recall that p ∈ C0,1(�) can be extended to
a function p ∈ C0,1(�N). Hence, it follow from Theorem 3.1 and the W 1,p(·)-
extension property that v ∈ L1(�N, dx) (as the extension function); in particular,
v ∈ L1(Bρ(a), dx). It remains to prove that ∇v ∈ L1(Bρ(a), dx). Letting Lq > 0 denote
the Lipschitz constant of q(x) and applying Young’s inequality, we have

|∇v| ≤ q∗|u|q(x)−1|∇u| + Lq|u|q(x)| log(u)|
≤ cq|u|(q(x)−1)p′(x) + c0|∇u|p(x) + Lq|u|q(x)| log |u||
= cq|u|Np(x)/(N−p(x)) + c0|∇u|p(x) + Lq|u|q(x)| log |u||.

It is clear that the first two terms in the last inequality are in L1(Bρ(a), dx), so it
remains to verify the last term. This is done recalling the well-known properties
limt→0+ tε1 | log(t)| = 0 and limt→∞ t−ε2 | log(t)| = 0, which are valid for every ε1, ε2 ∈
(0, 1]. Thus there exist constants c(ε1), c(ε2) > 0 such that supt∈(0,1] tε1 | log(t)| ≤ c(ε1)
and supt≥1 t−ε2 | log(t)| ≤ c(ε2). These properties entail that

|u|q(x)| log(u)| ≤ c(1)|u|q(x)−1, for |u| ≤ 1, ε1 := 1,

and

|u|q(x)| log(u)| ≤ |u|q(x)+ε2 |u|−ε2 | log(u)| ≤ c(ε2)|u|q(x)+ε2 , for |u| ≥ 1, ε2 ∈ (0, k],
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where k := min{1, p∗(N − p∗)−1}. These estimates show that |u|q(x)| log(u)| ∈
L1(Bρ(a), dx), and completes the proof. �

The next results follows immediately form the formula (2.10).

COROLLARY 3.5. Let q ∈ (1, N) be constant, let d ∈ (N − q, N) and set qd :=
dq/(N − q). If μ is an upper d-Ahlfors measure on a compact set F ⊆ �N, then there
exist ã ∈ �N, and constants C3, 
 > 0, such that

‖u‖qd ,F ≤ C3‖u‖
W1,q (B
 (ã))

, for all u ∈ W 1,q(�N). (3.14)

The following result is proved in a similar way as Lemma 3.4.

LEMMA 3.6. Given p ∈ C0,1(�) with 1 < p∗ ≤ p∗ < N, let � ⊆ �N be a bounded
W 1,p(·)-extension domain and let μ be an upper d-Ahlfors measure supported on ∂�, for
d ∈ (N − p∗, N). For each u ∈ W 1,p(·)(�), if w := |u|p(x)/p∗

, then w ∈ W 1,p∗ (B
(ã)), for
B
(ã) the ball appearing in (3.14).

Proof. By the W 1,p(·)-extension property one only needs to show that ∇w ∈
Lp∗ (B
(ã), dx), given that u ∈ W 1,p(·)(�). Using Young’s inequality, we deduce that

|∇w| ≤ p∗

p∗
|u|p(x)/p∗−1 |∇u| + Lp

p∗
|u|p(x)/p∗ | log(u)|

≤ c1|u|p(x)/p∗ + c2|∇u|p(x)/p∗ + Lp

p∗
|u|p(x)/p∗ | log(u)|.

From here, we proceed as in the proof of Lemma 3.4 to conclude that ∇w ∈
Lp∗ (B
(ã), dx), as required. �

Proof of Theorem 3.2 Let us firs consider the case when μ be an upper d-
Ahlfors measure supported on ∂�, for d ∈ (N − p∗, N). Given u ∈ W 1,p(·)(�), let
w be defined as in Lemma 3.6. Then by Corollary 3.5 and Lemma 3.6, one has

w ∈ W 1,p∗ (B
(ã)) ↪→ L
dp∗

N−p∗ (∂�, dμ), which means that u ∈ L
dp(·)

N−p∗ (∂�, dμ), and thus

W 1,p(·)(�) ⊆ L
dp(·)

N−p∗ (∂�, dμ) (in the sense of traces). Now define a linear mapping

T : W 1,p(·)(�) → L
dp(·)

N−p∗ (∂�, dμ) by Tu := u|
∂�

, and observe that the graph of T is

closed in W 1,p(·)(�) × L
dp(·)

N−p∗ (∂�, dμ), which implies the boundedness of T by virtue of
the closed graph theorem. This proves (3.12). The case d ∈ [N − 1, N) follows similarly
with the help of the W 1,p(·)-extension property, Lemmas 3.3 and 3.4. The proof of
Theorem 3.2 is complete. �

COROLLARY 3.7. Given p ∈ C0,1(�) with 1 < p∗ ≤ p∗ < N, let � ⊆ �N be a W 1,p(·)-
extension domain whose boundary is an upper d-set with respect to μ, for d ∈ (N − p∗, N).
If q ∈ P(∂�) fulfills 1 ≤ q(x) ≤ dp(x)(N − p∗)−1 for x ∈ ∂�, then there exists a linear
continuous trace operator W 1,p(·)(�) ↪→ Lq(·)(∂�, dμ).

REMARK 3.8. If μ is an upper d-Ahlfors measure on ∂�, for d ∈ (N − p∗, N), then it

is still an open problem to establish the continuous trace W 1,p(·)(�) ↪→ L
dp(·)

N−p(·) (∂�, dμ),
provided that � is a W 1,p(·)-extension domain. We conjecture that it is the optimal
exponent, but no proof from this general case has been achieved. However, if d = N − 1

https://doi.org/10.1017/S0017089515000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000282


EMBEDDING AND TRACE RESULTS FOR VARIABLE EXPONENT SOBOLEV 479

the optimal result has been obtained in Theorem 3.2. Moreover, if p ∈ (1, N) then the
conclusion of Theorem 3.2 agrees to the results obtained in [4, 11].

We close this section with a compactness result. Recall that for the remaining of
the article, for each q ∈ C0,1(�), we will put q∗ := inf� q(x) and q∗ := sup� q(x).

THEOREM 3.9. Let p ∈ C0,1(�) be such that 1 < p∗ ≤ p∗ < N, and let � ⊆ �N be a
W 1,p(·)-extension domain and a W 1,p∗ -extension domain, with μ an upper d-set supported
on ∂�, for d ∈ (N − p∗, N). If q ∈ C0,1(�) is such that (N − p∗)/d ≤ q∗ < q(x) + ξ ≤
p(x) for x ∈ ∂� and for some constant ξ > 0, then the trace mapping W 1,p(·)(�) ↪→
L

dq(x)
N−p∗ (∂�, dμ) is compact.

Proof. Let α ∈ (0, min{p∗, q∗}) be chosen such that w := |u|q(x)/α
lie in W 1,p∗ (�).

Define a mapping � : W 1,p(·)(�) → W 1,p∗ (�) by �(u) := w. Proceeding as in
the proof of Lemma 3.5 we see that � is continuous and bounded. Take a sequence
{un} ⊆ W 1,p(·)(�) such that un → ū weakly on W 1,p(·)(�). The compactness of the
embedding W 1,p(·)(�) ↪→ L1(�, dx) implies that un → ū a.e. on �. Because the
sequence {�(un)} is bounded on the reflexive space W 1,p∗ (�), we may assume (after
taking a subsequence if necessary) that {�(un)} → v̄ in W 1,p∗ (�), with {�(un)} → v̄ a.e.
on �. But �(un) = |un|q(x)/α → |ū|q(x)/α = �(ū) a.e on �, which shows that � is weakly-

weakly continuous. Since the trace W 1,p∗ (�) ↪→ L
dα

N−p∗ (∂�, dμ) is compact (see [4,

Corollary 7.4]), we deduce that �(un) → �(ū) in L
dα

N−p∗ (∂�, dμ). Consequently, we
may assume that �(un)|

∂�
→ �(ū)|

∂�
, and moreover we have that

lim
n→∞

∫
∂�

|un|
dq(x)
N−p∗ dμ =

∫
∂�

|ū|
dq(x)
N−p∗ dμ . (3.15)

But (3.15) and the boundary convergence entail that un → ū in L
dq(x)
N−p∗ (∂�, dμ), proving

successfully the compactness of the trace W 1,p(·)(�) ↪→ L
dq(x)
N−p∗ (∂�, dμ). �

COROLLARY 3.10. Let p ∈ C0,1(�) be such that 1 ≤ p∗ ≤ p∗ < N, and let � ⊆ �N be
a W 1,p(·)-extension domain, with μ an upper d-set supported on ∂�, for d ∈ [N − 1, N). If
q ∈ C0,1(�) is such that 1 ≤ q∗ < q(x) + ξ ≤ (N − 1)p(x)(N − p(x))−1 for x ∈ ∂� and
for some constant ξ > 0, then the trace mapping W 1,p(·)(�) ↪→ Lq(x)(∂�, dμ) is compact.

The next result can be deduced following the same procedure given in [19, proof
of Theorem 1.3] (see also the proof of Theorem 4.3 in the next section), so we omit its
proof.

THEOREM 3.11. Let p ∈ P log(�) be such that 1 < p∗ ≤ p∗ < N, and let � ⊆ �N

be a W 1,p(·)-extension domain. If q ∈ P(�) is such that q(x) ≥ p(x) for a.e. x ∈ �,
and ess infx∈�

(
Np(x)(N − p(x))−1 − q(x)

)
> 0, then the interior mapping W 1,p(·)(�) ↪→

Lq(x)(�, dx) is compact.

REMARK 3.12. The results in this section can be obtained under weaker
assumptions over the function p(x). In fact, following the approach as in [17], one
may be able to establish the majority of the result stated in this section under the
assumption p ∈ W 1,γ (�), for γ > N. We do not go for details here.

4. The variable exponent Maz’ya space. In this section, we will give a precise
definition of the generalized variable exponent Maz’ya spaces on a bounded domain
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� ⊆ �N . If p, r ≥ 1 are constants, then the Maz’ya space W 1
p,r(�, ∂�) was introduced

by Maz’ya [23]. For the definition and properties of this function space, refer to [23].
We start right away with the definition of the Maz’ya space in the extended variable
exponent case.

DEFINITION 4.1. Let � ⊆ �N be a bounded set, and let μ be a finite Borel measure
supported on ∂�. Given p, r ∈ C0,1(�) with 1 ≤ p∗ ≤ p∗ < ∞ and 1 ≤ r∗ ≤ r∗ < ∞,
we define the extended variable exponent Maz’ya space W 1

p(·),r(·) (�, ∂�, dμ) to be the
completion of the space

V1
p(·),r(·) (�, ∂�, dμ) := {u ∈ W 1,p(·)(�) ∩ Cc(�) | u|

∂�
∈ Lr(·)(∂�, dμ)}

with respect to the norm

‖u‖
W1

p(·),r(·) (�,∂�,dμ)
:= inf

{
λ > 0 | ρp,�

(|∇u|/λ) + ρp,�
(u/λ) + ρr,∂�

(u/λ) ≤ 1
}
. (4.16)

In addition, recalling thatHN−1(·) denotes the (N − 1)-dimensional Hausdorff measure
over ∂�, we define the classical variable exponent Maz’ya space W 1

p(·),r(·) (�, ∂�) as the
completion of the space

V1
p(·),r(·) (�, ∂�) := {u ∈ W 1,p(·)(�) ∩ Cc(�) | u|

∂�
∈ Lr(·)(∂�, dHN−1)}

with respect to the norm

‖u‖
W1

p(·),r(·) (�,∂�)
:= inf

{
λ > 0 | ρp,�

(|∇u|/λ) + ρr,∂�
(u/λ) ≤ 1

}
. (4.17)

We point out that if p, r ∈ [1,∞) are constants, then the space W 1
p,r(�, ∂�)

coincides with the classical Maz’ya space defined by Maz’ya in [23], and the constant
case of the extended Maz’ya space has been briefly investigated in [5]. Moreover, we
will quote the following fundamental embedding result for the constant case.

THEOREM 4.2 see [23]. Let � ⊆ �N be a bounded domain with finite measure, and
let p ∈ [1, N). Then for 1 ≤ r ≤ p(N − 1)(N − p)−1, there exists a continuous embedding

W 1
p,r(�, ∂�) ↪→ L

rN
N−1 (�, dx). Moreover, if 1 ≤ q < rN(N − 1)−1, then the embedding

W 1
p,r(�, ∂�) ↪→ Lq(�, dx) is compact.

From Theorem 4.2, we can derive the following important result.

THEOREM 4.3. Let � ⊆ �N be a bounded domain with finite measure, and let p ∈
C0,1(�) be such that 1 ≤ p∗ ≤ p∗ < N. If r ∈ C0,1(�) is such that 1 ≤ r∗ ≤ r(x) ≤ (N −
1)p(x)(N − p(x))−1 for all x ∈ �, then there exists a linear mapping W 1

p(·),r(·) (�, ∂�) ↪→
L

Nr(·)
N−1 (�, dx) and a constant C1 > 0 such that

‖u‖ Nr(·)
N−1 ,�

≤ C1‖u‖
W1

p(·),r(·) (�,∂�)
, for all u ∈ W 1

p(·),r(·) (�, ∂�). (4.18)

Moreover, if r̃ ∈ P(�) is such that

r(x) ≤ r̃(x) for a.e. x ∈ � and ess inf
x∈�

{
(Nr(x)
N − 1

− r̃(x)
}

> 0,

then the embedding W 1
p(·),r(·) (�, ∂�) ↪→ Lr̃(·)(�, dx) is compact.
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Proof. Let p, r ∈ C0,1(�) be as in the theorem. We proceed in two steps, as follows:
� First, assume that u ∈ W 1

p(·),r(·) (�, ∂�) ∩ L∞(�, dx). Then, we put

λr := ‖u‖ Nr(·)
N−1 ,�

, and w := |u/λr|r(·). (4.19)

Clearly, w|
∂�

∈ L1(∂�, dHN−1) and w ∈ L
N

N−1 (�, dx), with ‖w‖ N
N−1 ,�

= 1. Then, since
(r(·)−1)p(·)

p(·)−1 ≤ Nr(·)
N−1 if r(x) ≤ (N − 1)p(·)(N − p(·)))−1, using Young’s inequality, we have

that

∫
�

|∇w|r(x) dx ≤ ε
∫
�

∣∣ u
λ r

∣∣ (r(x)−1)p(x)
p(x)−1

dx + Cε

∫
�

∣∣∣∇ |u|
λr

∣∣∣p(x)
dx + Lr

∫
�

∣∣∣ u
λr

∣∣∣r(x) ∣∣∣log
(

|u|
λr

)∣∣∣ dx

≤ 1
8C0

+ Cp

∫
�

∣∣∣∣∇ |u|
λr

∣∣∣∣
p(x)

dx + Lr

∫
�

∣∣∣∣ u
λr

∣∣∣∣
r(x) ∣∣∣∣log

( |u|
λr

)∣∣∣∣ dx,

for ε > 0 (already selected suitably), for some constants Cε = Cp > 0, where Lr > 0
denotes the Lipschitz constant of r(·), and C0 is the constant for the fulfillment of
(4.18) for p(·) = q(·) = 1 (valid by Theorem 4.2). Now, from the well-known properties
limt→0+ tε1 | log(t)| = 0 and limt→∞ t−ε2 | log(t)| = 0, which are valid for every ε1, ε2 ∈
(0, 1]. we see that there exist constants c(ε1), c(ε2) > 0 such that supt∈(0,1] tε1 | log(t)| ≤
c(ε1) and supt≥1 t−ε2 | log(t)| ≤ c(ε2). These properties, together with Young’s inequality,
entail that

Lr

∫
�

∣∣∣∣ u
λr

∣∣∣∣
r(x) ∣∣∣∣log

( |u|
λr

)∣∣∣∣ dx ≤ 1
8C0

+ c1

∫
�

∣∣∣∣ u
λr

∣∣∣∣
r(x)

dx + c2

∫
�

∣∣∣∣ u
λr

∣∣∣∣
r(x)(2N−1)

2(N−1)

dx,

for some constants c1, c2 > 0. Thus, combining the previous two calculations, one sees
that

∫
�

|∇w|r(x) dx ≤ Cr

⎛
⎜⎝∫

�

∣∣∣∣∇ |u|
λr

∣∣∣∣
p(x)

dx +
∫

�

∣∣∣∣ u
λr

∣∣∣∣
r(x)

dx +
∫

�

∣∣∣∣ u
λr

∣∣∣∣
r(x)(2N−1)

2(N−1)

dx

⎞
⎟⎠ + 1

4C0
,

which implies that ∇w ∈ L1(�, dx). As the embedding W 1
1,1(�, ∂�) ↪→ L

N
N−1 (�, dx)

is continuous, this together with the above calculations and Young’s inequality yield
that

1 = ‖w‖ N
N−1 ,�

= ∫
�

∣∣∣ u
λr

∣∣∣
Nr(x)
N−1

dx

≤ C′
r

⎛
⎜⎝∫

�

∣∣∣∣∇ |u|
λr

∣∣∣∣
p(x)

dx
∫

∂�

∣∣∣∣ u
λr

∣∣∣∣
r(x)

dHN−1 +
∫

�

∣∣∣∣ u
λr

∣∣∣∣
r(x)

dx +
∫

�

∣∣∣∣ u
λr

∣∣∣∣
r(x)(2N−1)

2(N−1)

dx

⎞
⎟⎠ + 1

4
,

(4.20)
for some constant C′

r > 0. Now, since ‖w‖ N
N−1 ,�

= ρ N
N−1 ,�

(w) = 1, we may assume that

ρ
θ,�

(w) ≤ 1 for all ρ ∈ [1, N
N−1 ]. Then, if λr ≤ 1, then it is easy to conclude that u ∈ L

Nr(·)
N−1 (�)
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by means of (4.20). Otherwise, when λr > 1, then by (4.20), Hölder’s inequality, Young’s
inequality, and [15, Lemma 3.2.4], we have

λr ≤ C′
rλr

(∫
�

∣∣∣∣∇ |u|
λr

∣∣∣∣
p(x)

dx +
∫

∂�

∣∣∣∣ u
λr

∣∣∣∣
r(x)

dHN−1

+
∫

�

∣∣∣∣ u
λr

∣∣∣∣
r(x)

dx +
∫

�

∣∣∣∣ u
λr

∣∣∣∣
r(x)(2N−1)

2(N−1)

dx

⎞
⎟⎠ + λr

4

≤ C′
rλr

(∫
�

∣∣∣∣∇ |u|
λr

∣∣∣∣
p(x)

dx +
∫

∂�

∣∣∣∣ u
λr

∣∣∣∣
r(x)

dHN−1

+
∥∥∥∥ u
λr

∥∥∥∥
r(·),�

+
∥∥∥∥ u
λr

∥∥∥∥
r(·))(2N−1)

2(N−1) ,�

⎞
⎠ + λr

4

≤ C′
r

(
λ−(p∗−1)

∫
�

|∇u|p(x) dx + λ−(r∗−1)
∫

∂�

|u|r(x) dHN−1

+ ‖u‖
r(·),� + ‖u‖

r(·)(2N−1)
2(N−1) ,�

)
+ λr

4

≤ C′
r

(∫
�

|∇u|p(x) dx +
∫

∂�

|u|r(x) dHN−1 + C
�

+ λr

4C′
r

)
+ λr

4

= C′
r

(∫
�

|∇u|p(x) dx +
∫

∂�

|u|r(x) dHN−1 + C
�

)
+ λr

2
,

for some constant C
�

> 0. But the above calculation implies that

λr ≤ 2C′
r

(∫
�

|∇u|p(x) dx +
∫

∂�

|u|r(x) dHN−1 + C
�

)
, (4.21)

which shows that u ∈ L
Nr(·)
N−1 (�, dx) for the case λr > 1. Moreover, combining the

estimates for the separate cases λr ≤ 1, and λr > 1, we deduce that

‖u‖ Nr(·)
N−1

≤ 2C′
r

(∫
�

|∇u|p(x) dx +
∫

∂�

|u|r(x) dHN−1 + C′
�

)
, (4.22)

for all u ∈ W 1
p(·),r(·) (�, ∂�) ∩ L∞(�, dx), and for some C′

�
> 0. It remains to show

that u ∈ L
Nr(·)
N−1 (�, dx), whenever u ∈ W 1

p(·),r(·) (�, ∂�) is arbitrary. In fact, let u ∈
W 1

p(·),r(·) (�, ∂�). For each n ∈ �, define

un :=
{

u if |u| ≤ n,

n sgn(u) if |u| > n.
(4.23)

Then, {un} ⊆ W 1
p(·),r(·) (�, ∂�) ∩ L∞(�, dx), and moreover,

∫
∂�

|un|r(x) dHN−1 ≤
∫

∂�

|u|r(x) dHN−1 (4.24)
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and ∫
�

|∇un|p(x) dx ≤
∫

�

|∇u|p(x) dx, (4.25)

for each n ∈ �. Combining (4.22), (4.24), (4.25), and [15, Lemma 3.2.5], yield that

ρ Nr(·)
N−1 ,�

(un) ≤ ‖un‖r̂
Nr(·)
N−1 ,�

≤ Cr̂

(∫
�

|∇un|p(x) dx +
∫

∂�

|un|r(x) dHN−1 + C′
�

)r̂

≤ Cr̂

(∫
�

|∇u|p(x) dx +
∫

∂�

|u|r(x) dHN−1 + C′
�

)r̂

,

for some constant Cr̂ > 1, where

r̂ :=
⎧⎨
⎩

Nr∗(N − 1)−1 if ‖un‖ Nr(·)
N−1 ,�

≥ 1,

Nr∗(N − 1)−1 if ‖un‖ Nr(·)
N−1 ,�

< 1.

Hence, as un
n→∞−→ u a.e. in �, and HN−1-a.e. on ∂�, from Fatou’s lemma we get that

the inequality (4.22) remains valid for all u ∈ W 1
p(·),r(·) (�, ∂�). Thus, u ∈ L

Nr(·)
N−1 (�, dx),

which implies that W 1
p(·),r(·) (�, ∂�) ⊆ L

Nr(·)
N−1 (�, dx). Hence, letting T : W 1

p(·),r(·) (�, ∂�) →
L

Nr(·)
N−1 (�, dx) be defined by Tu := u, we observe that the graph of T is closed in

W 1
p(·),r(·) (�, ∂�) × L

Nr(·)
N−1 (�, dx), which implies the boundedness of T by virtue of the

closed graph theorem. This gives (4.18). It remains to show the last statement. Indeed,
let r̃ ∈ P(�) be such that

r(x) ≤ r̃(x) for a.e. x ∈ � and ess inf
x∈�

{
Nr(x)
N − 1

− r̃(x)
}

> 0.

Choose ε > 0 small enough, such that

θ (x) := r̃(x)(1 + ε) <
Nr(x)
N − 1

, for all x ∈ �.

Clearly, the embedding W 1
p(·),r(·) (�, ∂�) ↪→ Lθ(·)(�, dx) is bounded. Now let F ⊆

W 1
p(·),r(·) (�, ∂�) be bounded. Then F ⊆ Lθ(·)(�, dx) is bounded, and thus there is a

constant M > 0 such that

ρ
θ (·),� (u) ≤ M, for every x ∈ F.

Put

� :=
{
w := |u|r̃(·) | u ∈ F

}
,

and

�(t) = tε, for all t ∈ [0,∞).
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Clearly, � : [0,∞) → [0,∞) is increasing, with limt→∞ �(t) = +∞, and moreover,

∫
�

|w|�(|w|) dx = ρ
θ (·),� (u) ≤ M,

for each w ∈ �. Thus, it follows from [25, Theorem 7] (see also [19, Lemma 2.2]) that �

possesses absolute equicontinuous integrals on �. As the embedding W 1
p(·),r(·) (�, ∂�) ↪→

W 1
1,1

(�, ∂�) is continuous, and the embedding W 1
1,1

(�, ∂�) ↪→ L1(�, dx) is compact,
it follows that F ⊆ L1(�, dx) is relatively compact. Thus, given a sequence {un} ⊆ F , it
contains a subsequence (which we also denote by {un}), such that un

n→∞−→ u in L1(�, dx).
It is easy to see that un

n→∞−→ u a.e. on �. Moreover, because
{|un|r̃(·)} ⊆ � possesses

absolutely equicontinuous integrals on �, it follows that

lim
n→∞

∫
�

|un|r̃(x) dx =
∫

�

|u|r̃(x) dx.

(cf. [25]). But this together with the obvious inequality |un − u|r̃(·) ≤ 2r̃∗ (|un|r̃(·) + |u|r̃(·))
entail that the set {|un − u|r̃(·)} contains absolutely equicontinuous integrals on �.
Henceforth, limn→∞ ρr̃(·),� (un − u) = 0, which implies that F is a relative compact subset
of Lr̃(·)(�), and thus the embedding W 1

p(·),r(·) (�, ∂�) ↪→ Lr̃(·)(�) is compact, completing
the proof. �

Next, we turn our attention on the extended Maz’ya space W 1
p(·),r(·) (�, ∂�, dμ).

Then, using the definition of W 1
p(·),r(·) (�, ∂�, dμ) together with the results of the previous

sections, namely Theorems 3.1 and 3.2, we can establish directly the next results, and
thus we will omit their proofs.

COROLLARY 4.4. Let � ⊆ �N be a bounded W 1,p(·)-extension domain, let μ be a finite
Borel measure supported on ∂�, and let p, r ∈ C0,1(�) be such that 1 < p∗ ≤ p∗ < N, and
1 ≤ r∗ ≤ r∗ < ∞. Then, there is a linear continuous embedding W 1

p(·),r(·) (�, ∂�, dμ) ↪→
L

Np(·)
N−p(·) (�, dx).

COROLLARY 4.5. Let � ⊆ �N be a bounded W 1,p(·)-extension domain, let μ be an
upper d-Ahlfors measure supported on ∂� for d ∈ (N − p∗, N), and let p, r ∈ C0,1(�)
be such that 1 < p∗ ≤ p∗ < N, and 1 ≤ r∗ ≤ r∗ < ∞. Then, there is a linear continuous

trace operator W 1
p(·),r(·) (�, ∂�, dμ) ↪→ L

dp(·)
N−p∗ (∂�, dμ).

COROLLARY 4.6. Let � ⊆ �N be a bounded W 1,p(·)-extension domain, let μ be an
upper d-Ahlfors measure supported on ∂� for d ∈ (N − p∗, N), and let p ∈ C0,1(�) be
such that 1 < p∗ ≤ p∗ < N. If r ∈ C0,1(�) fulfils 1 ≤ r∗ ≤ r(x) ≤ dp(x)(N − p∗)−1 for all
x ∈ �, then the spaces W 1

p(·),r(·) (�, ∂�, dμ) and W 1,p(·)(�) coincide with equivalent norms.

REMARK 4.7. If � ⊆ �N is a Lipschitz domain, then by virtue of Theorem 3.1, 3.2,
and Theorem 4.3, if p(x), r(x) are as in Corollary 4.4, it follows that the linear mappings

W 1
p(·),r(·) (�, ∂�) ↪→ L

Np(·)
N−p(·) (�, dx) and W 1

p(·),r(·) (�, ∂�) ↪→ L
(N−1)p(·)

N−p(·) (∂�, dHN−1) are both

bounded. Moreover, if in addition 1 ≤ r(x) ≤ (N − 1)p(x)(N − p(·))−1 for all x ∈ �,
then the spaces W 1

p(·),r(·) (�, ∂�) and W 1,p(·)(�) coincide with equivalent norms.
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To conclude this section, we define the space Wμ(�, ∂�) as the completion of the
space

Vμ(�, ∂�) := {u ∈ W 1,p(·)(�) ∩ Cc(�) | u|
∂�

∈ Lr(·)(∂�, dμ)}
with respect to the norm

‖u‖Wμ (�,∂�) := inf
{
λ > 0 | ρp,�

(|∇u|/λ) + ρr,∂�
(u/λ) ≤ 1

}
. (4.26)

Then, we can deduce the following important result

THEOREM 4.8. Let � ⊆ �N be a bounded W 1,p(·)-extension domain, let μ be an upper
d-Ahlfors measure supported on ∂� for d ∈ (N − p∗, N), and let p ∈ C0,1(�) be such that
1 < p∗ ≤ p∗ < N. If r ∈ C0,1(�) fulfils 1 ≤ r∗ ≤ r(x) ≤ dp(x)(N − p∗)−1 for all x ∈ �,
then the spaces Wμ(�, ∂�) and W 1,p(·)(�) coincide with equivalent norms.

Proof. By virtue of Theorem 3.2, it suffices to show that ‖u‖p(·),� ≤ C‖u‖Wμ (�,∂�) for
all u ∈ W 1,p(·)(�), and for some constant C > 0. To show this assertion, one just follow
the same argument as in [3, Theorem 4.24], with the help of Theorem 3.11. �

5. Some examples of non-smooth domains. In this section, we present a class
of domains where the previous results may be applied. We begin with the following
definition, due to Jones [21].

DEFINITION 5.1. A domain � ⊆ �N is called an (ε, δ)-domain, if there exist
δ ∈ (0,+∞] and ε ∈ (0, 1], such that for each x, y ∈ � with |x − y| ≤ δ, there
exists a continuous rectifiable curve γ : [0, t] → � such that γ (0) = x, γ (t) = y,
l({γ }) ≤ 1

ε
|x − y|, and dist(z, ∂�) ≥ ε min{|x − z|, |y − z|} for all z ∈ {γ }.

Next, by virtue of [15, section 8.5], we have the following two results.

THEOREM 5.2 see [15]. Let p ∈ P log(�) be such that 1 ≤ p∗ ≤ p∗ < ∞. If � ⊆ �N

is a bounded (ε, δ)-domain, then � is a W 1,p(·)-extension domain

THEOREM 5.3 see [15]. Let p ∈ P log(�) be such that 1 ≤ p∗ ≤ p∗ < ∞, and let
� ⊆ �2 be a bounded domain. Then, � is an (ε, δ)-domain if and only if � is a W 1,p(·)-
extension domain

EXAMPLE 5.4. Let � ⊆ �2 be the classical snowflake domain (see figure below).

By [21], it is an (ε, δ)-domain, and by [30] Hd is an upper d-Ahlfors measure
supported on ∂�, where d := log(4)/ log(3). Then, it follows that all the results of
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the previous sections are valid on this domain. Another example of a bounded (ε, δ)-
domain whose boundary is an upper d-set with respect to the so called self-similar
measure can be found in a beautiful paper by Achdou and Tchou [2].

6. An application to boundary value problems. The purpose of this section is to
provide an application of the previous results to the solvability of a class of quasi-linear
equations with variable exponent on non-smooth domains. To begin, we introduce the
notion of p(·)-generalized normal derivative, whose definition for the constant case is
given in [5] (see also [29]).

DEFINITION 6.1. Let p ∈ C0,1(�) be such that 1 < p∗ ≤ p∗ < N, let η be a Borel
measure supported on ∂�, and let u ∈ W 1,1

loc (�) be such that |∇u|p(x)−2∇u · ∇v ∈
L1(�, dx) for all v ∈ C1(�). If there exists a function f ∈ L1

loc(�
N, dx) such that∫

�

|∇u|p(x)−2∇u∇v dx =
∫

�

f v dx +
∫

∂�

v dη,

for all v ∈ C1(�), then we say that η is the p(·)-generalized normal derivative of u, and
we denote

|∇u|p(x)−2 ∂u
∂νη

:= η.

Having said that, given a bounded domain � ⊆ �N (N ≥ 2) and a finite Borel
measure μ with support contained in ∂�, we consider the generalized quasi-linear
elliptic boundary value problem formally given by

⎧⎪⎨
⎪⎩

−div(|∇u|p(x)−2)∇u + α(x) |u|p(x)−2u = f in �,

|∇u|p(x)−2 ∂u
∂νμ

+ β(x) |u|p(x)−2u dμ = g dμ on ∂� .
(6.27)

Here, p ∈ C0,1(�) satisfies 1 < p∗ ≤ p∗ < ∞, α ∈ L∞(�, dx) and β ∈ L∞(∂�, dμ)
fulfill infx∈� α(x) ≥ α0 and infx∈∂� β(x) ≥ β0 for some constants α0, β0 > 0, and
f ∈ Lq1(·)(�, dx), g ∈ Lq2(·)(∂�, dμ), for some measurable functions q1(x), q2(x) with
1 ≤ q1(x), q2(y) ≤ ∞ for each x ∈ �, y ∈ ∂�.

DEFINITION 6.2. Given u, v ∈ W 1
p(·) (�, ∂�, dμ) := W 1

p(·),p(·) (�, ∂�, dμ), set

�p(u, v) :=
∫

�

|∇u|p(x)−2∇u∇v dx +
∫

�

α|u|p(x)−2uv dx +
∫

∂�

β|u|p(x)−2uv dμ. (6.28)

A function u ∈ W 1
p(·) (�, ∂�, dμ) is called a weak solution of (6.27), if

�p(u, v) =
∫

�

f v dx +
∫

∂�

gv dμ, for all v ∈ W 1
p(·) (�, ∂�, dμ) (6.29)

Under the previous assumptions, we claim that the nonlinear form �p(u, v)
is bounded, hemicontinuous, strictly monotone and coercive (see [28] for these
definitions). Indeed, the strict monotonicity of �p follows because it is known
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that (|a|p(x)−2a − |b|p(x)−2b)(a − b) ≥ cp(|a| + |b|)p(x)−2|a − b|2 for some cp > 0, and for
all a, b ∈ �N (e.g. [5, Lemma 2.22]). Moreover, applying the generalized Hölder’s
inequality (see [22, Theorem 2.1]) we see that |�p(u, v)| ≤ C‖u‖p̄−1

W1
p(·) (�,∂�,dμ)

‖v‖
W1

p(·) (�,∂�,dμ)

for every u, v ∈ W 1
p(·) (�, ∂�, dμ), where p̄ denotes either p∗ or p∗, from where the

boundedness follows. Furthermore, the hemicontinuity of �p follows easily, once we
recall the continuity of the norm function. To complete the proof of the claim, for each
u ∈ W 1

p(·) (�, ∂�, dμ), we put

ρμ(u) := ρp,�
(|∇u|) + ρp,�

(u) + ρp,∂�
(u).

If ‖u‖
W1

p(·) (�,∂�,dμ)
> 1, then ρμ(u) > 1 (e.g. [18, Theorem 1.3]). Since the map t �→ ρμ(u/t)

is continuous and decreasing on [1,∞) (whenever u �= 0 a.e. on � and ‖u‖
W1

p(·) (�,∂�,dμ)
>

1), for each u ∈ W 1
p(·) (�, ∂�, dμ) there exists λ > 1 such that ρμ(u/λ) = 1. Letting

η := λ1−p∗ one gets that

η �p(u, u) ≥ λ ρμ(u/λ) = λ ≥ ‖u‖
W1

p(·) (�,∂�,dμ)
.

The above estimate shows that

�p(u, u)
‖u‖

W1
p(·) (�,∂�,dμ)

→ ∞ as ‖u‖
W1

p(·) (�,∂�,dμ)
→ ∞,

that is, �p is coercive. This completes the proof of the claim.
By the properties of the non-linear form �p established above, for each u ∈

W 1
p(·) (�, ∂�, dμ), there exists an operator Tμ : W 1

p(·) (�, ∂�, dμ) → W 1
p(·) (�, ∂�, dμ)∗

such that �p(u, v) = 〈Tμ(u), v〉, for every v ∈ W 1
p(·) (�, ∂�, dμ), where 〈·, ·〉 denotes

the duality between W 1
p(·) (�, ∂�, dμ) and W 1

p(·) (�, ∂�, dμ)∗. By the above estimates
and properties fulfilled by �p, we see that the operator Tμ is hemicontinuous,
strictly monotone, coercive, and bounded, and by [28, Corollary 2.2] it follows
that Tμ is surjective. Now let f ∈ Lq1(·)(�, dx) and g ∈ Lq2(·)(∂�, dμ), where q1, q2

are measurable functions fulfilling q1(x) ≥ Np(x)(N(p(x) − 1) + p(x))−1 for all x ∈ �,
and q2(x) ≥ p(x)(p(x) − 1)−1 for each x ∈ ∂�. By Corollary 4.5, it follows that the
functional S : W 1

p(·) (�, ∂�, dμ) → � defined by

S(w) :=
∫

�

f w dx +
∫

∂�

gw dμ

is continuous. Combining this with the all the above conclusions, taking into
account Theorem 4.3, and applying Browder’s theorem (e.g. [16, Theorem 5.3.22]),
we immediately deduce the following result.

THEOREM 6.3. Let � ⊆ �N be a bounded domain, and let f ∈ Lq1(·)(�, dx) and g ∈
Lq2(·)(∂�, dμ), where q1, q2 are measurable functions fulfilling q1(x) ≥ p(x)(p(x) − 1)−1

for all x ∈ �, and q2(x) ≥ p(x)(p(x) − 1)−1 for each x ∈ ∂�. Then, the boundary value
problem (6.27) admits an unique weak solution u ∈ W 1

p(·) (�, ∂�, dμ). Moreover, in the
case when μ = σ , if f ∈ Lq3(·)(�, dx), where q3(x) ≥ Np(x)(Np(x) − N + 1)−1 for x ∈ �,
then the equation (6.27) has an unique weak solution u ∈ W 1

p(·) (�, ∂�).
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Now set pN (·) := Np(·)(N − p(·))−1 and pd (·) := dp(·)(N − p∗)−1. The next
improved result follows as above, but with the help of Corollary 4.6 and Corollary
4.7.

COROLLARY 6.4. Let � ⊆ �N be a bounded W 1,p(·)-extension domain, let μ be an
upper d-Ahlfors measure supported on ∂� for d ∈ (N − p∗, N), and let f ∈ Lq1(·)(�, dx)
and g ∈ Lq2(·)(∂�, dμ), where q1, q2 are measurable functions fulfilling q1(x) ≥ p′

N
(x) for

all x ∈ �, and q2(x) ≥ p′
d
(x) for each x ∈ ∂�. Then, the boundary value problem (6.27)

admits a unique weak solution u ∈ W 1,p(·)(�).

REMARK 6.5. By following the arguments given in the beautiful result by Biegert
[3, Theorem 5.10], it may be possible to show that if we assume the conditions of
Corollary 6.4, the (unique) weak solution of (6.27) is bounded on �. Since this is not
the main purpose of this article, we do not go into further details here.
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