
Forum of Mathematics, Sigma (2024), Vol. 12:e3 1–52
doi:10.1017/fms.2023.116

RESEARCH ARTICLE

Modularity of trianguline Galois representations
Rebecca Bellovin

School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow G12 8QQ, United Kingdom;
E-mail: rebecca.bellovin@glasgow.ac.uk.

Received: 8 September 2021; Revised: 5 October 2023; Accepted: 13 November 2023

2020 Mathematics Subject Classification: Primary – 11F80; Secondary – 11F85, 11F33

Abstract
We use the theory of trianguline (𝜑, Γ)-modules over pseudorigid spaces to prove a modularity lifting theorem
for certain Galois representations which are trianguline at p, including those with characteristic p coefficients. The
use of pseudorigid spaces lets us construct integral models of the trianguline varieties of [BHS17], [Che13] after
bounding the slope, and we carry out a Taylor–Wiles patching argument for families of overconvergent modular
forms. This permits us to construct a patched quaternionic eigenvariety and deduce our modularity results.
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2 R. Bellovin

1. Introduction

The Fontaine–Mazur conjecture predicts that representations of Galois groups of number fields which are
sufficiently nice should come from geometry. In practice, the way one proves this is by proving so-called
automorphy lifting theorems, relating the Galois representations of interest to Galois representations
already known to have the desired properties.

In this context, if 𝜌 : Gal𝐹 → GL𝑛 (Q𝑝) is the representation, ‘sufficiently nice’ includes a condition
on the local Galois group at p called being geometric. In the present paper, motivated by a question of
Andreatta–Iovita–Pilloni [AIP18], we consider a characteristic p analogue of this conjecture. There is
no definition of ‘geometric’ for a Galois representation with positive characteristic coefficients, but we
replace it with the condition trianguline:

Theorem. Assume 𝑝 ≥ 5, and let L be a finite extension of F𝑝 ((𝑢)). Let 𝜌 : GalQ → GL2 (𝒪𝐿) be an odd
continuous Galois representation unramified away from p such that the (𝜑, Γ)-module 𝐷rig (𝜌 |Gal𝑄𝑝

) is
trianguline with regular parameters. Assume, moreover, that the reduction 𝜌 is modular and satisfies
certain additional technical hypotheses. Then 𝜌 is the twist of the Galois representation corresponding
to a point on the extended eigencurve 𝒳GL2 .

The eigencurve 𝒳
rig
GL2

was originally constructed by Coleman–Mazur, and it is a rigid analytic space
whose points correspond to overconvergent modular forms. Points corresponding to classical eigenforms
(of varying weight and level) are dense, so we can think of it as a moduli space of p-adic modular forms.
Each point of the eigencurve has a Galois representation attached, but Kisin [Kis03] showed that the
Galois representations at nonclassical points are not geometric at p. Instead, they are trianguline (though
he did not use this terminology; it was introduced subsequently by Colmez). A converse was proved by
Emerton [Eme11, Theorem 1.2.4] when the coefficients are p-adic.

Given a p-adic Galois representation 𝜌, there is an associated object 𝐷rig (𝜌) called a (𝜑, Γ)-module;
at the expense of making the coefficients more complicated, the Galois representation can be captured
as the action of a semilinear operator 𝜑 together with the action of a one-dimensional p-adic Lie group
Γ. Then even if 𝜌 is irreducible, it is possible for 𝐷rig (𝜌) to be reducible. Kisin showed that this happens
in small neighborhoods of classical points on the eigencurve; if 𝜌𝑥 is the Galois representation attached
to a point x, there is an exact sequence

0→ 𝐷1 → 𝐷rig (𝜌𝑥) → 𝐷2 → 0,

where 𝐷1 and 𝐷2 are rank-1 (𝜑, Γ)-modules. There is a basis element e1 of 𝐷1 such that 𝜑 acts on e1 by
the𝑈𝑝-eigenvalue at x and Γ acts on e1 trivially. This construction was extended over (a normalization
of) the eigencurve in separate work of [KPX14] and [Liu15].

The eigencurve is equipped with a map wt : 𝒳rig
GL2
→𝒲rig to weight space, which we may view as the

disjoint union of 𝑝−1 rigid analytic open unit disks. The existence of Galois representations attached to
eigenforms means it is also equipped with a morphism 𝒳

rig
GL2
→ Grig

𝑚 ×
∐

𝜌 𝑅𝜌, where the 𝑅𝜌 are Galois
deformation rings (more precisely, deformation rings of pseudocharacters), and Grig

𝑚 corresponds to the
eigenvalue of the Hecke operator 𝑈𝑝 . The triangulation results of [Kis03], [KPX14] and [Liu15] mean
that we can combine these two maps to get a morphism

𝒳GL2 →
∐
𝜌

𝑋
𝜓,𝜅,rig
tri,𝜌

to a moduli space of trianguline Galois representations (here, the decorations 𝜓 and 𝜅 simply mean we
are fixing the determinant and the parameters of the triangulation). The result of [Eme11] then shows
that this morphism surjects onto certain components.

More recently, the construction of the eigencurve has been extended to mixed characteristic by
Andreatta–Pilloni–Iovita [AIP18], [AIP16] and Johansson–Newton [JN16], using Huber’s theory of
adic spaces instead of Tate’s theory of rigid analytic spaces. These authors construct pseudorigid spaces
containing characteristic 0 eigenvarieties as open subspaces, with nonempty characteristic p loci.
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In previous work, we generalized the construction of (𝜑, Γ)-module to families of Galois representa-
tions with pseudorigid coefficients [Bel23b] and showed that the triangulation of the eigencurve extends
to the boundary characteristic p points [Bel23a]. This yields an analogous morphism 𝒳GL2 →

∐
𝑋
𝜓,𝜅
tri,𝜌

of pseudorigid spaces. In the present paper, we use that machinery to prove a modularity result for
Galois representations trianguline at p, characterizing the image in many components.

The proof rests on the Taylor–Wiles patching method, as reformulated in [Sch18]. This is the source
of the aforementioned technical hypotheses on 𝜌 (which amount to assumptions about the image of 𝜌
being sufficiently big). However, there are a number of technical complications. For example, to carry
out some preliminary reductions, we first prove a version of the Jacquet–Langlands correspondence
on eigenvarieties extending the construction of [Bir19], and we characterize the image of the cyclic
base change morphism 𝒳GL2/Q → 𝒳GL2/𝐹 of [JN19a]. The latter uses the construction of an auxiliary
‘Gal(𝐹/Q)-fixed’ eigenvariety, which may be of independent interest. This permits us to transfer the
problem to overconvergent quaternionic modular forms over a cyclic totally real extension of Q.

The modules of quaternionic automorphic forms we patch are those constructed in [JN16]. We
construct trianguline deformation rings which act on them, and we patch by introducing ramification at
additional primes. But the construction of trianguline deformation rings is delicate because in general
triangulations of (𝜑, Γ)-modules do not interact well with integral structures on the corresponding
Galois representation. Thus, we crucially use the pseudorigid theory of triangulations (and not just the
rigid analytic theory) to ensure that we can construct an integral quotient of a Galois deformation ring
whose analytic points are trianguline, with Frobenius eigenvalues bounded by a fixed slope.

This leads to a further difficulty, which is that it is difficult to study the components of the triangu-
line deformation ring directly. Instead, we patch families of overconvergent automorphic forms, which
lets us compare the Galois representation we are interested in with ‘nearby’ potentially Barsotti–Tate
representations which are known to be automorphic. Along the way, we construct local pieces of a
patched quaternionic eigenvariety 𝒳∞

𝐷×
, together with a morphism to a trianguline variety and a patched

module of overconvergent modular forms. We note that it is only possible to patch families of over-
convergent automorphic forms because we constructed an integral model of the trianguline variety; we
know almost nothing about its structure away from nice points in the analytic locus, but understand-
ing it better would be very interesting. We also hope to glue these local patched modules in future
work.

We have not attempted to work in maximum generality. In particular, it should be possible to relax the
ramification condition and prove an overconvergent modularity lifting theorem for certain totally real
fields. However, this would require constructing and studying a cyclic base change morphism for more
general extensions of number fields. We expect that it is possible to construct these morphisms for the
middle-degree eigenvariety over a totally real field, which would lead to stronger trianguline modularity
theorems in characteristic 0. But we were forced to assume the degree of the cyclic extension was prime
to p to characterize the image of a base change morphism in positive characteristic, so additional work
would be required to strengthen our results in positive characteristic.

We further remark that our ‘big image’ condition on the residual Galois representation is stronger
than the standard one. This is to ensure that we have access to the necessary cohomological vanishing
theorems to permit us to work with middle-degree eigenvarieties.

The work of Breuil–Hellmann–Schraen [BHS17] constructs a similar patched eigenvariety for unitary
groups, using completed cohomology rather than overconvergent cohomology. It would be extremely
interesting to relate these two constructions.

We now describe the structure of this paper. We begin by recalling the theory of trianguline (𝜑, Γ)-
modules and their deformations; this permits us to construct and study pseudorigid trianguline varieties
(generalizing those of [Che13] and [BHS17]). We compute the dimension of these pseudorigid trian-
guline varieties with fixed determinant and weight, and we show that they have an integral model after
bounding the slopes of the rank-1 constituents.

We then turn to the automorphic theory we will need. We prove that so-called twist classical points
are very Zariski dense in the eigenvariety 𝒳𝐷× , which permits us to interpolate the Jacquet–Langlands
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correspondence to extended eigenvarieties and permits us to conclude that 𝒳𝐷× is reduced (extending
the results of [Bir19] and [Che05]). We also study the cyclic base change morphism 𝒳GL2/Q → 𝒳GL2/𝐹

of [JN19a]; when F is totally real and [𝐹 : Q] is prime to p, we show that 𝑥 ∈ 𝒳GL2/𝐹 is in the image
if and only if it is fixed by Gal(𝐹/Q). To do this, we study the Gal(𝐹/Q)-fixed locus in the Hilbert
eigenvariety, and show that classical points are dense in it.

Finally, we turn to the patching argument. We show that our modules of integral overconvergent
automorphic forms are projective at maximal points of weight space, and we show that we can add certain
kinds of level structure. Then using the standard Taylor–Wiles patching construction, we construct a
patched module with the support we expect. This permits us to deduce the desired modularity statement
by deformation from potentially Barsotti–Tate points in characteristic 0. This last step requires the
results of [Kis09b].

Notation

We fix some running notation and hypotheses. In Section 2, we assume that 𝑝 ≥ 3 because we only
developed the theory of (𝜑, Γ)-modules over pseudorigid spaces in that situation. In Sections 3 and 5,
we assume 𝑝 ≥ 5; we need this hypothesis to construct eigenvarieties (and the Jacquet–Langlands and
cyclic base change morphisms between them) at tame level 1 and later to apply Taylor–Wiles patching.

We normalize class field theory so that it sends uniformizers to geometric Frobenius, and we
normalize Hodge–Tate weights so that the cyclotomic character has Hodge–Tate weight −1.

If X is a group isomorphic to 𝑋0 × Z⊕𝑟𝑝 × Z⊕𝑠 , where 𝑋0 is a finite group, we let 𝑋 := Hom(𝑋,Gad
𝑚 )

denote the functor 𝑅 ↦→ Homcts(𝑋, 𝑅
×).

2. Trianguline varieties and Galois deformation rings

2.1. Galois deformation rings

Let E/Q𝑝 be a finite extension, with ring of integers 𝒪𝐸 , uniformizer 𝜛𝐸 , and residue field F, and let G
be a profinite group satisfying Mazur’s condition Φ𝑝 . The two cases we will be most interested in are
𝐺 = Gal𝐾 and 𝐺 = Gal𝐹,𝑆 , where K is a finite extension of Q𝑝 , and F is a number field, and S is a set
of places of F.

Suppose we have a continuous homomorphism 𝜌 : 𝐺 → GL𝑑 (F). Then we may construct the
universal framed deformation ring 𝑅�

𝜌
, which prorepresents the functor

𝐴� {𝜌 : 𝐺 → GL𝑑 (𝐴) | 𝜌 ≡ 𝜌 (mod 𝔪𝐴)}

on the category of complete local Noetherian 𝒪𝐸 -algebras with residue field F, of lifts of 𝜌, that is,
deformations of 𝜌 together with a basis. If End𝐺 (𝜌) = F (for example, if 𝜌 is absolutely irreducible),
we additionally have the universal (unframed) deformation ring 𝑅𝜌 parametrizing deformations of 𝜌.

If R is a complete local Noetherian𝒪𝐸 -algebra with maximal ideal𝔪𝑅 and finite residue field, and𝜓 :
Gal𝐾 → 𝑅× is a continuous character such that det 𝜌 = 𝜓mod 𝔪𝑅, there is a quotient 𝑅 ⊗̂ 𝑅�

𝜌
� 𝑅

�,𝜓
𝜌

parametrizing lifts of 𝜌 with determinant 𝜓. Indeed, there is a homomorphism 𝑅det 𝜌 → 𝑅�
𝜌

given by the
determinant map, and the choice of 𝜓 defines a homomorphism 𝑅det 𝜌 → 𝑅; then 𝑅�,𝜓

𝜌
= 𝑅 ⊗̂𝑅det𝜌 𝑅

�
𝜌

.
If End𝐺 (𝜌) = F, there is similarly a quotient 𝑅 ⊗̂ 𝑅𝜌 � 𝑅

𝜓
𝜌

parametrizing deformations of 𝜌 with
determinant 𝜓.

Now, we specialize to the arithmetic situations of interest. Let 𝐾/Q𝑝 be a finite extension, and
assume that Hom(𝐾, 𝐸) has cardinality [𝐾 : Q𝑝]. Then by [BIP23a, Corollary 3.37], 𝑅�

𝜌
is a complete

intersection, and by [BIP23a, Corollary 4.21] the irreducible components of Spec 𝑅�
𝜌

are in bijection with
the irreducible components of Spec 𝑅det 𝜌. More precisely, if 𝜇 := 𝜇𝑝∞ (𝐾) denotes the p-power roots
of unity in 𝐾×, local class field theory identifies it with a subgroup of Galab

𝐾 ; by [BIP23a, Lemma 4.1]
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𝑅det 𝜌 is a power series ring over 𝒪𝐸 [𝜇], so its irreducible components are in bijection with characters
𝜒 : 𝜇 → 𝒪×𝐸 . There are quotients 𝑅�

𝜌
� 𝑅

�,𝜒
𝜌

parametrizing lifts of 𝜌 whose determinant restricted to
𝜇 (via the Artin map) agrees with 𝜒, and by [BIP23a, Corollary 4.5, Corollary 4.19] the rings 𝑅�,𝜒

𝜌
are

normal domains and complete intersections. In particular, 𝑅�
𝜌

is reduced.
Let F be a number field, and let Σ𝑝 := {𝑣 | 𝑝}. If 𝜌 : Gal𝐹 → GL𝑑 (F) is a continuous representation

and v is a place of F, we let 𝜌𝑣 denote 𝜌 |Gal𝐹𝑣 . Suppose that 𝜌 is absolutely irreducible, and let S be a
finite set of places of F containing Σ𝑝 and the infinite places such that 𝜌 is unramified outside S. Then we
let 𝑅𝜌,𝑆 denote the universal deformation ring parametrizing deformations unramified outside of S, and
we let 𝑅�

𝜌,𝑆
denote the universal deformation ring whose A-points are deformations 𝜌𝐴 of 𝜌 unramified

outside of S, together with bases for 𝜌𝐴 |Gal𝐹𝑣 for each 𝑣 ∈ Σ𝑝 . We also let 𝑅�
𝜌,loc := ⊗𝑣 ∈Σ𝑝𝑅�𝜌𝑣 .

If 𝜓 : Gal𝐹 → 𝑅× is a continuous character as above, we let

𝑅
𝜓
𝜌,𝑆

:= 𝑅 ⊗̂
𝑅det𝜌,𝑆

𝑅𝜌,𝑆

𝑅
�,𝜓
𝜌,𝑆

:= 𝑅 ⊗̂
𝑅det𝜌,𝑆

𝑅�𝜌,𝑆

𝑅
�,𝜓
𝜌,loc := 𝑅 ⊗̂

𝑅det𝜌,loc
𝑅�𝜌,loc.

For any place 𝑣 ∈ Σ𝑝 , restriction from Gal𝐹,𝑆 to Gal𝐹𝑣 defines a homomorphism 𝑅�
𝜌𝑣
→ 𝑅�

𝜌,𝑆
, and

so we obtain homomorphisms

𝑅�𝜌,loc → 𝑅�𝜌,𝑆

and

𝑅
�,𝜓
𝜌,loc → 𝑅

�,𝜓
𝜌,𝑆

.

We can relate our local and global deformation rings more precisely:

Lemma 2.1.1. Suppose that 𝑝 � 𝑑. Let ℎ1 denote the dimension (as an F-vector space) of

ker ���𝐻1(Gal𝐹,𝑆 , ad0(𝜌)) →
∏
𝑣 ∈Σ𝑝

𝐻1 (Gal𝐹𝑣 , ad0(𝜌𝑣 ))
	
�,

let 𝛿𝐹 := dimF 𝐻
0(Gal𝐹,𝑆 , ad 𝜌), and for 𝑣 ∈ Σ𝑝 let 𝛿𝑣 := dimF 𝐻

0(Gal𝐹𝑣 , ad 𝜌𝑣 ). Then 𝑅�,𝜓
𝜌,𝑆

can be
topologically generated over 𝑅�,𝜓

𝜌,loc by 𝑔 := ℎ1 +
∑

𝑣 ∈Σ𝑝 𝛿𝑣 − 𝛿𝐹 elements.

Proof. Let 𝔪loc denote the maximal ideal of 𝑅�,𝜓
𝜌,loc, and let 𝔪𝑆 denote the maximal ideal of 𝑅�,𝜓

𝜌,𝑆
. We

need to compute the relative tangent space
(
𝔪𝑆/(𝔪2

𝑆 ,𝔪loc)
)∗ of 𝑅�,𝜓

𝜌,𝑆
/𝔪loc. But the maximal ideal of R

is contained in 𝔪loc, so we may assume that 𝜓 is constant, and the result follows from [Kis09b, Lemma
3.2.2]. �

2.2. Deformations of trianguline (𝜑, Γ)-modules

Trianguline (𝜑, Γ)-modules are those which are extensions of (𝜑, Γ)-modules of character type. More
precisely,

Definition 2.2.1. Let X be a pseudorigid space over 𝒪𝐸 for some finite extension 𝐸/Q𝑝 , let 𝐾/Q𝑝

be a finite extension and let 𝛿 = (𝛿1, . . . , 𝛿𝑑) : (𝐾×)𝑑 → Γ(𝑋,𝒪×𝑋 ) be a d-tuple of continuous
characters. A (𝜑, Γ𝐾 )-module D is trianguline with parameter 𝛿 if (possibly after enlarging E) there
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6 R. Bellovin

is an increasing filtration Fil• 𝐷 by (𝜑, Γ𝐾 )-modules and a set of line bundles ℒ1, . . . ,ℒ𝑑 such that
gr𝑖 𝐷 � Λ𝑋,rig,𝐾 (𝛿𝑖) ⊗ℒ𝑖 for all i.

If 𝑋 = Spa 𝑅 where R is a field, we say that D is strictly trianguline with parameter 𝛿 if for each i,
Fil𝑖+1 𝐷 is the unique sub-(𝜑, Γ𝐾 )-module of D containing Fil𝑖 𝐷 such that gr𝑖+1 𝐷 � Λ𝑅,rig,𝐾 (𝛿𝑖+1).

As in the characteristic 0 situation treated in [BC09, §2.3], we may define and study deformations of
trianguline (𝜑, Γ)-modules:

Definition 2.2.2. Let R be a finite extension of F𝑝 ((𝑢)), and let D be a fixed (𝜑, Γ𝐾 )-module of rank
d over Λ𝑅,rig,𝐾 equipped with a triangulation Fil• 𝐷 with parameter 𝛿. Let C𝑅 denote the category of
Artin local Z𝑝-algebras 𝑅′ equipped with an isomorphism 𝑅′/𝔪𝑅′

∼
−→ 𝑅. The trianguline deformation

functor Def𝐷,Fil• : C𝑅 → Set is defined to be the set of isomorphism classes

Def𝐷,Fil• (𝑅
′) := {(𝐷𝑅′ , Fil• 𝐷𝑅′ , 𝜄)}/∼,

where 𝐷𝑅′ is a (𝜑, Γ𝐾 )-module over Λ𝑅′,rig,𝐾 , Fil• 𝐷𝑅′ is a triangulation, and 𝜄 : 𝑅 ⊗𝑅′ 𝐷𝑅′
∼
−→ 𝐷 is an

isomorphism which also defines isomorphisms 𝑅 ⊗𝑅′ Fil𝑖 𝐷𝑅′
∼
−→ Fil𝑖 𝐷.

One of the consequences of the proof of [Bel23b, Proposition 5.1] is that when 𝑑 = 1, Def𝐷,Fil•

is formally smooth. As in the characteristic 0 situation, the same is true for general d, so long as the
parameter satisfies a certain regularity condition. Note that the regularity condition in here is slightly
different than in characteristic 0; the additional characters avoided in the statement of [BC09, Proposition
2.3.10] do not make sense in characteristic p.

Proposition 2.2.3. Suppose the parameter 𝛿 of Fil• 𝐷 satisfies the property that 𝛿𝑖𝛿−1
𝑗 ≠ 𝜒cyc ◦Nm𝐾/Q𝑝

for any 𝑖 < 𝑗 . Then Def𝐷,Fil• is formally smooth.

Proof. The proof is essentially identical to that of [BC09, Proposition 2.3.10], but we sketch it here for
the convenience of the reader. We proceed by induction on d; the case 𝑑 = 1 follows from the proof of
[Bel23b, Proposition 5.1], so we assume the result for trianguline deformations of (𝜑, Γ)-modules of
rank 𝑑 −1. Let 𝐼 ⊂ 𝑅′ be a square-zero ideal. We need to prove that Def𝐷,Fil• (𝑅

′) → Def𝐷,Fil• (𝑅
′/𝐼) is

surjective, so we may factor 𝑅′ � 𝑅′/𝐼 into a series of small extensions and assume that I is principal
and 𝐼𝔪𝑅′ = 0. By the inductive hypothesis, we may find a trianguline deformation 𝐷 ′ of Fil𝑑−1 𝐷 over
Λ𝑅′,rig,𝐿 . By twisting, we may assume that 𝛿𝑑 is trivial. Then we need to show that the natural map
𝐻1
𝜑,Γ (𝐷

′) → 𝐻1
𝜑,Γ (Fil𝑑−1) is surjective. But the cokernel of this map is𝐻2

𝜑,Γ (𝐼⊗𝑅′/𝔪𝑅′
Fil𝑑−1 𝐷 (𝛿−1

𝑑 )) =

𝐼 ⊗𝑅′/𝔪𝑅′
𝐻2
𝜑,Γ (Fil𝑑−1 𝐷 (𝛿−1

𝑑 )), which is 0 by assumption and [Bel23b, Corollary 4.11]. �

In order to build moduli spaces of trianguline (𝜑, Γ)-modules, we will use moduli spaces of characters,
as in [Bel23a, §2.3]. If G is a commutative p-adic Lie group and 𝐺 ′ ⊂ 𝐺 is a compact subgroup such
that 𝐺/𝐺 ′ is free and finitely generated, then we have 𝐺 ′ := Spa Z𝑝 [[𝐺

′]] and the pseudorigid spaces
𝐺 ′

an
and 𝐺an := Spa(Z[𝐺/𝐺 ′],Z)×Z𝐺 ′

an
. If X is a pseudorigid space, we also have the pseudorigid

space 𝐺𝑋 , which represents the functor

𝑌 � Homcts(𝐺,𝒪(𝑌 ))

on the category of adic spaces over X.
In particular, if K is a finite extension of Q𝑝 , we will be interested in 𝐾×

an
and �(𝐾×)𝑑an

for 𝑑 ≥ 1:

Definition 2.2.4. We let T := 𝐾×
an

, and for any 𝑑 ≥ 1, we write T 𝑑 := �(𝐾×)𝑑an
.

We see that 𝐾×
an
� Gad

𝑚×Z Spa Z𝑝 [[𝒪
×
𝐾 ]]

an, and T 𝑑 � Gad,𝑑
𝑚 ×Z Spa Z𝑝 [[(𝒪

×
𝐾 )

𝑑]]an. Since 𝒪×𝐾 is
compact, Spa Z𝑝 [[𝒪

×
𝐾 ]]

an is a quasicompact pseudorigid space; it has a finite cover {𝑈𝑖 := Spa 𝑅𝑖} by
affinoid subspaces, and G𝑚,𝑈𝑖 is a rising union of relative annuli 𝐶𝑈𝑖 ,ℎ := Spa 𝑅𝑖

〈
𝑢ℎ𝑇, 𝑢ℎ𝑇−1〉.
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If 𝐾 = Q𝑝 , then Q̂×𝑝
an

has connected components indexed by the elements of 𝜇𝑝−1, each of which is
isomorphic to

(
Spa Z𝑝 [[Z𝑝]]

)an
×Gad

𝑚 .
Remark 2.2.5. In the pseudorigid setting (unlike the classical rigid analytic setting), it is not true that�𝐺1 × 𝐺2

an
� 𝐺1

an
× 𝐺2

an
. Indeed, Spa Z𝑝 [[𝑇1, 𝑇2]]

an consists of all valuations which do not vanish on
all three of 𝑝, 𝑇1, 𝑇2. But

Spa Z𝑝 [[𝑇1]]
an×Z𝑝 Spa Z𝑝 [[𝑇2]]

an

also excludes valuations vanishing at both p and 𝑇1 (or both p and 𝑇2). In particular, T 𝑑 is not a product
of copies of T .
Definition 2.2.6. We say that a continuous character 𝜅 : 𝐾× → 𝒪(𝑋)× is regular if for all maximal
points 𝑥 ∈ 𝑋 , the residual character 𝜅𝑥 : 𝐾× → 𝑘 (𝑥)× is not of the form

◦ 𝛼 ↦→ 𝛼−i or 𝛼 ↦→ 𝛼i+1 |𝛼 | for i ∈ ZHom(𝐾,𝑘 (𝑥))
≥0 (if x is a characteristic 0 point), or

◦ trivial or 𝜒cyc ◦ Nm𝐾/Q𝑝 (if x is a characteristic p point).

The space of regular parameters T 𝑑
reg ⊂ T 𝑑 is the Zariski-open subspace whose X-points are given

by parameters 𝛿 : (𝐾×)𝑑 → 𝒪(𝑋)× such that 𝛿𝑖𝛿−1
𝑗 : 𝐾× → 𝒪(𝑋)× is regular for all 𝑗 > 𝑖.

Consider the functor S�𝑑 on pseudorigid spaces defined via

𝑋 � {(𝐷, Fil• 𝐷, 𝛿, 𝜈)}/∼,

where D is a trianguline (𝜑, Γ𝐾 )-module with filtration Fil• 𝐷 and regular parameter 𝛿 ∈ T 𝑑
reg, and 𝜈 is

a sequence of trivializations 𝜈𝑖 : gr𝑖 𝐷 ∼
−→ Λ𝑋,rig,𝐾 . There is a natural transformation S�𝑑 → T 𝑑

reg given
on X-points by

(𝐷, Fil• 𝐷, 𝛿, 𝜈) � 𝛿.

Exactly as in [Che13, Théorème 3.3] and [HS16, Theorem 2.4], we have the following:
Proposition 2.2.7. The functor S�𝑑 is representable by a pseudorigid space, which we also denote S�𝑑 ,
and the morphism S�𝑑 → T 𝑑

reg is smooth of relative dimension 𝑑 (𝑑−1)
2 [𝐾 : Q𝑝].

One proves by induction on d that if D is a trianguline (𝜑, Γ𝐾 )-module over X with parameter
𝛿 ∈ (Treg)

𝑑 , then 𝐻1
𝜑,Γ𝐾
(𝐷) is a vector bundle over X of rank 𝑑 [𝐾 : Q𝑝] (the regularity assumption

ensures that 𝐻0
𝜑,Γ𝐾
(𝐷) = 𝐻2

𝜑,Γ𝐾
(𝐷) = 0). Now, S�1 = T = T 1

reg, so S�1 is representable and is smooth
of the correct dimension over T 1

reg. Then one may proceed by induction on d again and construct S�𝑑 as
the moduli space of extensions of the universal (𝜑, Γ𝐾 )-module of character type ΛT ,rig,𝐾 (𝛿univ) by the
universal object 𝐷𝑑−1,univ over S�𝑑−1. For a specified regular parameter 𝛿 = (𝛿1, . . . , 𝛿𝑑) ∈ T 𝑑

reg (𝑋), the
fiber S�𝑑 |𝛿 is equal to Ext1(Λ𝑋,rig,𝐾 (𝛿𝑑), 𝐷𝑑−1,univ |(𝛿1 ,..., 𝛿𝑑−1) ) = 𝐻1

𝜑,Γ𝐾
(𝐷𝑑−1,univ |(𝛿1 ,..., 𝛿𝑑−1) (𝛿

−1
𝑑 )).

This is a rank-(𝑑 − 1) vector bundle over X, and the claim follows.
We also introduce variants of S�𝑑 with families of fixed determinant and weights. More precisely,

suppose X is a pseudorigid space and we have a continuous character 𝛿det : 𝐾× → 𝒪(𝑋)× and a d-tuple
of continuous characters 𝜅 := (𝜅1, . . . , 𝜅𝑑) : 𝒪×𝐾 → 𝒪(𝑋)×. We say that 𝛿det and 𝜅 are compatible
if 𝛿det |𝒪×𝐾 = 𝜅1 · · · 𝜅𝑑 . If 𝛿det and 𝜅 are compatible, we consider the functors S�, 𝛿det

𝑑 and S�, 𝛿det ,𝜅

𝑑 on
pseudorigid spaces over X defined via

𝑌 � {(𝐷, Fil• 𝐷, 𝛿) ∈ S�𝑑 (𝑌 ) | 𝛿1 · · · 𝛿𝑑 = 𝛿det}/∼

and

𝑌 � {(𝐷, Fil• 𝐷, 𝛿, 𝜈) ∈ S�𝑑 (𝑌 ) | 𝛿𝑖 |𝒪×𝐾 = 𝜅𝑖 for all 𝑖, 𝛿1 · · · 𝛿𝑑 = 𝛿det}/∼ .
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Proposition 2.2.8. The functor S�, 𝛿det ,𝜅

𝑑 is representable by a pseudorigid space over X, which we
also denote S�, 𝛿det ,𝜅

𝑑 , and the morphism S�, 𝛿det ,𝜅

𝑑 → 𝑋 is smooth and surjective of relative dimension
𝑑 (𝑑−1)

2 [𝐾 : Q𝑝] + 𝑑 − 1.

Proof. Set 𝑌 := �(𝒪×𝐾 )𝑑an
. Then there is a morphism T 𝑑 → G𝑚,𝑌 , given by 𝛿 ↦→(

𝛿1 |𝒪×𝐾 , . . . , 𝛿𝑑 |𝒪
×
𝐾
, 𝛿1 (𝜛𝐾 ) · · · 𝛿𝑑 (𝜛𝐾 )

)
, and it is smooth of relative dimension 𝑑 − 1. The choice of

𝛿det and 𝜅 define a morphism 𝑋 → G𝑚,𝑌 , and we have a pullback square

S�, 𝛿det ,𝜅

𝑑 S�𝑑

𝑋 G𝑚,𝑌 .

Then the result follows from Proposition 2.2.7. �

Example 2.2.9. In the example of most interest to us, we will take 𝐾 = Q𝑝 , 𝑑 = 2, and 𝑅 = Z𝑝 [[𝑇0]],
where 𝑇0 := T(Z𝑝) for a split maximal torus T ⊂ GL2/Z𝑝 . Fix an unramified character 𝜓0 : GalQ𝑝 →

𝑅×. There is a universal pair of characters 𝜆1, 𝜆2 : Z×𝑝 ⇒ 𝑅×, and we set 𝜓 :=
(
𝜆1𝜆2𝜒cyc

)−1
𝜓0

and 𝜅 : (𝜆−1
2 ,

(
𝜆1𝜒cyc

)−1
). Then the morphism S�2 → Spa 𝑅an is the natural projection S�𝑑 → �(Z×𝑝)2,

composed with taking inverses and swapping factors. Furthermore, T is two-dimensional and irreducible
(corresponding to a choice of 𝛿1); fixing the determinant means the remaining degrees of freedom are the
one-dimensional irreducible space Ẑ×𝑝 (corresponding to the choice of 𝛿2 |Z×𝑝 ), and the generically one-
dimensional space of extensions between them. We see that, in this case, S�, 𝛿𝜓 ,𝜅2 is four-dimensional
and an A1-torsor over a dense open subspace of Gad

𝑚 ×
�(Z×𝑝)2. Hence, it is irreducible.

2.3. Structure of trianguline varieties

Let 𝐾/Q𝑝 be a finite extension, and let 𝜌 : Gal𝐾 → GL𝑑 (𝑘) be a continuous representation, where
k is a finite field containing the residue field of K. The fiber product (Spa 𝑅�

𝜌
)an×Spa Z𝑝T 𝑑 exists as a

pseudorigid space, and it is contained in the fiber product

Gad,𝑑
𝑚 ×Z �(𝒪×𝐾 )𝑑 × Spa(𝑅�𝜌 )

an

(with complement of codimension ≥ 2 if 𝑑 ≥ 2). Let 𝑋�tri,𝜌 be the Zariski closure in the latter of the
set of maximal points 𝑥 = {(𝜌𝑥 , 𝛿𝑥)}, where 𝜌𝑥 is a (framed) lift of 𝜌 and 𝛿𝑥 ∈ T 𝑑

reg(𝐿) is a regular
parameter of 𝐷rig (𝜌𝑥).

Let R be a complete local Noetherian Z𝑝-algebra with finite residue field. Fix an d-tuple of characters
𝜅 := (𝜅1, . . . , 𝜅𝑑), where 𝜅𝑖 : 𝒪×𝐾 → 𝒪(𝑋)× and 𝑋 := (Spa 𝑅)an, and fix a character 𝜓 : Gal𝐾 → 𝑅×.
Over the pseudorigid space X, a character 𝜓 : Gal𝐾 → 𝒪(𝑋)× corresponds to a rank-1 (𝜑, Γ)-module
of the form 𝐷rig (𝛿𝜓), for some character 𝛿𝜓 : 𝐾× → 𝒪(𝑋)×. If 𝛿𝜓 and 𝜅 are compatible, we may define

𝑋
�,𝜓,𝜅
tri,𝜌 ⊂ Gad,𝑑

𝑚 ×Z �(𝒪×𝐾 )𝑑 × (Spa 𝑅�,𝜓
𝜌
)an

to be the Zariski closure of the set of maximal points 𝑥 = {(𝜌𝑥 , 𝛿𝑥)}, where 𝜌𝑥 is a framed lift of 𝜌 with
determinant 𝜓 and 𝛿𝑥 ∈ T 𝑑

reg(𝐿) is a regular parameter of 𝐷rig(𝜌𝑥) such that 𝛿𝑖 |𝒪×𝐾 = 𝜅𝑖 .
In order to study the structure of 𝑋�tri,𝜌 and 𝑋�,𝜓,𝜅tri,𝜌 , we will need to know something about the essential

image of the functor from Galois representations to (𝜑, Γ)-modules. We refer the reader to [Bel23b]
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for details on definitions of pseudorigid overconvergent period rings and the construction of (𝜑, Γ)-
modules in the pseudorigid setting. However, we note here that Λ𝑅, [0,𝑏],𝐾 is the coordinate ring of a
closed annulus over Spa 𝑅, Λ𝑅, (0,𝑏],𝐾 is the ring of global functions on a half-open annulus over Spa 𝑅,
and Λ𝑅,rig,𝐾 := lim

←−−𝑏→0
Λ𝑅, (0,𝑏],𝐾 . As in the work of [CC98] and [BC08], (𝜑, Γ)-modules attached to

Galois representations are constructed over Λ𝑅, [0,𝑏],𝐾 for some 𝑏 > 0 (which depends in subtle ways
on the representation).

Lemma 2.3.1. The functor 𝑀 � 𝐷rig,𝐾 (𝑀) from Gal𝐾 -representations to their associated (𝜑, Γ)-
modules is formally smooth.

Proof. We need to show that if D is a projective (𝜑, Γ𝐾 )-module over a pseudoaffinoid algebra 𝑅′, and
𝐼 ⊂ 𝑅′ is a square-zero ideal such that (𝑅′/𝐼) ⊗𝑅′ 𝐷 arises from a family of Galois representations, then
D also arises from a family of Galois representations. Indeed, we have a short exact sequence

0→ 𝐼𝐷 → 𝐷 → (𝑅′/𝐼) ⊗𝑅′ 𝐷 → 0.

By assumption, 𝐷 ′ := (𝑅′/𝐼) ⊗𝑅′ 𝐷 arises from a family of Gal𝐾 representations 𝑀 ′ over 𝑅′/𝐼, and
since

𝐷 ′′ := 𝐼𝐷 � 𝐼 ⊗𝑅′ 𝐷 � (𝑅′/ann𝑅′ 𝐼) ⊗𝑅′/𝐼 𝐷

it arises from a family of Gal𝐾 representations 𝑀 ′′ over 𝑅′/ann𝑅′ 𝐼. Since D has a model 𝐷𝑏 over
Λ𝑅′, (0,𝑏],𝐾 , we have a commutative diagram

0 Λ̃𝑅′, (0,𝑏/𝑝] ⊗𝑅′ 𝐷
′′ Λ̃𝑅′, (0,𝑏/𝑝] ⊗𝑅′ 𝐷 Λ̃𝑅′, (0,𝑏/𝑝] ⊗𝑅′ 𝐷

′ 0

0 Λ̃𝑅′, (0,𝑏] ⊗𝑅′ 𝐷
′′ Λ̃𝑅′, (0,𝑏] ⊗𝑅′ 𝐷 Λ̃𝑅′, (0,𝑏] ⊗𝑅′ 𝐷

′ 0.

𝜑−1 𝜑−1 𝜑−1

By construction, Λ̃𝑅′, (0,𝑏] ⊗𝑅′ 𝐷
′′ � Λ̃𝑅′, (0,𝑏] ⊗

(
Λ̃𝑅′0 , [0,𝑏] ⊗𝑅

′
0
𝑀 ′′0

)
and Λ̃𝑅′, (0,𝑏] ⊗𝑅′ 𝐷

′ � Λ̃𝑅′, (0,𝑏] ⊗(
Λ̃𝑅′0 , [0,𝑏] ⊗𝑅

′
0
𝑀 ′0

)
, for some integral models 𝑀 ′′0 and 𝑀 ′0 (perhaps after localizing on Spa 𝑅′ and

shrinking b). Therefore, we have quasi-isomorphisms

[𝑀 ′′]
∼
−→ [Λ̃𝑅′, [0,𝑏] ⊗𝑅′0 𝑀

′′
0

𝜑−1
−−−→ Λ̃𝑅′, [0,𝑏/𝑝] ⊗𝑅′0 𝑀

′′
0 ]

∼
−→ [Λ̃𝑅′, (0,𝑏] ⊗𝑅′ 𝐷

′′ 𝜑−1
−−−→ Λ̃𝑅′, (0,𝑏/𝑝] ⊗𝑅′ 𝐷

′′]

and

[𝑀 ′]
∼
−→ [Λ̃𝑅′, [0,𝑏] ⊗𝑅′0 𝑀

′
0

𝜑−1
−−−→ Λ̃𝑅′, [0,𝑏/𝑝] ⊗𝑅′0 𝑀

′
0]

∼
−→ [Λ̃𝑅′, (0,𝑏] ⊗𝑅′ 𝐷

′ 𝜑−1
−−−→ Λ̃𝑅′, (0,𝑏/𝑝] ⊗𝑅′ 𝐷

′] .

Then the snake lemma implies that we have an exact sequence

0→ 𝑀 ′′ →
(
Λ̃𝑅′,rig,𝐾 ⊗ 𝐷

) 𝜑=1
→ 𝑀 ′ → 0

of 𝑅′-modules equipped with continuous 𝑅′-linear actions of Gal𝐾 , with 𝑀 ′ finite projective over 𝑅′/𝐼

and 𝑀 ′′ � (𝑅′/ann𝑅′ 𝐼) ⊗𝑅′/𝐼 𝑀 ′. It follows that 𝑀 :=
(
Λ̃𝑅′,rig,𝐾 ⊗ 𝐷

) 𝜑=1
is a projective 𝑅′-module

of the same rank and 𝐷rig,𝐾 (𝑀) = 𝐷. �
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In [BHS17, §2.2], the authors show that the characteristic 0 locus 𝑋�,rigtri,𝜌 of the trianguline variety is
equidimensional of dimension 𝑑2+[𝐾 : Q𝑝]

𝑑 (𝑑+1)
2 , and generically smooth. We note that if𝜓 : Gal𝐾 →

𝒪×𝐸 is a crystalline character, where 𝐸/Q𝑝 is a finite extension and 𝒪𝐸 is its ring of integers, then an
identical argument shows that the rigid analytic locus 𝑋�,𝜓,rigtri,𝜌 ⊂ 𝑋

�,𝜓
tri,𝜌 is equidimensional of dimension

𝑑2 − 1 + [𝐾 : Q𝑝]
(𝑑+2) (𝑑−1)

2 (indeed, [BIP23b, Theorem 1.2] provides the necessary crystalline lifts
with fixed determinant).

Unfortunately, we cannot rule out components of 𝑋�tri,𝜌 or 𝑋�,𝜓tri,𝜌 supported entirely in characteristic
p, and so to deduce the same result in the pseudorigid setting, we need to repeat a large part of the
argument in a neighborhood of the characteristic p fiber.
Proposition 2.3.2.
1. The space 𝑋�tri,𝜌 (equipped with its underlying reduced structure) is equidimensional of dimension
𝑑2 + [𝐾 : Q𝑝]

𝑑 (𝑑+1)
2 .

2. If 𝑋�,𝜓,𝜅tri,𝜌 is nonempty, it is equidimensional of dimension 𝑑2 − 1 + [𝐾 : Q𝑝]
𝑑 (𝑑−1)

2 + dim Spa 𝑅an.

3. There is an open subspace 𝑍 ⊂ Spa 𝑅an such that morphism 𝑋
�,𝜓,𝜅
tri,𝜌 |𝑍 → 𝑍 is equidimensional of

dimension 𝑑2 − 1 + [𝐾 : Q𝑝]
𝑑 (𝑑−1)

2 .
Proof. The proofs of the first two parts are very similar to that of [BHS17, Théorème 2.6], and we will
prove them simultaneously. By construction, there is a universal framed deformation 𝜌univ : Gal𝐾 →
GL𝑑 (𝑅

�
𝜌
) of 𝜌, and we may pull it back to 𝑋�tri,𝜌 (resp. 𝑋�,𝜓,𝜅tri,𝜌 ). Then for any irreducible open affinoid

𝑋 ⊂ 𝑋 → 𝑋�tri,𝜌 (resp. 𝑋�,𝜓,𝜅tri,𝜌 ), by [Bel23a, Corollary 5.10] there is a sequence of blow-ups and
normalizations 𝑓 : 𝑋 → 𝑋 and an open subspace 𝑈 ⊂ 𝑋 containing the characteristic p locus such
that 𝑓 ∗𝜌univ |𝑈 is trianguline with parameters 𝑓 ∗𝛿. Shrinking U if necessary, we may assume that 𝑓 ∗𝛿
is regular (indeed, the preimage of T 𝑑

reg in U is open, and by construction U contains a Zariski dense
set of points corresponding to trianguline representations with regular parameters). Furthermore, there
is a Zariski-dense and open subspace 𝑉 ⊂ 𝑋�tri,𝜌 (resp. 𝑋�,𝜓,𝜅tri,𝜌 ) such that 𝑓 −1(𝑉) ⊂ 𝑈 and f defines an
isomorphism 𝑓 −1(𝑉)

∼
−→ 𝑉 .

Over U, the (𝜑, Γ𝐾 )-module 𝐷 := 𝐷rig,𝐾 ( 𝑓
∗𝜌univ) is equipped with an increasing filtration Fil• 𝐷

such that gr𝑖 𝐷 � Λ𝑈,rig,𝐾 ( 𝑓
∗𝛿𝑖) ⊗ ℒ𝑖 for some line bundle ℒ𝑖 on U. We may therefore construct a

G𝑑
𝑚,𝑈 -torsor 𝑈� → 𝑈 trivializing each of the ℒ𝑖; since 𝑈� carries the data (𝐷, Fil• 𝐷, 𝑓 ∗𝛿, 𝜈), where

𝜈 is the set of trivializations 𝜈𝑖 : gr𝑖 𝐷 ∼
−→ Λ𝑈,rig,𝐾 ( 𝑓

∗𝛿𝑖), there is a morphism𝑈� → S�𝑑 .
Let 𝑉� ⊂ 𝑈� denote the pullback of 𝑈� → 𝑈 to V. We claim that 𝑉� → S�𝑑 is smooth of relative

dimension 𝑑2. To see this, suppose we have a pseudoaffinoid algebra 𝑅′, a morphism Spa 𝑅′ → S�𝑑
and a square-zero ideal 𝐼 ⊂ 𝑅′ such that the composition Spa 𝑅′/𝐼 ↩→ Spa 𝑅′ → S�𝑑 is in the image
of 𝑉�. Then there is a ring of definition 𝑅′0 ⊂ 𝑅

′/𝐼 such that the homomorphism 𝑅�
𝜌
→ 𝑅′/𝐼 factors

through 𝑅′0; we let 𝑀 ′0 � 𝑅
′⊕𝑑
0 be the pullback of the universal framed deformation to 𝑅′0 and we let

𝑀 ′ := 𝑅′/𝐼 ⊗𝑅′0 𝑀
′
0.

By Lemma 2.3.1, there is a Gal𝐾 -representation M over 𝑅′ such that (𝑅′/𝐼) ⊗𝑅′ 𝑀
∼
−→ 𝑀 ′. It

follows that 𝑀 ′0 and its basis lift to a free module 𝑀0 over some ring of definition 𝑅′0 ⊂ 𝑅
′ such that

𝑅′ ⊗𝑅′0 𝑀0 = 𝑀 . Moreover, 𝑀 ′ is residually a lift of 𝜌 at every maximal point of Spa 𝑅′, so M is as
well. By [WE18, Theorem 3.8], 𝑀0 corresponds to a Spa 𝑅′0-point of Spf 𝑅�

𝜌
, and by construction M

corresponds to a Spa 𝑅′-point of 𝑋�tri,𝜌 deforming 𝑀 ′. Since 𝑀 ′ corresponds to a Spa(𝑅′/𝐼)-point of
the Zariski-open subspace 𝑉 ⊂ 𝑋�tri,𝜌, the image of the morphism Spa 𝑅′ → 𝑋�tri,𝜌 also lands in V. Since
D is trianguline with regular parameters and trivialized quotients, the morphism Spa 𝑅′ → 𝑉 lifts to a
morphism Spa 𝑅′ → 𝑉�.

The claim that 𝑉� → S�𝑑 has relative dimension 𝑑2 follows because ‘changing the framing’ makes
𝑉� a (GL𝑑)

an-torsor over its image in S�𝑑 .
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Now, we can compute the dimension. By Proposition 2.2.7, we see that 𝑉� is equidimensional of
dimension 𝑑2+ 𝑑 (𝑑−1)

2 [𝐾 : Q𝑝]+𝑑 [𝐾 : Q𝑝]+𝑑 (resp. 𝑑2+ 𝑑 (𝑑−1)
2 [𝐾 : Q𝑝]+𝑑 [𝐾 : Q𝑝]+𝑑+dim Spa 𝑅an).

Since𝑉� → 𝑉 is a G𝑑
𝑚,𝑉 -torsor, it follows that V is equidimensional of dimension 𝑑2 + 𝑑 (𝑑+1)

2 [𝐾 : Q𝑝]

(resp. 𝑑2 + 𝑑 (𝑑−1)
2 [𝐾 : Q𝑝] + 𝑑 [𝐾 : Q𝑝] +dim Spa 𝑅an. Finally,𝑉 ⊂ 𝑋 is Zariski-dense, so we are done.

For the last part, we define 𝑉�,𝜓,𝜅 via the pullback

𝑉�,𝜓,𝜅 𝑉�

S�, 𝛿𝜓 ,𝜅𝑑 S�𝑑

Spa 𝑅an G𝑚,𝑌 ,

where 𝑌 := �(𝒪×𝐾 )𝑑 and the morphism Spa 𝑅an → G𝑚,𝑌 is given by 𝜅 and 𝛿𝜓 . Since 𝑉� → G𝑚,𝑌 is
smooth, its image is open, and the preimage in Spa 𝑅an is open, as well. �

Remark 2.3.3. Suppose that 𝑥 ∈ Spa 𝑅an is a maximal point such that the fiber of 𝑋�,𝜓,𝜅tri,𝜌 contains a
point (𝜌𝑥 , 𝛿𝑥) such that 𝛿𝑥 is a regular parameter for 𝐷rig (𝜌𝑥). Then if we apply Proposition 2.3.2 with
𝑅 = 𝑘 (𝑥)+, we see that every irreducible component of the fiber containing (𝜌𝑥 , 𝛿𝑥) has dimension
𝑑2 + 𝑑 (𝑑−1)

2 [𝐾 : Q𝑝] + 𝑑 [𝐾 : Q𝑝].

Example 2.3.4. We return to the setting of Example 2.2.9, where 𝐾 = Q𝑝 , 𝑑 = 2, 𝑅 = Z𝑝 [[𝑇0]]
corresponds to integral weight space for a split maximal torus of GL2/Z𝑝 , 𝜓0 : GalQ𝑝 → 𝑅× is
an unramified character, and there is a universal pair of characters 𝜆1, 𝜆2 : Z×𝑝 ⇒ 𝑅×. We again set
𝜓 := 𝜓0

(
𝜆1𝜆2𝜒cyc

)−1 and 𝜅 : (𝜆−1
2 ,

(
𝜆1𝜒cyc

)−1
). Then if 𝑋�,𝜓,𝜅tri,𝜌 is nonempty, each irreducible component

is six-dimensional.
Moreover, suppose there is a characteristic-p point (𝜌𝑥 , 𝛿𝑥) with specified weight and determinant

such that 𝜌𝑥 is trianguline with regular parameter 𝛿𝑥 . Then the fiber over 𝛿𝑥 |(Z×𝑝)2 is four-dimensional;
since this is one of 𝑝−1 disjoint characteristic-p fibers, we see that the irreducible component containing
(𝜌𝑥 , 𝛿𝑥) contains a dense open characteristic-0 subspace, consisting of points in 𝑈�tri(𝜌)

reg (in the
notation of [BHS17, Définition 2.4]).

Now, we consider a global setup. Let F be a number field, and suppose that 𝜌 : Gal𝐹 → GL𝑑 (F) is
an absolutely irreducible representation, unramified outside a finite set of primes S.

Then the homomorphisms

𝑅�𝜌𝑣
→ 𝑅�𝜌,𝑆

for each 𝑣 | 𝑝 induce a morphism(
Spa 𝑅�𝜌,𝑆

)an
×
∏
𝑣 |𝑝

T 𝑑 →
∏
𝑣 |𝑝

((
Spa 𝑅�𝜌𝑣

)an
× T 𝑑

)
and we define 𝑋�tri,𝜌,𝑆 to be the preimage of

∏
𝑣 |𝑝 𝑋

�
tri,𝜌𝑣

.
If R is a complete local Noetherian Z𝑝-algebra with maximal ideal 𝔪𝑅 and finite residue field, and

𝜓 : Gal𝐹 → 𝑅× is a continuous character such that det 𝜌 = 𝜓mod 𝔪𝑅, the homomorphisms

𝑅
�,𝜓𝑣
𝜌𝑣
→ 𝑅

�,𝜓
𝜌,𝑆
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and

𝑅
�,𝜓
𝜌,loc → 𝑅

�,𝜓
𝜌,𝑆

induce a sequence of morphisms(
Spa 𝑅�,𝜓

𝜌,𝑆

)an
×
∏

𝑣 |𝑝 T 𝑑
(
Spa 𝑅�,𝜓

𝜌,loc

)an
×
∏

𝑣 |𝑝 T 𝑑 ∏
𝑣 |𝑝

((
Spa 𝑅�,𝜓𝑣

𝜌𝑣

)an
× T 𝑑

)
,

where𝜓𝑣 := 𝜓 |Gal𝐹𝑣 . We define 𝑋�,𝜓tri,𝜌,𝑆 and 𝑋�,𝜓tri,𝜌,loc to be the preimages of
∏

𝑣 |𝑝 𝑋
�,𝜓𝑣
tri,𝜌𝑣

in
(
Spa 𝑅�,𝜓

𝜌,𝑆

)an
×∏

𝑣 |𝑝 T 𝑑 and
(
Spa 𝑅�,𝜓

𝜌,loc

)an
×
∏

𝑣 |𝑝 T 𝑑 , respectively.
If we additionally have d-tuples of characters 𝜅𝑣 := (𝜅𝑣,1, . . . , 𝜅𝑣,𝑑), where 𝜅𝑣,𝑖 : 𝒪×𝐹𝑣 → 𝒪(𝑋)× is

a continuous character, and we set 𝑋 := (Spa 𝑅)an, we may form the spaces

𝑋
�,𝜓,𝜅
tri,𝜌,𝑆 𝑋

�,𝜓,𝜅
tri,𝜌,loc

∏
𝑣 |𝑝 𝑋

�,𝜓𝑣 ,𝜅𝑣
tri,𝜌𝑣

(
Spa 𝑅�,𝜓

𝜌,𝑆

)an
×
∏

𝑣 |𝑝 T 𝑑
(
Spa 𝑅�,𝜓

𝜌,loc

)an
×
∏

𝑣 |𝑝 T 𝑑 ∏
𝑣 |𝑝

((
Spa 𝑅�,𝜓𝑣

𝜌𝑣

)an
× T 𝑑

)
.

⊂ ⊂ ⊂

In particular, suppose we have fixed a neat level 𝐾 = 𝐾 𝑝 𝐼, as in Sections 3 and 4, and consider the
ring 𝑅 = Z𝑝 [[𝑇0/𝑍 (𝐾)]] corresponding to integral weight space. Since 𝑇0 =

∏
𝑣 |𝑝 (Res𝒪𝐹𝑣 /Z𝑝 𝑇𝑣 ) (Z𝑝),

we have homomorphisms Z𝑝 [[𝑇𝑣 (𝒪𝐹𝑣 )]] → 𝑅, and hence morphisms Spa 𝑅 → Spa Z𝑝 [[𝑇𝑣 (𝒪𝐹𝑣 )]].
Suppose we have a determinant character 𝜓 : Gal𝐹 → 𝑅×, and a set of weights 𝜅𝑣 := (𝜅𝑣,1, . . . , 𝜅𝑣,𝑑) :
𝒪×𝐹𝑣 → 𝒪(𝒲𝐹 )

× for each 𝑣 | 𝑝 such that 𝜓 |Gal𝐹𝑣 and 𝜅𝑣 are compatible for all v and such that 𝜓𝑣
and 𝜅𝑣 factor through Z𝑝 [[𝑇𝑣 (𝒪𝐹𝑣 )]] → 𝑅 for all v, that is, they depend only on the projection to
Spa Z𝑝 [[𝑇𝑣 (𝒪𝐹𝑣 )]].

Proposition 2.3.5. Under the above assumptions, there is an open subspace 𝑍 ⊂ 𝒲𝐹 such that
𝑋
�,𝜓,𝜅
tri,𝜌,loc |𝑍 → 𝑍 is equidimensional of dimension |Σ𝑝 | (𝑑

2 − 1) + [𝐹 : Q] 𝑑 (𝑑−1)
2 .

Proof. Viewing 𝜓𝑣 as a character Gal𝐹𝑣 → Z𝑝 [[𝑇𝑣 (𝒪𝐹𝑣 )]]
× and viewing 𝜅𝑣 = (𝜅𝑣,1, . . . , 𝜅𝑣,𝑑) as a

d-tuple of characters 𝒪×𝐹𝑣 → Z𝑝 [[𝑇𝑣 (𝒪𝐹𝑣 )]]
×, we have a pullback diagram

𝑋
�,𝜓,𝜅
tri,𝜌,loc

∏
𝑣 |𝑝 𝑋

�,𝜓𝑣 ,𝜅𝑣
tri,𝜌𝑣

𝒲𝐹
∏

𝑣 |𝑝

(
Spa Z𝑝 [[𝑇𝑣 (𝒪𝐹𝑣 )]]

)an

.

The right vertical morphism has relative dimension∑
𝑣 |𝑝

(
𝑑2 − 1 + [𝐹𝑣 : Q𝑝]

𝑑 (𝑑 − 1)
2

)
= |Σ𝑝 | (𝑑

2 − 1) + [𝐹 : Q] 𝑑 (𝑑 − 1)
2

over an open subspace of
∏

𝑣 |𝑝

(
Spa Z𝑝 [[𝑇𝑣 (𝒪𝐹𝑣 )]]

)an, so the morphism 𝑋
�,𝜓,𝜅
tri,𝜌,loc → 𝒲𝐹 does, as

well. �

The case we will be most interested in is the case where 𝐹/Q is cyclic and totally split at p, and
𝑑 = 2. In that case, 𝑋�,𝜓𝑣 ,𝜅𝑣tri,𝜌𝑣

→ Spa Z𝑝 [[𝑇𝑣 (𝒪𝐹𝑣 )]]
an has relative dimension 4 over an open subspace
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of Spa Z𝑝 [[𝑇𝑣 (𝒪𝐹𝑣 )]]
an for each 𝑣 | 𝑝, and hence 𝑋�,𝜓,𝜅tri,𝜌,loc →𝒲𝐹 has relative dimension 4[𝐹 : Q] over

an open subspace of 𝒲𝐹 .

2.4. Trianguline deformation rings

We have constructed the trianguline varieties 𝑋�tri,𝜌 and 𝑋�,𝜓,𝜅tri,𝜌 as subspaces of the (nonquasicompact)

pseudorigid space Gad,𝑑
𝑚 ×Z �(𝒪×𝐾 )𝑑 × (

Spa 𝑅�
𝜌

)an
. However, the advantage of working with general pseu-

dorigid spaces is that we can construct integral models, so long as we bound the slope.
We will apply this to find formal models for pieces of our trianguline varieties. Recall that, when K

is a finite extension of Q𝑝 and 𝜌 is a representation of Gal𝐾 , we defined 𝑋�tri,𝜌 and 𝑋�,𝜓,𝜅tri,𝜌 as analytic

subspaces of Gad
𝑚 × Spa Z𝑝 [[(𝒪

×
𝐾 )

𝑑]] ×
(
Spa 𝑅�

𝜌

)an
and Gad

𝑚 × Spa Z𝑝 [[(𝒪
×
𝐾 )

𝑑]] ×
(
Spa 𝑅 ⊗̂ 𝑅�

𝜌

)an
,

respectively. By construction, Spa Z𝑝 [[(𝒪
×
𝐾 )

𝑑]] ×
(
Spa 𝑅�

𝜌

)an
has a quasicompact integral model, but

Gad
𝑚 × Spa Z𝑝 [[(𝒪

×
𝐾 )

𝑑]] ×
(
Spa 𝑅�

𝜌

)an
×

(
Spa 𝑅�

𝜌

)an
does not; in particular, it is not equal to the analytic

locus of Spa 𝑅�
𝜌
⊗̂Z𝑝 [[(𝒪

×
𝐾 )

𝑑]]
〈
𝑇,𝑇−1〉 (and similarly for Gad

𝑚 × Spa Z𝑝 [[(𝒪
×
𝐾 )

𝑑]] ×
(
Spa 𝑅 ⊗̂ 𝑅�

𝜌

)an
).

In order to construct integral models of annuli, we begin with an illustrative example.

Example 2.4.1. Suppose 𝑅 = Z𝑝 [[𝑢]] and h is an integer. We may cover 𝑌 := Spa
(
Z𝑝 [[𝑢]]

)an with the
open affinoid subspaces 𝑈1 := Spa

(
Q𝑝

〈
𝑢
𝑝

〉)
and 𝑈2 := Spa

(
Z𝑝 [[𝑢]]

〈 𝑝
𝑢

〉 [ 1
𝑢

] )
; their intersection is the

circle𝑈1 ∩𝑈2 = Spa
(
Q𝑝

〈
𝑢
𝑝 ,

𝑝
𝑢

〉)
.

The annulus 𝐶𝑈1 ,ℎ is affinoid, with coordinate ring

Q𝑝

〈
𝑢

𝑝
, 𝑝ℎ𝑇,𝑇2

〉
/(𝑇𝑇2 − 𝑝

ℎ) = Q𝑝

〈
𝑢

𝑝
, 𝑇, 𝑇1, 𝑇2

〉
/(𝑇1 − 𝑝

ℎ𝑇, 𝑇𝑇2 − 𝑝
ℎ).

Restricting to𝑈1 ∩𝑈2, we obtain an affinoid with coordinate ring

Z𝑝 [[𝑢]]

〈
𝑢

𝑝
,
𝑝

𝑢
, 𝑇, 𝑇1, 𝑇2

〉 [
1
𝑢

]
/(𝑇1 − 𝑢

ℎ
( 𝑝
𝑢

)ℎ
𝑇,𝑇𝑇2 − 𝑢

ℎ
( 𝑝
𝑢

)ℎ
).

Writing 𝑇 ′1 :=
(
𝑢
𝑝

)ℎ
𝑇1 and 𝑇 ′2 :=

(
𝑢
𝑝

)ℎ
𝑇2, we get

Z𝑝 [[𝑢]]

〈
𝑢

𝑝
,
𝑝

𝑢
, 𝑇, 𝑇 ′1 , 𝑇

′
2

〉 [
1
𝑢

]
/(𝑇 ′1 − 𝑢

ℎ𝑇,𝑇𝑇 ′2 − 𝑢
ℎ)

which is also the restriction of 𝐶𝑈2 ,ℎ to𝑈1 ∩𝑈2.
The affinoid spaces 𝐶𝑈𝑖 ,ℎ and 𝐶𝑈1∩𝑈2 ,ℎ have integral models, compatible with gluing. Thus, we see

that 𝐶𝑌 ,ℎ in this case admits a formal model which lives over the blow-up Bl(𝑝,𝑢)𝑅.

Returning to the general case, we may choose a Z𝑝-basis for the torsion-free part of 𝒪×𝐾 and
corresponding coordinates on Spa Z𝑝 [[𝒪

×
𝐾 ]]

an. Then we may consider relative annuli over Spa Z𝑝 [[𝒪
×
𝐾 ]];

as above, these annuli glue to a space Tℎ which has an integral model 𝔗ℎ over the blow-up Bl𝐼Z𝑝 [[𝒪
×
𝐾 ]]

(where 𝐼 = ∩𝔪 is the intersection of the maximal ideals of Z𝑝 [[𝒪
×
𝐾 ]]). Similarly, given some integer

𝑑 ≥ 1, we may define relative annuli T 𝑑
ℎ ⊂ T 𝑑 over Spa Z𝑝 [[(𝒪

×
𝐾 )

𝑑]]an, which have integral models 𝔗𝑑
ℎ .

Now, we may set

𝑋�tri,𝜌,≤ℎ := 𝑋�tri,𝜌 ∩
(
Spa 𝑅�𝜌 × T

𝑑
ℎ

)an
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and

𝑋
�,𝜓,𝜅
tri,𝜌,≤ℎ := 𝑋�,𝜓,𝜅tri,𝜌 ∩

(
Spa 𝑅 ⊗̂ 𝑅�𝜌 × T

𝑑
ℎ

)an
.

When F is a totally real field and 𝜌 is a representation of Gal𝐹 unramified outside a finite set of places
S, we may similarly define bounded global trianguline varieties 𝑋�tri,𝜌,𝑆,≤ℎ and 𝑋�,𝜓,𝜅tri,𝜌,𝑆,≤ℎ as subspaces

of
(
Spa 𝑅�

𝜌
×
∏

𝑣 |𝑝 T 𝑑
ℎ

)an
and

(
Spa 𝑅 ⊗̂ 𝑅�

𝜌
×
∏

𝑣 |𝑝 T 𝑑
ℎ

)an
, respectively.

Remark 2.4.2. We emphasize that these bounded trianguline varieties are not canonical; they depend
on a choice of coordinates on Spa Z𝑝 [[𝒪

×
𝐾 ]]

an. This may seem strange, but we will use our bounded
trianguline varieties to study bounded-slope pieces of eigenvarieties, and the construction of these pieces
of eigenvarieties also depends on a choice of pseudouniformizer in the coefficients.
Remark 2.4.3. For our purposes, we in fact only need to consider relative annuli and bounded trianguline
varieties over some affinoid subspace U of weight space. Nevertheless, for the sake of completeness we
treat them here over all of weight space.

Now, we restrict to the case 𝐾 = Q𝑝 , and we choose coordinates 𝑧1, . . . , 𝑧𝑑 on each component
of Spa Z𝑝 [[(Z×𝑝)𝑑]]an. Write ℎ = 𝑎/𝑏, where 𝑎, 𝑏 are nonnegative relatively prime integers. We will
construct an integral model of 𝑋�tri,𝜌,≤ℎ using Corollary A.0.2.

For 𝑧 ∈ {𝑝, 𝑧1, . . . , 𝑧𝑑}, we get an affinoid 𝑈𝑧 := Spa 𝑅𝑧 , where 𝑅𝑧 :=
Z𝑝 [[(Z×𝑝)𝑑]]

〈 𝑝
𝑧 ,

𝑧1
𝑧 , . . . ,

𝑧𝑑
𝑧

〉 [ 1
𝑧

]
with ring of integers 𝑅𝑧,0, inside Spa Z𝑝 [[(Z×𝑝)𝑑]]an. Then the restric-

tion of T 𝑑
ℎ to𝑈𝑧 has the presentation

Spa Z𝑝 [[(Z×𝑝)𝑑]]
〈
𝑝

𝑧
,
𝑧1
𝑧
, . . . ,

𝑧𝑑
𝑧
, 𝑧𝑎𝑇±𝑏1 , . . . , 𝑧𝑎𝑇±𝑏𝑑

〉 [
1
𝑧

]
.

Over this space, there is a d-tuple 𝛿1, . . . , 𝛿𝑑 : Q×𝑝 ⇒ 𝑅×𝑧 , where 𝛿𝑖 (𝑝) = 𝑇𝑖 and (𝛿𝑖 |Z×𝑝 ) is the restriction
of the universal character on (Z×𝑝)𝑑 .

Given an affinoid Spa 𝑅 ⊂
(
Spa 𝑅�

𝜌

)an
with pseudouniformizer 𝑢 ∈ 𝑅, there is a (𝜑, Γ)-module

𝐷𝑅 of rank d over Spa 𝑅. To study the bounded trianguline variety, we first study morphisms 𝐷𝑅 →

Λ𝑅,rig,Q𝑝 (𝛿𝑑). Equivalently, we consider the twist 𝐷𝑅 (𝛿
−1
𝑑 ) over the (nonquasicompact) space Spa 𝑅 ×

Spa 𝑅𝑧
〈
𝑧ℎ𝑇±1

𝑑

〉
and consider morphisms 𝐷𝑅 (𝛿

−1
𝑑 ) → Λ𝑅,rig,Q𝑝 to the trivial rank-1 (𝜑, Γ)-module.

We wish to first consider the closure 𝑍𝑅 of

𝑍𝑅 := {(𝜌𝑥 , 𝛿𝑑,𝑥) | there is a surjective map 𝐷𝑅 → Λ𝜅 (𝑥) ,rig,Q𝑝 (𝛿𝑑,𝑥)}

in Spa 𝑅0 ⊗̂ 𝑅𝑧,0
〈
𝑧𝑎𝑇𝑏𝑖 , 𝑇

′
𝑖

〉
/(𝑇𝑏𝑖 𝑇

′
𝑖 − 𝑧

𝑎).
There is a nonzero morphism at precisely the points 𝑥 ∈ Spa 𝑅 × Spa 𝑅𝑧 , where 𝐻0 (𝐷∨𝑅 (𝛿𝑑)𝑥)

is nonvanishing; equivalently (by Tate duality), at precisely the points where 𝐻2(𝐷𝑅 (𝛿
−1
𝑑 𝜒cyc)𝑥) is

nonvanishing. We write 𝑍 ′𝑅 for the support of 𝐻2(𝐷𝑅 (𝛿
−1
𝑑 𝜒cyc)𝑥).

The closure of 𝑍𝑅 is a priori defined as a subspace of the locus

{|𝑧 |ℎ ≤ |𝑇𝑖 | ≤ |𝑧 |
−ℎ} ⊂ Spa 𝑅 × Spa 𝑅𝑧,0 ×G𝑚

We first claim that there is a closed subspace of

Spa 𝑅 × Spa 𝑅𝑧,0
〈
𝑧𝑎𝑇𝑏𝑖 , 𝑇

′
𝑖

〉
/(𝑇𝑏𝑖 𝑇

′
𝑖 − 𝑧

𝑎)

whose restriction to this subspace is our original closure.
By [Bel23a, Proposition 5.2] (more precisely, by the proof of the corresponding result [KPX14, Propo-

sition 3.3] in characteristic 0), 𝐻2(𝐷𝑅 (𝛿
−1
𝑑 𝜒cyc)) vanishes if 𝑇𝑑 is sufficiently u-adically small. Here,
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‘sufficiently small’ depends only on 𝐷𝑅, not on the twist by 𝛿𝑑 |Z×𝑝 . Thus, 𝑍 ′𝑅 is contained in the locus
{𝑇𝑑 ≥ 𝑢

𝑁 } for some 𝑁 � 0. Since Spa 𝑅 ⊗̂ 𝑅𝑧,0
〈
𝑧𝑎𝑇𝑏𝑖 , 𝑇

′
𝑖

〉
/(𝑇𝑏𝑖 𝑇

′
𝑖 − 𝑧

𝑎) is covered by the loci {|𝑇𝑑 | ≥
|𝑢2𝑁 |} and {|𝑇𝑑 | ≤ |𝑢2𝑁 |}, the closure of 𝑍𝑅 is well-behaved in Spa 𝑅 ⊗̂ 𝑅𝑧,0

〈
𝑧𝑎𝑇𝑏𝑖 , 𝑇

′
𝑖

〉
/(𝑇𝑏𝑖 𝑇

′
𝑖 − 𝑧

𝑎).
We next consider the intersection of 𝑍𝑅 with

{𝑇 = 𝑇𝑑} ⊂ Spa 𝑅
〈
𝑢𝑁𝑇±1〉 × Spa 𝑅𝑧,0

〈
𝑧𝑎𝑇±𝑏𝑑

〉
,

that is, to the locus where 𝑇𝑑 is not very u-adically large. We may apply [Bel23a, Corollary 5.3] to the
universal twist of 𝐷𝑅 over this space, and we conclude that 𝑍 ′𝑅 is contained in the subspace {|𝑧𝑁 ′ | ≤ |𝑢 |}
for some 𝑁 ′ � 0. Since 𝑍𝑅 ⊂ 𝑍 ′𝑅, the same is true of 𝑍𝑅 and its Zariski closure 𝑍𝑅.

On the other hand, if 𝑇𝑑 is u-adically large, say, if 𝑇𝑑 ≥ 𝑢−1, then we have the pair of inequalities

|𝑢−1 | ≤ 𝑇𝑑 ≤ |𝑧 |
−ℎ .

This implies we are over the (affinoid) subspace

{|𝑧 |ℎ ≤ |𝑢 |} ⊂ Spa 𝑅 × Spa 𝑅𝑧,0
〈
𝑧𝑎𝑇±𝑏𝑑

〉
.

This lets us study the points consisting of a Galois representation together with a first step in a
triangulation and their Zariski-closure; in order to proceed by induction and study the points consisting
of Galois representations together with a full triangulation, we will need the following lemma:

Lemma 2.4.4. Let R be a pseudoaffinoid algebra with pseudouniformizer 𝑢 ∈ 𝑅, and let D be a family
of (𝜑, Γ)-modules of rank d over R such that 𝐻0 (𝑘 (𝑥) ⊗𝑅 𝐷

∨) is nonzero at a Zariski-dense set of
maximal points 𝑥 ∈ Spa 𝑅. Then there is a finite affinoid cover {𝑈𝑖} of Spa 𝑅 and a collection of proper
morphisms 𝜋𝑖 : 𝑈𝑖 → 𝑈𝑖 such that

1. There are morphisms 𝜆𝑖 : 𝜋∗𝑖𝐷 → Λ𝑈𝑖 ,rig,Q𝑝
⊗ℒ, for some line bundle ℒ on𝑈𝑖

2. The kernel of 𝜆𝑖 is a family of (𝜑, Γ)-modules of rank 𝑑 − 1

Proof. After replacing Spa 𝑅 with a connected component of its normalization, we may assume that
Spa 𝑅 is normal and irreducible. Using [KPX14, Corollary 6.3.6(2)], there is a proper birational mor-
phism 𝑓 : 𝑋𝑅 → Spa 𝑅 such that 𝐻𝑖 ( 𝑓 ∗𝐷∨) is flat for 𝑖 = 0 and has Tor-dimension at most 1 for 𝑖 = 1, 2.
For any 𝑥 ∈ 𝑋 , we have an exact sequence

0→ 𝑘𝑥 ⊗ 𝐻
0 ( 𝑓 ∗𝐷∨) → 𝐻0 (𝑘𝑥 ⊗ 𝑓 ∗𝐷∨𝑅 ) → Tor𝒪𝑋1

(
𝐻1( 𝑓 ∗𝐷∨), 𝑘𝑥

)
→ 0

(where we have used the low-degree exact sequences coming from the base-change spectral sequence cf.
[Bel23a, Corollary 3.12] and the assumption that 𝐻𝑖 ( 𝑓 ∗𝐷∨) has Tor-dimension at most 1 for 𝑖 = 1, 2).
Since we assumed that 𝐻0 (𝑘 (𝑥) ⊗𝑅 𝐷

∨) is nonzero at a Zariski-dense set of maximal points 𝑥 ∈ Spa 𝑅,
we see that 𝐻0 ( 𝑓 ∗𝐷∨) is projective of nonzero rank.

Let 𝑔 : 𝑌𝑅 → 𝑋𝑅 be the projective space Proj
(
Sym𝐻0( 𝑓 ∗𝐷∨

)∨
) over 𝑋𝑅. Since 𝑔 : 𝑌𝑅 → 𝑋𝑅 is flat,

we have 𝑔∗𝐻𝑖 ( 𝑓 ∗𝐷)
∼
−→ 𝐻𝑖 (𝑔∗ 𝑓 ∗𝐷) for all i, and moreover, 𝑔∗ 𝑓 ∗𝐷 retains the property that 𝐻0(𝑔∗ 𝑓 ∗𝐷)

is flat (of nonzero rank) and 𝐻𝑖 (𝑔∗ 𝑓 ∗𝐷) has Tor-dimension at most 1 for 𝑖 = 1, 2.
Over 𝑌𝑅, there is a universal quotient 𝑔∗𝐻0( 𝑓 ∗𝐷∨)∨ � 𝒪𝑌𝑅 (1), which induces an injection

𝒪𝑌𝑅 (−1) → 𝑔∗𝐻0 ( 𝑓 ∗𝐷∨) with projective cokernel. If we consider the composition

Λ𝑌𝑅 ,rig,Q𝑝 ⊗ 𝒪𝑌𝑅 (−1) → Λ𝑌𝑅 ,rig,Q𝑝 ⊗ 𝑔
∗𝐻0( 𝑓 ∗𝐷∨) → 𝑔∗ 𝑓 ∗𝐷∨,

we may again dualize to obtain a morphism 𝜆 : 𝑔∗ 𝑓 ∗𝐷 → 𝒪𝑌𝑅 (1) ⊗ Λ𝑌𝑅 ,rig,Q𝑝 .
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There is a finite affinoid cover {Spa 𝑅′𝑗 } of 𝑌𝑅 trivializing 𝒪𝑌𝑅 (1); we let 𝜆 𝑗 denote the restriction of
𝜆 to Spa 𝑅′𝑗 . For any 𝑥 ∈ Spa 𝑅′𝑗 , we again have an exact sequence

0→ 𝑘𝑥 ⊗ 𝐻
0 (𝑔∗ 𝑓 ∗𝐷∨𝑅 ) → 𝐻0 (𝑘𝑥 ⊗ 𝑔∗ 𝑓 ∗𝐷∨𝑅 ) → Tor𝒪𝑋1

(
𝐻1(𝑔∗ 𝑓 ∗𝐷∨𝑅), 𝑘𝑥

)
→ 0.

This implies in particular that the specialization of 𝜆 𝑗 is nonzero. If x has characteristic-p residue field,
this implies that the specialization of 𝜆 𝑗 is surjective. As in the proof of [Bel23a, Lemma 5.7], this
implies that there is an affinoid subdomain 𝑉 𝑗 = {|𝑝 | ≤ |𝑢𝑟 𝑗 |} ⊂ Spa 𝑅′𝑗 containing the locus {𝑝 = 0}
over which 𝜆 𝑗 is surjective.

Let 𝑁 := max{𝑟 𝑗 } and set𝑈1 := {|𝑝 | ≤ |𝑢𝑁 |} ⊂ Spa 𝑅. Then the preimage ( 𝑓 ◦𝑔)−1(𝑈1) is contained
in ∪ 𝑗𝑉 𝑗 . We will set𝑈1 := ( 𝑓 ◦ 𝑔)−1(𝑈1). Then by construction, 𝜋1 : 𝑈1 → 𝑈 is surjective and

𝜆 |𝑈1
: 𝜋∗1𝐷 → 𝜋∗1𝒪𝑌𝑅 (1) |𝑈1

is surjective, so its kernel is a family of (𝜑, Γ)-modules of rank 𝑑 − 1.
On the other hand, set𝑈2 := {|𝑢𝑁 | ≤ |𝑝 |} ⊂ Spa 𝑅. Then the preimage ( 𝑓 ◦𝑔)−1(𝑈2) is quasicompact

and contained in the characteristic-0 locus of𝑌𝑅, so we may apply the techniques of the proof of [KPX14,
Theorem 6.3.9]. More precisely, we let ℎ : 𝑈 ′2 → ( 𝑓 ◦𝑔)

−1(𝑈2) be a proper birational morphism so that
𝐻𝑖 (( 𝑓 ◦ 𝑔 ◦ ℎ)∗𝐷/𝑡) is flat for 𝑖 = 0 and has Tor-dimension at most 1 for 𝑖 = 1, 2 (again using [KPX14,
Corollary 6.3.6(2)]). This lets us deduce that ℎ∗𝜆 |𝑈 ′2 is surjective away from a proper Zariski-closed
subspace, and locally on 𝑈 ′2, its cokernel is killed by a power of t. Then we make a further blow-up
𝑈2 → 𝑈 ′2 such that over𝑈2, the kernel of 𝜆 is a family of (𝜑, Γ)-modules of rank 𝑑 − 1, as desired. �

This permits us to use induction to deduce the following:
Corollary 2.4.5. Let R be a pseudoaffinoid algebra with pseudouniformizer 𝑢 ∈ 𝑅, and let D be a family
of rank-𝑑 (𝜑, Γ)-modules over R. Consider the Zariski closure Z of the locus in Spa 𝑅0×Spa 𝑅𝑧,0×G𝑑

𝑚,𝑅

corresponding to points 𝑥 = (𝐷𝑥 , 𝛿𝑥), where |𝛿𝑖,𝑥 (𝑝)±1 | ≤ |𝑧 |−ℎ for all i, and 𝛿𝑥 is a regular parameter
of 𝐷𝑥 . Then there is some 𝑁 ′ � 0 such that

𝑍 ⊂ {|𝑧𝑁
′

| ≤ |𝑢 | for all 𝑖} ⊂ Spa 𝑅 × Spa 𝑅𝑧
〈
𝑧ℎ𝑇±1

𝑖

〉
.

This is precisely the condition we need to apply Corollary A.0.2, so the closure we are interested in
is well-behaved in Spf 𝑅0 ⊗̂ 𝑅𝑧,0

〈
𝑧𝑎𝑇𝑏𝑖 , 𝑇

′
𝑖

〉
/(𝑇𝑏𝑖 𝑇

′
𝑖 − 𝑧

𝑎).
Letting Spa 𝑅 range over a (finite) cover of

(
Spa 𝑅�

𝜌

)an
, we obtain a closed subspace of Spf 𝑅�

𝜌
×

Spa 𝑅𝑧,0
〈
𝑧𝑎𝑇𝑏𝑖 , 𝑇

′
𝑖

〉
/(𝑇𝑏𝑖 𝑇

′
𝑖 − 𝑧

𝑎). Letting z range over {𝑝, 𝑧1, . . . , 𝑧𝑑}, in turn, we may glue to get a
closed subspace of Spf 𝑅0 ×𝔗𝑑

ℎ , yielding the desired integral models of pieces of trianguline varieties:
Corollary 2.4.6. Suppose that 𝜌 is a representation of Gal𝐾 , where K is a finite extension of Q𝑝 , or of
Gal𝐹 , where F is a totally real number field (in which case we assume 𝜌 is unramified outside a finite set
of places S). Then there are formal schemes 𝔛�tri,𝜌,≤ℎ (resp. 𝔛�tri,𝜌,𝑆,≤ℎ) and 𝔛

�,𝜓,𝜅
tri,𝜌,≤ℎ (resp. 𝔛�,𝜓,𝜅tri,𝜌,𝑆,≤ℎ),

which are affine over 𝔗ℎ , such that
(
𝔛�tri,𝜌,≤ℎ

)an
= 𝑋�tri,𝜌,≤ℎ (resp.

(
𝔛�tri,𝜌,𝑆,≤ℎ

)an
= 𝑋�tri,𝜌,𝑆,≤ℎ) and(

𝔛
�,𝜓,𝜅
tri,𝜌,≤ℎ

)an
= 𝑋

�,𝜓,𝜅
tri,𝜌,≤ℎ (resp.

(
𝔛
�,𝜓,𝜅
tri,𝜌,𝑆,≤ℎ

)an
= 𝑋

�,𝜓,𝜅
tri,𝜌,𝑆,≤ℎ).

3. Extended eigenvarieties

3.1. Definitions

We briefly recall the construction of extended eigenvarieties in the two cases of interest to us. Fix a
number field F and a reductive group H over F which is split at all places above p; then we define
G := Res𝐹/Q H. If we choose split models H𝒪𝐹𝑣 over 𝒪𝐹𝑣 for each place 𝑣 | 𝑝, along with split maximal
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tori and Borel subgroups T𝑣 ⊂ B𝑣 ⊂ H𝒪𝐹𝑣 , we obtain an integral model GZ𝑝 :=
∏

𝑣 |𝑝 H𝒪𝐹𝑣 of G, as
well as closed subgroup schemes

T :=
∏
𝑣 |𝑝

Res𝒪𝐹𝑣 /Z𝑝 𝑇𝑣 ⊂ B :=
∏
𝑣 |𝑝

Res𝒪𝐹𝑣 /Z𝑝 B𝑣 .

Let 𝑇0 := T(Z𝑝), and let the Iwahori subgroup 𝐼 ⊂ GZ𝑝 (Z𝑝) be the preimage of B(F𝑝) under the
reduction map GZ𝑝 (Z𝑝) → GZ𝑝 (F𝑝).

We choose a tame level by choosing compact open subgroups 𝐾ℓ ⊂ G(Qℓ ) for each prime ℓ ≠ 𝑝,
such that 𝐾ℓ = G (Zℓ) for almost all primes ℓ (where G is some reductive model of G over Z[1/𝑀] for
some integer M). Then we put 𝐾 𝑝 :=

∏
ℓ≠𝑝 𝐾ℓ and 𝐾 := 𝐾 𝑝 𝐼; we assume throughout that K contains

an open normal subgroup 𝐾 ′ such that [𝐾 : 𝐾 ′] is prime to p and

𝑥−1𝐷×𝑥 ∩ 𝐾 ′ ⊂ 𝒪×,+𝐹 for all 𝑥 ∈ (A𝐹, 𝑓 ⊗𝐹 𝐷)
× (3.1.1)

which is the neatness hypothesis of [JN19b].1 If Z denotes the center of G, we let 𝑍 (𝐾) := Z(Q)∩𝐾 and
let 𝑍 (𝐾) ⊂ 𝑇0 denote its p-adic closure. We also let 𝐾∞ ⊂ G(R) be a maximal compact and connected
subgroup at infinity, and let 𝑍◦∞ ⊂ 𝑍∞ =: Z(R) denote the identity component.

Finally, let Σ ⊂ 𝑇0 be the kernel of some splitting of the inclusion 𝑇0 ⊂ T(Q𝑝); there are then certain
submonoids Σcpt ⊂ Σ+ ⊂ Σ, and we fix some 𝑡 ∈ Σcpt.

In the cases of interest to us, F will be a totally real field, completely split at p, and H will be either
GL2 or the reductive group 𝐷× corresponding to the units of a totally definite quaternion algebra over
F split at every place above p. Fixing isomorphisms 𝐷𝑣

∼
−→ Mat2(𝐹𝑣 ) for each place v where D is split,

we may define integral models of H𝑣 via H𝒪𝐹𝑣 (𝑅0) :=
(
𝑅0 ⊗Mat2 (𝒪𝐹𝑣 )

)× for all 𝒪𝐹𝑣 -algebras 𝑅0
(whether H = GL2 or 𝐷×). In either case, we let B𝑣 ⊂ H𝒪𝐹𝑣 be the standard upper-triangular Borel and
we let T𝑣 ⊂ B𝑣 be the standard diagonal maximal torus.

For either choice of H, the adelic subgroup 𝐾 (𝑁) ⊂
(
A𝐹, 𝑓 ⊗ H(𝐹)

)× of full level N is neat for
𝑁 ≥ 3 such that N is prime to the finite places v where H𝑣 ≠ GL2. Thus, if we assume 𝑝 ≥ 5, we may
take 𝐾 𝑝 arbitrary.

For either choice of H, we define Σ+𝑣 :=
{(

𝜛
𝑎1
𝑣 0
0 𝜛

𝑎2
𝑣

)
| 𝑎2 ≥ 𝑎1

}
and Δ 𝑣 := 𝐼𝑣Σ+𝑣 𝐼𝑣 . Similarly, we

define Σ+ :=
∏

𝑣 |𝑝 Σ
+
𝑣 and Δ 𝑝 := 𝐼Σ+𝐼 =

∏
𝑣 |𝑝 Δ 𝑣 . Then we fix𝑈𝜛𝑣 :=

[
𝐼𝑣

( 1
𝜛𝑣

)
𝐼𝑣

]
∈ 𝐼𝑣\H(𝐹𝑣 )/𝐼𝑣

and𝑈𝑝 :=
∏

𝑣 |𝑝𝑈𝜛𝑣 .
For each prime ℓ ≠ 𝑝, we fix a monoid Δℓ ⊂ G(Qℓ) containing 𝐾ℓ , which is equal to G(Qℓ )

when 𝐾ℓ = G (Zℓ) such that (Δℓ , 𝐾ℓ) is a Hecke pair and the Hecke algebra T(Δℓ , 𝐾ℓ) over Z𝑝 is
commutative. Then we defineΔ 𝑝 :=

∏′
ℓ≠𝑝 Δℓ andΔ := Δ 𝑝Δ 𝑝 . We writeT(Δ 𝑝 , 𝐾 𝑝) := ⊗ℓ≠𝑝T(Δℓ , 𝐾ℓ)

and T(Δ , 𝐾) := ⊗ℓT(Δℓ , 𝐾ℓ) for the corresponding global Hecke algebras.
A weight is a continuous homomorphism 𝜅 : 𝑇0 → 𝑅× which is trivial on 𝑍 (𝐾), where R is a

pseudoaffinoid algebra over Z𝑝 . We define weight space 𝒲 via

𝒲(𝑅) := {𝜅 ∈ Homcts(𝑇0, 𝑅
×) | 𝜅 |𝑍 (𝐾 ) = 1}.

It can be written explicitly as the analytic locus of Spa
(
Z𝑝 [[𝑇0/𝑍 (𝐾)]],Z𝑝 [[𝑇0/𝑍 (𝐾)]]

)
. Then 𝒲 is

equidimensional of dimension 1+ [𝐹 : Q] +𝔡, where 𝔡 is the defect in Leopoldt’s conjecture for F and p.
The next step is to construct a sheaf of Hecke modules over weight space such that𝑈𝑝 acts compactly

and admits a Fredholm determinant. We will actually use two such sheaves. If 𝜅 : 𝑇0 → 𝑅× is a weight,
then [JN16] construct certain modules of analytic functions A𝑟

𝜅 and distributions D𝑟
𝜅 . Here, 𝑟 ∈ (𝑟𝜅 , 1),

where 𝑟𝜅 ∈ [1/𝑝, 1). When 𝑟𝜅 ∈ (1/𝑝, 1), they also construct A<𝑟
𝜅 and D<𝑟

𝜅 so that D𝑟
𝜅 is the dual of

1The authors assume throughout that the level is neat; to relax this assumption, one chooses an open normal subgroup 𝐾 ′ ⊂ 𝐾
of index prime to p such that 𝐾 ′ is neat and considers the complexes 𝐶•𝑐 (𝐾 ′, −)𝐾/𝐾

′ and 𝐶BM
• (𝐾

′, −)𝐾/𝐾 ′ . Since 𝐾/𝐾 ′ has
order prime to p, the finite-slope subcomplexes 𝐶•𝑐 (𝐾,𝒟𝜅 )

𝐾/𝐾 ′

≤ℎ
and 𝐶BM

• (𝐾
′, −)≤ℎ,𝐾/𝐾 ′ remain perfect.

https://doi.org/10.1017/fms.2023.116 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.116


18 R. Bellovin

A<𝑟
𝜅 and A𝑟

𝜅 is the dual of D<𝑟
𝜅 . As in [HN17], we fix augmented Borel–Serre complexes 𝐶BM

• (𝐾,−)
and 𝐶•𝑐 (𝐾,−) for Borel–Moore homology and compactly supported cohomology, respectively, and we
consider

𝐶BM
• (𝐾,A𝑟

𝜅 )

as well as
𝐶•𝑐 (𝐾,D𝑟

𝜅 ) and 𝐶•𝑐 (𝐾,D<𝑟
𝜅 ).

Now, A𝑟
𝜅 and D𝑟

𝜅 are potentially orthonormalizable, so 𝐶BM
∗ (𝐾,A𝑟

𝜅 ) := ⊕𝑖𝐶
BM
𝑖 (𝐾,A𝑟

𝜅 ) and
𝐶∗𝑐 (𝐾,D𝑟

𝜅 ) := ⊕𝑖𝐶𝑖
𝑐 (𝐾,D𝑟

𝜅 ) are, as well. Since𝑈𝑝 acts compactly on A𝑟
𝜅 and D𝑟

𝜅 , this implies that there
are Fredholm determinants 𝐹𝑟 ,′𝜅 and 𝐹𝑟𝜅 for its action on 𝐶BM

∗ (𝐾,A𝑟
𝜅 ) and 𝐶∗𝑐 (𝐾,D𝑟

𝜅 ), respectively.
It turns out that 𝐹𝑟 ,′𝜅 and 𝐹𝑟𝜅 are independent of r by [JN16, Proposition 4.1.2]; we set 𝒟𝜅 := lim

←−−𝑟
D𝑟
𝜅

and 𝒜𝜅 := lim
−−→𝑟

A𝑟
𝜅 , and we write 𝐹𝜅 and 𝐹 ′𝜅 for the Fredholm determinants of 𝑈𝑝 on 𝐶∗𝑐 (𝐾,𝒟𝜅 ) and

𝐶BM
∗ (𝐾,𝒜𝜅 ), respectively. Then 𝐹𝜅 and 𝐹 ′𝜅 define spectral varieties 𝒵 ⊂ A1

𝒲𝐹
and 𝒵′ ⊂ A1

𝒲𝐹
. We

let 𝜋 : 𝒵 → 𝒲𝐹 and 𝜋′ : 𝒵′ → 𝒲𝐹 be the projection on the first factor; they are flat morphisms of
pseudorigid spaces.

By [JN16, Theorem 2.3.2], 𝒵 has a cover by open affinoid subspaces V such that 𝑈 := 𝜋(𝑉) is an
open affinoid subspace of 𝒲𝐹 and 𝜋 |𝑉 : 𝑉 → 𝑈 is finite of constant degree. This implies that over
such a V, F factors as 𝐹𝑉 = 𝑄𝑉 𝑆𝑉 where 𝑄𝑉 is a multiplicative polynomial of degree deg 𝜋 |𝑉 , 𝑆𝑉 is
a Fredholm series, and 𝑄𝑉 and 𝑆𝑉 are relatively prime.

If such a factorization exists, we may make 𝐶•𝑐 (𝐾,𝒟𝑉 ) into a complex of 𝒪𝒵-modules by letting
T act via 𝑈−1

𝑝 . Then the assignment 𝑉 ↦→ ker𝑄∗𝑉 (𝑈𝑝) ⊂ 𝐶
•(𝐾,𝒟𝑉 ) defines a bounded complex 𝒦•

of coherent 𝒪𝒵-modules, where 𝑄∗𝑉 (𝑇) := 𝑇deg𝑄𝑉𝑄𝑉 (1/𝑇). If 𝑉 = 𝜋−1 (𝑈), where (𝑈, ℎ) is a slope
datum, then 𝒦• is the slope-≤ ℎ subcomplex of 𝐶•𝑐 (𝐾,𝒟𝑉 ). We set

ℳ∗
𝑐 := ⊕𝑖𝐻𝑖 (𝒦)

which is a coherent sheaf on 𝒵.
Such factorizations exist locally, by an extension of a result of [AS]:

Proposition 3.1.1. Let R be a pseudoaffinoid algebra, and let 𝑥0 ∈ Spa 𝑅 be a maximal point. Let
𝐹 (𝑇) ∈ 𝑅{{𝑇}} be a Fredholm power series, and fix ℎ ∈ Q. Suppose 𝐹𝑥0 ≠ 0, and let 𝐹𝑥0 = 𝑄0𝑆0 be
the slope ≤ ℎ-factorization of the specialization of F at 𝑥0. Then there is an open affinoid subspace
𝑈 ⊂ Spa 𝑅 containing 𝑥0 such that 𝐹𝑈 has a slope ≤ ℎ-factorization 𝐹𝑈 = 𝑄𝑆 with Q specializing to
𝑄0 and S specializing to 𝑆0 at 𝑥0.

Proof. The existence of the factorization of 𝐹𝑥0 follows from the version of the Weierstrass preparation
theorem proved in [AS, Lemma 4.4.3]. Then the proof of the proposition is nearly identical to that of
[AS, Theorem 4.5.1], up to replacing p with u and translating the numerical inequalities into rational
localization conditions. �

Since spectral varieties are flat over weight space, we will be able to use the following result to show
that slope factorizations exist:

Theorem 3.1.2 [Con06, Theorem A.1.2]. Let 𝑓 : 𝑋 → 𝑌 be a flat map of pseudorigid spaces. Then f is
finite if and only it is quasicompact and separated with finite fibers, and its fiber rank is locally constant
on Y.

Remark 3.1.3. This result is stated in [Con06] for classical rigid spaces, but the proof goes through
unchanged for pseudorigid spaces. The input from non-Archimedean geometry is the theory of formal
models (and flattening results) of [BL93a], [BL93b]; Although the authors had in mind applications to
classical rigid analytic spaces, they worked in sufficient generality that their results hold in the more
general pseudorigid context. One uses this theory to reduce to the corresponding algebraic result of
[DR73, Lemma II.1.19].
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We further observe that we have inclusions D𝑟
𝜅 ⊂ D<𝑟

𝜅 ⊂ D𝑠
𝜅 for any 𝑟𝜅 ≤ 𝑠 < 𝑟 . Thus, the fact that

𝐹𝑟𝜅 = 𝐹𝑠𝜅 implies that ℳ∗
𝑐 = ⊕𝑖𝐻𝑖

𝑐 (𝐾,𝒟
<𝑟
𝜅 )≤ℎ for any 𝑟 > 𝑟𝜅 .

We may carry out the same procedure for the action of𝑈𝑝 on𝐶BM
∗ (𝐾,𝒜𝜅 ) and obtain a coherent sheaf

ℳBM
∗ = ⊕𝑖𝐻BM

𝑖 (𝐾,𝒜𝜅 )≤ℎ on 𝒵′. Let T denote either T(Δ 𝑝 , 𝐾 𝑝) or T(Δ , 𝐾). Both ℳ∗
𝑐 and ℳBM

∗ are
Hecke modules, so we have constructed eigenvariety data (𝒵,ℳ∗

𝑐 ,T, 𝜓) and (𝒵′,ℳBM
∗ ,T, 𝜓 ′) (where

𝜓 : T→ End𝒪𝒵
(ℳ∗

𝑐) and 𝜓 ′ : T→ End𝒪𝒵′
(ℳBM
∗ ) give the Hecke-module structures).

Finally, we may construct eigenvarieties from the eigenvariety data. Let 𝒯 and 𝒯′ denote the sheaves
of𝒪𝒵-algebras generated by the images of 𝜓 and 𝜓 ′, respectively; in particular, if 𝒵𝑈,ℎ ⊂ 𝒵 is an open
affinoid corresponding to the slope datum (𝑈, ℎ), then

𝒯(𝒵𝑈,ℎ) = im
(
𝒪(𝒵𝑈,ℎ) ⊗Z𝑝 T→ End𝒪 (𝒵𝑈,ℎ)

(
𝐻∗𝑐 (𝐾,𝒟𝑈

)
≤ℎ

)
=: T𝑈,ℎ

and
𝒯′(𝒵′𝑈,ℎ) = im

(
𝒪(𝒵′𝑈,ℎ) ⊗Z𝑝 T→ End𝒪 (𝒵′

𝑈,ℎ
)

(
𝐻BM
∗ (𝐾,𝒜𝑈

)
≤ℎ

)
=: T′𝑈,ℎ .

Then we set
𝒳TG := Spa𝒯

and
𝒳T,′G := Spa𝒯 ′

and we have finite morphisms 𝑞 : 𝒳G → 𝒵 and 𝑞′ : 𝒳′G → 𝒵′, and Z𝑝-algebra homomorphisms
𝜙𝒳 : T→ 𝒪(𝒳TG) and 𝜙𝒳′ : T→ 𝒪(𝒳T,′G ). If the choice of Hecke operators is clear from context, we
will drop T from the notation.

If T = T(Δ , 𝐾), then unlike [JN16], we are adding the Hecke operators 𝑈𝜛𝑣 at places 𝑣 | 𝑝 to our
Hecke algebras (and hence to the coordinate rings of our eigenvarieties), not just the controlling operator
𝑈𝑝 .

3.2. The middle-degree eigenvariety

When 𝐹 = Q and G = H = GL2, for any fixed slope h such that 𝐶•𝑐 (𝐾,𝒟𝜅 ) has a slope-≤ ℎ decom-
position, the complex 𝐶•𝑐 (𝐾,𝒟𝜅 )≤ℎ has cohomology only in degree 1, and 𝐻1

𝑐 (𝐾,𝒟𝜅 )≤ℎ is projective.
As a result, the eigencurve is reduced and equidimensional, and classical points are very Zariski-dense.
For a general totally real field F, the situation is more complicated. The complex 𝐶•𝑐 (𝐾,𝒟𝜅 )≤ℎ lives in
degrees [0, 2𝑑], and we are still primarily interested in the degree-d cohomology; indeed, the discus-
sion of [Har87, §3.6] shows that cuspidal cohomological automorphic forms contribute only to middle
degree cohomology in the classical finite-dimensional classical analogue. However, there is no reason
to expect the other cohomology groups to vanish.

Instead, following [BH17] we will sketch the construction of an open subspace𝒳GL2/𝐹,mid ⊂ 𝒳GL2/𝐹 ,
where 𝐻𝑖

𝑐 (𝐾,𝒟𝜅 ) vanishes for 𝑖 ≠ 𝑑; by [BH17, Theorem B.0.1], all classical points of 𝒳GL2/𝐹

whose associated Galois representation have sufficiently large residual image lie in 𝒳GL2/𝐹,mid. The
cohomology and base change result [JN16, Theorem 4.2.1] shows that the locus where 𝐻𝑖

𝑐 (𝐾,𝒟𝜅 ) = 0
for 𝑖 ≥ 𝑑 + 1 is open, but we need to use the homology complexes 𝐶BM

• (𝐾,A𝜅 ) to control 𝐻𝑖
𝑐 (𝐾,𝒟𝜅 )

for 𝑖 ≤ 𝑑 − 1.
As in [BH17], the key points are a base change result for Borel–Moore homology, and a universal

coefficients theorem relating it to compactly supported cohomology:

Proposition 3.2.1.

◦ There is a third-quadrant spectral sequence

𝐸
𝑖, 𝑗
2 = Tor𝑅−𝑖 (𝐻

BM
− 𝑗 (𝐾,𝒜𝜅 )≤ℎ , 𝑆) ⇒ 𝐻BM

−𝑖− 𝑗 (𝐾,𝒜𝜅𝑆 )≤ℎ
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◦ There is a second-quadrant spectral sequence

𝐸
𝑖, 𝑗
2 = Ext𝑖𝑅 (𝐻

BM
𝑗 (𝐾,𝒜𝜅 )≤ℎ , 𝑅) ⇒ 𝐻

𝑖+ 𝑗
𝑐 (𝐾,𝒟𝜅 )≤ℎ

These are spectral sequences of T(Δ , 𝐾)-modules.

The proof uses both the fact that D<𝑟
𝜅 is the continuous dual of A𝑟

𝜅 and the fact that 𝐻𝑖
𝑐 (𝐾,D<𝑟

𝜅 )≤ℎ =
𝐻𝑖
𝑐 (𝐾,D𝑟

𝜅 )≤ℎ for all 𝑟 > 𝑟𝜅 .

Proposition 3.2.2. If (𝑈, ℎ) is a slope datum, then we have a natural commuting diagram

𝒪(𝑈) ⊗ T(Δ , 𝐾) T′𝑈,ℎ

T′𝑈,ℎ Tred
𝑈,ℎ .

Thus, we have a morphism 𝜏 : 𝒳red
GL2/𝐹

→ 𝒳′GL2/𝐹
and a closed immersion 𝑖 : 𝒳red

GL2/𝐹
↩→ 𝒳GL2/𝐹 .

Definition 3.2.3.

𝒳GL2/𝐹,mid := 𝒳GL2/𝐹 \
[(
∪2𝑑
𝑗=𝑑+1 supp(ℳ 𝑗

𝑐 )
)
∪

(
∪𝑑−1
𝑗=0 supp(𝑖∗𝜏∗ℳBM

𝑗

)]
.

By construction, a point 𝑥 ∈ 𝒳GL2/𝐹 of weight 𝜆𝑥 lies in the Zariski-open subspace 𝒳GL2/𝐹,mid ⊂

𝒳GL2/𝐹 if and only if 𝐻 𝑗
𝑐 (𝐾, 𝑘𝑥 ⊗ 𝒟𝜆𝑥 )𝔪𝑥 = 0 for all 𝑗 ≠ 𝑑 (where 𝔪𝑥 is the maximal ideal of the

Hecke algebra corresponding to x).

Proposition 3.2.4.

1. The coherent sheaf ℳ𝑑
𝑐 |𝒳GL2/𝐹,mid is flat over 𝒲.

2. 𝒳GL2/𝐹,mid is covered by open affinoids W such that W is a connected component of (𝜋 ◦ 𝑞)−1(𝑈),
where (𝑈, ℎ) is some slope datum, and 𝒯(𝑊) acts faithfully on ℳ𝑑

𝑐 (𝑊) � 𝑒𝑊𝐻
𝑑
𝑐 (𝐾,𝒟𝜅 )≤ℎ (where

𝑒𝑊 is the idempotent projector restricting from (𝜋 ◦ 𝑞)−1(𝑈) to W).

Proof. This follows from the base change spectral sequence, and the criterion for flatness. �

3.3. Jacquet–Langlands

The classical Jacquet–Langlands correspondence lets us transfer automorphic forms between GL2 and
quaternionic algebraic groups. Over Q, this correspondence was interpolated in [Che05] to give a closed
immersion of eigencurves 𝒳rig

𝐷×/Q ↩→ 𝒳
rig
GL2/Q; this interpolation was given for general totally real fields

in [Bir19]. We give the corresponding result for extended eigenvarieties. However, as we have elected
to work with the eigenvariety for GL2/𝐹 constructed in [JN16] via overconvergent cohomology, instead
of the eigenvariety constructed from Hilbert modular forms, we will never get an isomorphism of
eigenvarieties, even when [𝐹 : Q] is even.

Let D be a totally definite quaternion algebra over F, split at every place above p, and let 𝔡𝐷 be its
discriminant. For any ideal 𝔫 ⊂ 𝒪𝐹 with (𝔡𝐷 , 𝔫) = 1, we define the subgroup 𝐾𝐷×

1 (𝔫) ⊂ (𝒪𝐷 ⊗ Ẑ)×

𝐾
𝐷×

1 (𝔫) :=
{
𝑔 ∈ (𝒪𝐷 ⊗ Ẑ)× | 𝑔 ≡ ( ∗ ∗0 1 ) (mod 𝔫)

}
.

We may define a similar subgroup 𝐾GL2/𝐹
1 (𝔫) ⊂ Res𝒪𝐹/Z𝑝 GL2 (Ẑ).

A classical algebraic weight is a tuple (𝑘𝜎) ∈ ZΣ∞
≥2 together with a tuple (𝑣𝜎) ∈ ZΣ∞ such that

(𝑘𝜎) + (𝑣𝜎) = (𝑟, . . . , 𝑟) for some 𝑟 ∈ Z, where Σ∞ is the set of embeddings 𝐹 ↩→ R. Set 𝑒1 := ( 𝑟+𝑘𝜎2 )
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and 𝑒2 := ( 𝑟−𝑘𝜎2 ), and define characters 𝜅𝑖 : 𝐹× → R× for 𝑖 = 1, 2 via

𝜅𝑖 (𝑥) =
∏
𝜎∈Σ∞

𝜎(𝑥)𝑒𝑖,𝜎

Then (𝜅1, 𝜅2) is a character on T(Z) which is trivial on a finite-index subgroup of the center 𝑍𝐺 (Z) = 𝒪×𝐹 .
Then we have the classical Jacquet–Langlands correspondence:

Theorem 3.3.1. Let 𝜅 be a classical weight, and let 𝔫 ⊂ 𝒪𝐹 be an ideal such that (𝔫, 𝔡𝐷) = 1. There is
a Hecke-equivariant isomorphism of spaces of cusp forms

𝑆
𝐷×

𝜅 (𝐾
𝐷×

1 (𝔫))
∼
−→ 𝑆𝔡𝐷−new

𝜅 (𝐾GL2/𝐹
1 (𝔫𝔡𝐷)).

We will interpolate this correspondence to a closed immersion 𝒳𝐷× ↩→ 𝒳GL2/𝐹 , where the source
has tame level 𝐾𝐷×

1 (𝔫) and the target has tame level 𝐾GL2/𝐹
1 (𝔫). We use the interpolation theorem of

[JN19a]:

Theorem 3.3.2 [JN19a, Theorem 3.2.1]. Let 𝔇𝑖 = (𝒵𝑖 ,ℳ𝑖 ,T𝑖 , 𝜓𝑖) for 𝑖 = 1, 2 be eigenvariety data,
with corresponding eigenvarieties 𝒳𝑖 , and suppose we have the following:

◦ A morphism 𝑗 : 𝒵1 →𝒵2
◦ A Z𝑝-algebra homomorphism T2 → T1
◦ A subset 𝒳cl ⊂ 𝒳1 of maximal points such that the T2-eigensystem of x appears in ℳ2( 𝑗 (𝜋1 (𝑥))) for

all 𝑥 ∈ 𝒳cl.

Let 𝒳 ⊂ 𝒳1 denote the Zariski closure of 𝒳cl (with its underlying reduced structure). Then there is a
canonical morphism 𝑖 : 𝒳 → 𝒳2 lying over j, such that 𝜙

𝒳
◦ 𝜎 = 𝑖∗ ◦ 𝜙𝒳2 . If j is a closed immersion

and 𝜎 is a surjection, then i is a closed immersion.

We remark that in the presence of integral structures, we can make a sharper statement:

Corollary 3.3.3. With notation as above, suppose that the 𝒵𝑖 = Spa 𝑅𝑖 are affinoid, with 𝑅𝑖,0 ⊂
𝑅𝑖 rings of definition such that j is induced by a morphism Spf 𝑅1,0 → Spf 𝑅2,0, and sup-
pose that 𝑀𝑖 := Γ(𝒵𝑖 ,ℳ𝑖) admit 𝑅𝑖,0-lattices 𝑀𝑖,0 stable under the actions of T𝑖 . Let 𝑅′𝑖,0 :=
im

(
𝑅𝑖,0 ⊗ T𝑖 → End𝑅𝑖,0 (𝑀𝑖,0)

)
, and let 𝒳0 denote the closure of 𝒳cl in Spf 𝑅′1,0. Then there is a

morphism 𝑗0 : 𝒳0 → Spf 𝑅′2,0.

Proof. As in the proof of [JN19a, Theorem 3.2.1], one reduces to the case where 𝑅0 := 𝑅1,0 = 𝑅2,0 and
T := T1 = T2, and one considers the actions of T1 ⊕ T2 on 𝑀1,0 ⊕ 𝑀2,0. Then we have quotients

𝑅3,0 := im
(
𝑅0 ⊗ T→ End𝑅0 (𝑀1,0 ⊕ 𝑀2,0)

)
� 𝑅′𝑖,0.

Since 𝒳 ⊂ 𝒳2 and Spf 𝑅3,0 is separated, we have 𝒳0 ⊂ Spf 𝑅′2,0, as desired. �

We take 𝒵1 = 𝒵2 = 𝒲𝐹 ×G𝑚. In order to define T = T1 = T2, we set

Δ 𝑣 =

{
GL2(𝐹𝑣 ) if 𝑣 � 𝑝𝔡𝐷𝔫
𝐾
𝐷×

1 (𝔫)𝑣 if 𝑣 | 𝔡𝐷𝔫.

For 𝑣 | 𝑝, we take Δ 𝑣 as in §3.1. In other words, T is the commutative Z𝑝-algebra generated by
𝑇𝑣 := [𝐾𝑣

( 1
𝜛𝑣

)
𝐾𝑣 ] and 𝑆𝑣 := [𝐾𝑣

( 𝜛𝑣
𝜛𝑣

)
𝐾𝑣 ] for 𝑣 � 𝑝𝔡𝐷𝔫 and𝑈𝜛𝑣 for 𝑣 | 𝑝.

However, we cannot immediately combine this interpolation theorem with the Jacquet–Langlands
correspondence because our choice of weight space means that classical weights may not be Zariski
dense unless Leopoldt’s conjecture is true. More precisely, given a classical algebraic weight, we
constructed a character on T(Z) trivial on a finite-index subgroup of 𝒪×𝐹 , and conversely, characters on
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T(Z) trivial on a finite-index subgroup of 𝒪×𝐹 yield classical algebraic weights. This equivalence relies
on Dirichlet’s unit theorem.

This means that there are two natural definitions of p-adic families of weights, 𝒲′
𝐹 =

Spa Z𝑝 [[(Res𝒪𝐹/Z𝑝 G𝑚) × Z×𝑝]]an interpolating classical algebraic weights, and 𝒲𝐹 interpolating char-
acters on 𝑇0, and the equivalence of those two definitions depends on Leopoldt’s conjecture.

Fortunately, the gap between these weight spaces can be controlled: There is a closed embedding
𝒲′

𝐹 ↩→𝒲𝐹 , and the twisting action by characters on 𝒪×𝐹,𝑝/𝒪
×,+
𝐹 defines a surjective map

�
𝒪×𝐹,𝑝/𝒪

×,+
𝐹 ×𝒲′

𝐹 →𝒲
rig
𝐹 .

We say that a weight 𝜆 ∈ 𝒲rig
𝐹 (Q𝑝) is twist classical if it is in the

�
𝒪×𝐹,𝑝/𝒪

×,+
𝐹 (Q𝑝)-orbit of a classical

weight. Then twist classical weights are very Zariski dense in 𝒲𝐹 .
In addition, we may define a twisting action on Hecke modules, as in [BH17]. Let Gal𝐹,𝑝 denote

the Galois group of the maximal abelian extension of F unramified away from p and ∞, and let
𝜂 : Gal𝐹,𝑝 → Q×𝑝 be a continuous character. Global class field theory implies that Gal𝐹,𝑝 fits into an
exact sequence

1→ 𝒪×𝐹,𝑝/𝒪
×,+
𝐹 → Gal𝐹,𝑝 → Cl+𝐹 → 1,

where Cl+𝐹 is the narrow class group of F (and hence finite). Suppose M is an R-module equipped with
an R-linear left Δ 𝑝-action. Then we may define a new left Δ 𝑝-module 𝑀 (𝜂) := 𝑀 ⊗ 𝜂−1 |𝒪×𝐹,𝑝 , where
the action of 𝑔 ∈ Δ 𝑝 is given by

𝑔 · 𝑚 =
(
𝜂−1 |𝒪×𝐹,𝑝 (det 𝑔 · 𝑝−

∑
𝑣 |𝑝 𝑣 (det 𝑔) )

)
· (𝑔 · 𝑚).

In particular, 𝒟𝜅 (𝜂) � 𝒟𝜂−1 ·𝜅 by [BH17, Lemma 5.5.2], and there is an isomorphism

tw𝜂 : 𝐻∗𝑐 (𝐾,𝒟𝜅 )
∼
−→ 𝐻∗𝑐 (𝐾,𝒟𝜂−1 ·𝜅 .

Suppose 𝑥 ∈ 𝒳𝐷× (Q𝑝) is a point with wt(𝑥) =: 𝜆, corresponding to the system of Hecke eigenvalues
𝜓𝑥 : T→ Q𝑝 . Then we define a new system of Hecke eigenvalues via

tw𝜂 (𝜓𝑥) (𝑇) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜂(𝜛𝑣 )𝜓𝑥 (𝑇) if 𝑣 � 𝑝𝔡𝐷𝔫 and 𝑇 = 𝑇𝑣
𝜂(𝜛𝑣 )

2𝜓𝑥 (𝑇) if 𝑣 � 𝑝𝔡𝐷𝔫 and 𝑇 = 𝑆𝑣
𝜂(𝜛𝑣 )𝜓𝑥 (𝑇) if 𝑣 | 𝑝.

Then it follows from [BH17, Proposition 5.5.5] that tw𝜂 (𝜓𝑥) corresponds to a point tw𝜂 (𝑥) ∈ 𝒳𝐷× of
weight 𝜂−1 |𝒪×𝐹,𝑝 · 𝜅.

We say that a point 𝑥 ∈ 𝒳𝐷× (Q𝑝) is twist classical if it is in the �Gal𝐹,𝑝 (Q𝑝)-orbit of a point
corresponding to a classical system of Hecke eigenvalues.
Proposition 3.3.4. Twist classical points are very Zariski dense in 𝒳𝐷× .
Proof. Recall that 𝒳𝐷× admits a cover by affinoid pseudorigid spaces of the form Spa𝒯(𝒵𝑈,ℎ), where
𝜋 : 𝒵𝑈,ℎ → 𝑈 is finite of constant degree, and

𝒯(𝒵𝑈,ℎ) = im
(
𝒪(𝒵𝑈,ℎ) ⊗Z𝑝 T

𝑝 → End𝒪 (𝒵𝑈,ℎ) (𝐻
∗
𝑐 (𝐾,𝒟𝑈 )≤ℎ

)
.

We write 𝑈 = Spa 𝑅 for some pseudoaffinoid algebra R over Z𝑝 . We will show that Spec𝒯(𝒵𝑈,ℎ) →

Spec 𝑅 carries irreducible components surjectively onto irreducible components, and we will construct a
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Zariski dense set of maximal points𝑊 tw−cl
𝑈,ℎ ⊂ 𝑈 such that the points of wt−1 (𝑊 tw−cl

𝑈,ℎ ) are twist classical.
By [Che04, Lemme 6.2.8], this implies the desired result.

To see that irreducible components of Spec𝒯(𝒵𝑈,ℎ) map surjectively onto irreducible components
of Spec 𝑅, we observe that D is totally definite, so the associated Shimura manifold is a finite set of
points and𝐻∗𝑐 (𝐾,𝒟𝑈 ) vanishes outside degree 0. The base change spectral sequence of [JN16, Theorem
4.2.1] implies that the formation of 𝐻0(𝐾,𝒟𝑈 )≤ℎ commutes with arbitrary base change on U, which
implies that 𝐻0 (𝐾,𝒟𝑈 )≤ℎ is flat. Then [Che04, Lemme 6.2.10] implies that Spec𝒯(𝒵𝑈,ℎ) → Spec 𝑅
carries irreducible components surjectively onto irreducible components, as desired.

Thus, it remains to construct𝑊 tw−cl
𝑈,ℎ . Birkbeck proved a ‘small slope implies classical’ result [Bir19,

Theorem 4.3.7] and constructed a set𝑊cl
𝑈,ℎ Zariski dense in𝑈 ∩𝒲′

𝐹 such that the points of wt−1(𝑊cl
𝑈,ℎ)

are classical (see the proof of [Bir19, Theorem 6.1.9]). Setting𝑊 tw−cl
𝑈,ℎ to be the

�
𝒪×𝐹,𝑝/𝒪

×,+
𝐹 (Q𝑝)-orbit of

𝑊cl
𝑈,ℎ , [BH17, Lemma 6.3.1] implies that points of wt−1(𝑊 tw−cl

𝑈,ℎ ) are twist classical, and we are done. �

As a corollary, we deduce that 𝒳𝐷× has no components supported entirely in characteristic p:

Corollary 3.3.5. 𝒳rig
𝐷×

is Zariski dense in 𝒳𝐷× .

We may use similar arguments to show that 𝒳𝐷× is reduced:

Proposition 3.3.6. The eigenvariety 𝒳𝐷× is reduced.

Proof. We first show that 𝒳rig
𝐷×

is reduced. By [JN16, Proposition 6.1.2] (which adapts [Che05, Propo-

sition 3.9]), it is enough to find a Zariski dense set of twist classical weights𝑊 ss
𝑈,ℎ ⊂ 𝑈 ⊂𝒲

rig
𝐹 for each

slope datum (𝑈, ℎ) such that ℳ(𝒵𝑈,ℎ)𝜅 is a semisimple Hecke module for all 𝜅 ∈ 𝑊 ss
𝑈,ℎ . Birkbeck

[Bir19, Lemma 6.1.12] constructed sets 𝑊 ′,ss
𝑈,ℎ Zariski dense in 𝑈 ∩𝒲

′,rig
𝐹 with this property, and we

will again use twisting by p-adic characters to construct𝑊 ss
𝑈,ℎ .

If 𝜂 : 𝒪×𝐹,𝑝/𝒪
×,+
𝐹 → Q×𝑝 is a character, we have an isomorphism

tw𝜂 : 𝐻∗𝑐 (𝐾,𝒟𝜅 )
∼
−→ 𝐻∗𝑐 (𝐾,𝒟𝜂−1 ·𝜅 .

By [BH17, Proposition 5.5.5], tw𝜂 is Hecke-equivariant up to scalars, so ℳ(𝒵𝑈,ℎ)𝜅 is a semisimple

Hecke module if and only if ℳ(𝒵𝜂−1 ·𝑈,ℎ)𝜂−1 ·𝜅 is. Thus, we may take𝑊 ss
𝑈,ℎ to be the

�
𝒪×𝐹,𝑝/𝒪

×,+
𝐹 (Q𝑝)-

orbit of ∪𝑈 ′𝑊 ′,ss
𝑈 ′,ℎ , as (𝑈 ′, ℎ) varies through slope data, and we see that 𝒳rig

𝐷×
is reduced.

Now, let 𝑋 ⊂ 𝒳𝐷× be an open affinoid subspace, and let {𝑋𝑖} be an open affinoid cover of the rigid
analytic locus 𝑋 rig ⊂ 𝑋 . Since 𝑋 \ 𝑋 rig contains no open subset of X, the natural map

𝒪(𝑋) →
∏
𝑖

𝒪(𝑋𝑖)

is injective. Each 𝒪(𝑋𝑖) is reduced, so 𝒪(𝑋) is, as well. �

Now, the Jacquet–Langlands correspondence for eigenvarieties follows immediately:

Corollary 3.3.7. There is a closed immersion 𝒳𝐷× ↩→ 𝒳GL2/𝐹 interpolating the classical Jacquet–
Langlands correspondence on (twist) classical points, where the source has tame level 𝐾𝐷×

1 (𝔫) and the
target has tame level 𝐾GL2/𝐹

1 (𝔫).

In particular, if [𝐹 : Q] is even, we can find D split at all finite places and ramified at all infinite
places. Then we may take in particular 𝔫 = 𝒪𝐹 to obtain a morphism of eigenvarieties of tame level 1.
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3.4. Cyclic base change

Fix an integer 𝑁 ∈ N, and let S be a finite set of primes containing every prime dividing 𝑝𝑁 . For any
number field F, we again let 𝐾 𝑝

𝐹 ⊂ GL2 (A𝐹 ) be the compact open subgroup given by

𝐾 𝑝
𝐹 := {𝑔 ∈ GL2(A𝐹 ) | 𝑔 ≡ (

∗ ∗
0 1 ) (mod 𝑁)}

and we let 𝐾𝐹 := 𝐾 𝑝
𝐹 𝐼. We also define the Hecke algebra

T𝑆𝐹 := T𝑆GL2/𝐹
:= ⊗𝑣∉𝑆T(GL2(𝐹𝑣 ),GL2 (𝒪𝐹𝑣 )).

There is a homomorphism 𝜎𝑆
𝐹 : T𝑆𝐹 → T

𝑆
Q induced by unramified local Langlands and restriction of

Weil representations from𝑊𝐹 to𝑊Q.
Similarly, there is a morphism of weight spaces 𝒲Q,0 ↩→ 𝒲Q → 𝒲𝐹 induced by the norm map

𝑇𝐹,0 → 𝑇Q,0.
In the special case where 𝐹/Q is cyclic, the classical base change map produces cuspidal automor-

phic representations of GL2 (A𝐹 ) from certain cuspidal automorphic representations of GL2(AQ), and
[JN19a] interpolated it to a morphism of eigenvarieties:

Theorem 3.4.1 [JN19a, Theorem 4.3.1].2 There is a finite morphism

𝒳𝑆
GL2/Q,cusp,𝐹−ncm → 𝒳𝑆

GL2/𝐹

lying over 𝒲Q →𝒲𝐹 and compatible with the homomorphism 𝜎𝑆
𝐹 .

Here, the source includes only cuspidal components with a Zariski-dense set of forms without
complex multiplication by an imaginary quadratic subfield of F.

Let Gal(𝐹/Q) = 〈𝜏〉. Then a cuspidal automorphic representation 𝜋 of GL2 (A𝐹 ) is in the image
of the base change map if and only if 𝜋 ◦ 𝜏 � 𝜋. In particular, the systems of Hecke eigenvalues of
base-changed representations must be fixed by Gal(𝐹/Q).

This characterization of the image of the classical base change map permits us to prove automorphy
lifting theorems by passing to a more convenient solvable extension. We therefore wish to characterize
the image of the interpolated base change map when F is totally real and completely split at p (so that
the ‘F - ncm’ condition is vacuous). We further assume that [𝐹 : Q] is prime to p.

We will study the ‘Gal(𝐹/Q)-fixed locus’ in the GL2/𝐹 -eigenvariety 𝒳
𝑆,Gal(𝐹/Q)
GL2/𝐹

and show that it is
the image of the cyclic base change map; Xiang [Xia18] used a similar idea to construct p-adic families
of essentially self-dual automorphic representations.

Remark 3.4.2. We expect that it is possible to construct a base change morphism and characterize
its image for more general cyclic extensions of number fields 𝐹 ′/𝐹; however, for simplicity (and
compatibility with [JN19a]) we have chosen to restrict to this setting.

We first observe that Gal(𝐹/Q) acts on GL2/𝐹 , stabilizing T ⊂ B and I, and also stabilizing the
tame level 𝐾 𝑝

𝐹 . Next, observe that Gal(𝐹/Q) acts on T𝑆𝐹 via (𝜏 · 𝑇) (𝑔) = 𝑇 (𝜏−1 (𝑔)) for all 𝑇 ∈ T𝑆𝐹
and 𝑔 ∈ GL2 (A𝐹, 𝑓 ). Then for any 𝛿 ∈ Δ , (𝜏 · [𝐾𝐹 𝛿𝐾𝐹 ]) (𝑔) = [𝐾𝐹𝜏

−1(𝛿)𝐾𝐹 ] (𝑔); in particular,
𝜏 · 𝑈𝜛𝑣 = 𝑈𝜏 (𝑣) , and hence Gal(𝐹/Q) fixes 𝑈𝑝 . Similarly, we have an action of Gal(𝐹/Q) on 𝒲Q
given via (𝜏 · 𝜆) (𝑔) = 𝜆(𝜏−1(𝑔)); the image of 𝒲Q in 𝒲𝐹 is the diagonal locus, that is, exactly the
Gal(𝐹/Q)-fixed locus.

Since 𝑈𝑝 is fixed by Gal(𝐹/Q), we see that if 𝜅 is a weight fixed by Gal(𝐹/Q), then the Fredholm
determinant 𝐹𝜅 (𝑇) of the action of𝑈𝑝 on 𝐶•(𝐾𝐹 ,𝒟𝜅 ) is fixed by Gal(𝐹/Q). Thus, we have a spectral
variety 𝒵Gal(𝐹/Q) ⊂𝒲

Gal(𝐹/Q)
𝐹 × A1,an over 𝒲Gal(𝐹/Q)

𝐹 .

2The authors only construct the morphism when 𝑁 ≥ 5, to maintain their running assumption that the level is actually neat (as
opposed to containing an open neat subgroup with index prime to p). However, the argument is identical for small N.
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Lemma 3.4.3. Let 𝜅 : 𝑇0 → 𝑅× be a weight fixed by Gal(𝐹/Q). There is an action of Gal(𝐹/Q)
on 𝐶•(𝐾𝐹 ,𝒟𝜅 ) and if 𝒟𝜅 admits a slope-≤ ℎ decomposition, the action of Gal(𝐹/Q) stabilizes
𝐶•(𝐾𝐹 ,𝒟𝜅 )≤ℎ .

Proof. Referring to the definition of 𝒟𝜅 for an arbitrary weight 𝜅, we have 𝒟𝜅 = lim
←−−

D𝑟
𝜅 , where D𝑟

𝜅 is
the completion of a module D𝜅 with respect to a norm ‖ · ‖𝑟 . The module D𝜅 itself is the continuous dual
of the space A𝜅 ⊂ C (𝐼, 𝑅) of continuous functions 𝑓 : 𝐼 → 𝑅 such that 𝑓 (𝑔𝑏) = 𝜅(𝑏) 𝑓 (𝑔) for all 𝑔 ∈ 𝐼
and 𝑏 ∈ 𝐵0. It follows that we have a map 𝜏 : A𝜅 → A𝜏 (𝜅) (since the action of Gal(𝐹/Q) preserves
both I and 𝐵0). If 𝜅 is fixed by 𝜏, we obtain a dual action of Gal(𝐹/Q) on D𝜅 , and hence D𝑟

𝜅 and 𝒟𝜅 .
Since 𝐾 𝑝

𝐹 is also stable under the action of Gal(𝐹/Q) and the actions of 𝐾 𝑝
𝐹 and Gal(𝐹/Q) on

𝒟𝜅 commute, by functoriality we obtain an action of Gal(𝐹/Q) on 𝐶•(𝐾𝐹 ,𝒟𝜅 ). Moreover, the action
of Gal(𝐹/Q) fixes the Hecke operator 𝑈𝑝 , so [JN16, Proposition 2.2.11] implies that the action of
Gal(𝐹/Q) also preserves 𝐶•(𝐾𝐹 ,𝒟𝜅 )≤ℎ . �

Lemma 3.4.4. Let 𝜅 : 𝑇0 → 𝑅× be a weight fixed by Gal(𝐹/Q). For any𝑇 ∈ T𝑆𝐹 , we have 𝜏·𝑇 = 𝜏◦𝑇◦𝜏−1

as operators on 𝐶•(𝐾𝐹 ,𝒟𝜅 ).

Proof. We may assume 𝑇 = [𝐾𝐹 𝛿𝐾𝐹 ] for some 𝛿 ∈ Δ . Then 𝜏 · [𝐾𝐹 𝛿𝐾𝐹 ] = [𝐾𝐹𝜏(𝛿)𝐾𝐹 ], and the
corresponding morphism

𝐶•(𝐾𝐹 ,𝒟𝜅 ) → 𝐶•(𝜏(𝛿)𝐾𝐹𝜏(𝛿)
−1,𝒟𝜅 )

is induced by the conjugation map 𝜏(𝛿)𝐾𝐹𝜏(𝛿)
−1 → 𝐾𝐹 and the map 𝒟𝜅 → 𝒟𝜅 given by 𝑑 ↦→ 𝜏(𝛿) · 𝑑.

But 𝜏(𝛿)𝐾𝐹𝜏(𝛿)
−1 = 𝜏

(
𝛿𝜏−1 (𝐾𝐹 )𝛿

−1) , so we may factor the conjugation map as

𝜏(𝛿)𝐾𝐹𝜏(𝛿)
−1 𝜏−1

−−−→ 𝛿𝜏−1(𝐾𝐹 )𝛿
−1 → 𝜏−1(𝐾𝐹 )

𝜏
−→ 𝐾𝐹 .

Similarly, 𝑑 ↦→ 𝜏(𝛿) · 𝑑 factors as 𝜏 ◦𝑇 ◦ 𝜏−1, so our morphism of complexes also factors as desired. �

We may restrict ℳ∗
𝑐 to 𝒵Gal(𝐹/𝑄) ; we denote this restriction by ℋ∗ and by abuse of notation, we

again use 𝒯 to denote the sheaf generated by the image of T𝑆𝐹 in ℰ𝑛𝑑𝒵Gal(𝐹/Q) (ℋ∗). Then the slice of
the eigenvariety 𝒳𝑆

GL2/𝐹
over 𝒲Gal(𝐹/Q)

𝐹 is, by definition, Spa𝒯.
Both T(Δ 𝑝 , 𝐾 𝑝

𝐹 ) and End𝒪 (𝑉 ) (ℋ∗) have actions of Gal(𝐹/Q), and Lemma 3.4.4 implies that they
are compatible. Thus, 𝒯(𝑉) and 𝒳𝑆

GL2/𝐹
|
𝒲

Gal(𝐹/Q)
𝐹

have actions of Gal(𝐹/Q).
The subspace of 𝒳GL2/𝐹 fixed by Gal(𝐹/Q) corresponds to the sheaf 𝑉 ↦→ 𝒯(𝑉)Gal(𝐹/Q) of

coinvariants of 𝒯. Since Gal(𝐹/Q) is a finite group with order prime to p, 𝒯(𝑉)Gal(𝐹/Q) is a 𝒪𝒲𝐹 (𝑉)-
linear direct summand of 𝒯(𝑉).

The above discussion gives us a closed subspace 𝒳
𝑆,Gal(𝐹/Q)
GL2/𝐹

↩→ 𝒳𝑆
GL2/𝐹

.
We let

𝒳
𝑆,Gal(𝐹/Q) ,◦
GL2/𝐹

:= 𝒳
𝑆,Gal(𝐹/Q)
GL2/𝐹

∩𝒳𝑆
GL2/𝐹,mid,

and we let 𝒳𝑆,Gal(𝐹/Q) ,◦
GL2/𝐹

denote its Zariski closure in 𝒳𝑆
GL2/𝐹

.

Lemma 3.4.5. Classical points are very Zariski dense in 𝒳
𝑆,Gal(𝐹/Q) ,◦
GL2/𝐹

.

Proof. If (𝑈, ℎ) is a slope datum and𝑊 ⊂ 𝒳𝑆
GL2/𝐹

is a connected affinoid subspace of the preimage of U,
then 𝒯(𝑊) = 𝑒𝑊𝒯(𝑈) and ℳ∗

𝑐 (𝑊) � 𝑒𝑊𝐻
∗
𝑐 (𝐾,𝒟𝑈 )≤ℎ , where 𝑒𝑊 is the idempotent projector to W.

If 𝑊 ⊂ 𝒳𝑆
GL2/𝐹,mid, then ℳ∗

𝑐 � 𝑒𝑊𝐻
𝑑
𝑐 (𝐾,𝒟𝑈 )≤ℎ and 𝐻𝑑

𝑐 (𝐾,𝒟𝑈 )≤ℎ is a projective 𝒪𝒲𝐹 (𝑈)-module.
It follows that the restriction of ℳ∗

𝑐 to 𝒳
𝑆,Gal(𝐹/Q) ,◦
GL2/𝐹

is a vector bundle over U.
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By [Che04, Lemme 6.2.10], 𝒯(𝑈) is 𝒪𝒲𝐹 (𝑈)-torsion-free, and it remains torsion-free after any flat
base change on U. Since 𝒯(𝑈)Gal(𝐹/Q) is a direct summand of 𝒯(𝑈), the same property holds for the
coinvariants.

Now, we may apply [Che04, Lemme 6.2.10] again to conclude that𝑊 ∩𝒳𝑆,Gal(𝐹/Q) ,◦
GL2/𝐹

is equidimen-
sional of dimension dim𝒪

𝒲
Gal(𝐹/Q)
𝐹

(𝑈), and every irreducible component of𝑊 ∩𝒳𝑆,Gal(𝐹/Q) ,◦
GL2/𝐹

surjects
onto an irreducible component of Spec𝒪

𝒲
Gal(𝐹/Q)
𝐹

(𝑈).

If 𝑥 ∈ 𝑊 ∩𝒳
𝑆,Gal(𝐹/Q) ,◦
GL2/𝐹

has a classical weight that is sufficiently large (where ‘sufficiently large’
depends on h), then x corresponds to a classical Hilbert modular form. But sufficiently large classical
weights are very Zariski dense in 𝒲

Gal(𝐹/Q)
𝐹 , so [Che04, Lemme 6.2.8] implies that classical points are

very Zariski dense in 𝒳
𝑆,Gal(𝐹/Q) ,◦
GL2/𝐹

. �

Remark 3.4.6. The proof Lemma 3.4.5 is the only time we use our assumption that |Gal(𝐹/Q) | is prime
to p. If we restricted to the rigid analytic locus (where p is invertible, so that 𝒯Gal(𝐹/Q is unconditionally
a direct summand of 𝒯, this assumption would be unnecessary.

Corollary 3.4.7. The image of the cyclic base change morphism in 𝒳𝑆
GL2/𝐹,mid is exactly 𝒳𝑆,Gal(𝐹/Q) ,◦

GL2/𝐹
.

Proof. Since the cyclic base change morphism 𝒳GL2/Q,cusp → 𝒳GL2/𝐹 is finite, it has closed image.
Moreover, cyclic base change carries any classical point of 𝒳GL2/Q,cusp to a point of 𝒳𝑆,Gal(𝐹/Q) ,◦

GL2/𝐹
; since

𝒳
𝑆,Gal(𝐹/Q) ,◦
GL2/𝐹

is closed in 𝒳GL2/𝐹 , it contains the entire image of the cyclic base change morphism.
On the other hand, every classical point of 𝒳𝑆,Gal(𝐹/Q) ,◦

GL2/𝐹
is in the image of cyclic base change, by the

classical theorem, so Lemma 3.4.5 implies the desired result. �

3.5. Galois representations

In [JN16, §5.4], the authors construct families of Galois determinants (in the sense of [Che14]) over the
eigenvarieties 𝒳G when G = Res𝐹/Q GL𝑛 and F is totally real or CM, and prove that they satisfy local-
global compatibility at places away from p and the level. Then the Jacquet–Langlands correspondence
lets us deduce the following:

Theorem 3.5.1. Let D be a quaternion algebra over a totally real field F, such that F is totally split at p
and D is split at all places above p. Let 𝐾 = 𝐾 𝑝 𝐼 ⊂ (A𝐹, 𝑓 ⊗𝐷)

× be the level, and let S be the set of finite
places v of F for which D is ramified or 𝐾𝑣 ≠ GL2(𝒪𝐹𝑣 ). Then there is a continuous two-dimensional
Galois determinant 𝐷 : Gal𝐹,𝑆 → 𝒪(𝒳𝐷×)

+ such that

𝐷 (1 − 𝑋 · Frob𝑣 ) = 𝑃𝑣 (𝑋)

for all 𝑣 ∉ 𝑆, where 𝑃𝑣 (𝑋) is the standard Hecke polynomial.
Moreover, if 𝑣 | 𝑝, then for every maximal point 𝑥 ∈ 𝒳𝐷× of weight 𝜅𝑥 = (𝜅𝑥,1, 𝜅𝑥,2), we let

𝜓 : 𝒪(𝒳𝐷×)
+ → 𝑘 (𝑥)+ denote the corresponding specialization map. Then there is a proper Zariski-

closed subspace 𝑍 ⊂ 𝒳𝐷× such that for 𝑥 ∉ 𝑍 , the Galois representation corresponding to 𝐷𝑥 |Gal𝐹,𝑣 is
trianguline with parameters 𝛿1, 𝛿2 : 𝐹×𝑣 ⇒ 𝑘 (𝑣)×, where

𝛿1 |𝒪×𝐹𝑣
= 𝜅−1

𝑥,2 |𝒪×𝑣 and 𝛿1 (𝜛𝑣 ) = 𝜓(𝑈𝜛𝑣 )

and
𝛿2 |𝒪×𝐹𝑣

= (𝜅𝑥,1 |𝒪×𝑣 𝜒cyc)
−1 and 𝛿2 (𝜛𝑣 ) = 𝜓(𝐼𝑣

( 𝜛𝑣
1
)
𝐼𝑣 ).

Proof. It only remains to check local-global compatibility at places above p. But this is true for
noncritical classical points by work of Saito, Blasius–Rogawski, and Skinner, and it is true for twists
of those classical points by the definition of twisting. Then the result follows from [KPX14, Corollary
6.3.10] and [Bel23a, Theorem 6.8]. �
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Remark 3.5.2. For each point 𝑥 ∈ 𝒳𝐷× , there is a residual Galois determinant 𝐷𝑥 valued in a finite
field. These residual Galois determinants are constant on each connected component of 𝒳𝐷× , as a
consequence of [Che14, Lemma 3.10].

As in Corollary 3.3.3, we can make a sharper local statement in the presence of integral structures.
Suppose 𝜅 : 𝑇0/𝑍 (𝐾) → 𝑅× is a weight, where R is a pseudoaffinoid algebra equipped with a norm
adapted to 𝜅, and 𝑅0 ⊂ 𝑅 is the corresponding unit ball (so in particular, 𝜅 takes values in 𝑅0). If
(Spa 𝑅, ℎ) is a slope datum, for any 𝑟 > 𝑟𝜅 we define

𝐻0(𝐾,D<𝑟
𝜅 )≤ℎ := im

(
𝐻0(𝐾,D<𝑟,◦

𝜅 ) → 𝐻0(𝐾,D<𝑟
𝜅 )≤ℎ

)
and

T
<𝑟,◦
𝜅,≤ℎ := im

(
𝑅0 ⊗ T→ End𝑅0 (𝐻

0 (𝐾,D<𝑟,◦
𝜅 )≤ℎ)

)
.

Corollary 3.5.3. With hypotheses and notation as above, there is a two-dimensional Galois determinant
𝐷0 : Gal𝐹,𝑆 → T<𝑟,◦,red

𝜅,≤ℎ such that

𝑅◦ ⊗𝑅0 𝐷0 = 𝑅◦ ⊗𝒪 (𝒳𝐷× )+ 𝐷.

Proof. This is a corollary of the construction of [JN16, §5.4], rather than of Theorem 3.5.1. For each
maximal point 𝑥 ∈ Spa 𝑅 with residue field L and ring of integers𝒪𝐿 , let 𝜅𝑥 be the composition of 𝜅 with
𝑅0 → 𝒪𝐿 . By [JN16, Corollary 5.3.2(2)] combined with Corollary 3.3.3, there is a two-dimensional
Galois determinant 𝐷𝑥 : Gal𝐹,𝑆 → T<𝑟,◦,red

𝜅𝑥 ,≤ℎ
valued in the reduced quotient of T<𝑟,◦𝜅𝑥 ,≤ℎ

. We have an
injection

T
<𝑟,◦,red
𝜅,≤ℎ ↩→

∏
𝑥

T
<𝑟,◦,red
𝜅𝑥 ,≤ℎ

,

where the x range over maximal points of Spa 𝑅. The ring T<𝑟,◦,red
𝜅,≤ℎ is compact since it is a finite 𝑅0-

module, so by [Che14, Example 2.3.2] the T<𝑟,◦,red
𝜅𝑥 ,≤ℎ

-valued determinants glue to 𝐷0. �

3.6. Quaternionic sub-eigenvarieties

In order to study suitable spaces of overconvergent quaternionic modular forms, we will need to
define and study eigenvarieties parametrizing quaternionic modular forms with certain auxiliary data
fixed. We let F be a totally real number field totally split at p, and we let D be a totally definite
quaternion algebra over F, split at all places above p. We fix a level 𝐾 ⊂

(
A𝐹, 𝑓 ⊗𝐹 𝐷

)× and monoid
𝐾 ⊂ Δ ⊂

(
A𝐹, 𝑓 ⊗𝐹 𝐷

)×, and we set T to be either T(Δ 𝑝 , 𝐾 𝑝) or T(Δ , 𝐾).
In order to construct an eigenvariety for 𝐷, we fixed a Borel–Serre complex 𝐶•𝑐 (𝐾,−) and we con-

sidered the cohomology 𝐶•𝑐 (𝐾,𝒟𝜅 ). However, because we assumed D is totally definite, the associated
Shimura manifold is a finite set of points, and so the cohomology of 𝐶•𝑐 (𝐾,−) = 𝐶•(𝐾,−) vanishes
outside of degree 0.

Thus, we can give an extremely concrete description of the automorphic forms of interest to us and
of the Hecke operators acting on them. Suppose that M is a left 𝑅[Δ]-module, for some pseudoaffinoid
algebra R. Then if 𝑓 : 𝐷×\(A𝐹, 𝑓 ⊗𝐹 𝐷)

× → 𝑀 is a function and 𝛾 ∈ Δ , we define 𝛾 | 𝑓 via 𝛾 | 𝑓 (𝑔) =
𝛾 · 𝑓 (𝑔𝛾). Then

𝐻0 (𝐾, 𝑀) =
{
𝑓 : 𝐷×\(A𝐹, 𝑓 ⊗𝐹 𝐷)

× → 𝑀 | 𝛾 | 𝑓 = 𝑓 for all 𝛾 ∈ 𝐾
}

We can describe the Hecke operator [𝐾𝑔𝐾] : 𝐻0(𝐾, 𝑀) → 𝐻0(𝐾, 𝑀) explicitly for any 𝑔 ∈ Δ; we
decompose the double coset 𝐾𝑔𝐾 =

∐
𝑖 𝑔𝑖𝐾 as a finite disjoint union of cosets, and we have

[𝐾𝑔𝐾] 𝑓 :=
∑
𝑖

𝑔𝑖 | 𝑓 .
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The first piece of auxiliary data we want to fix is the central character. If 𝜉 : A×𝐹, 𝑓 /𝐹
× → 𝑅×0 is a

continuous character such that 𝜉 |𝐾𝑣∩𝒪×𝐹𝑣 agrees with the action of 𝐾𝑣 ∩𝒪
×
𝐹𝑣

on M for all finite places v of
F, we may extend the action of K on M to an action of 𝐾 ·A×𝐹, 𝑓 by letting A×𝐹, 𝑓 act by 𝜉. Then we define

𝐻0(𝐾, 𝑀) [𝜉] := { 𝑓 ∈ 𝐻0 (𝐾, 𝑀) | 𝑧 | 𝑓 = 𝑓 for all 𝑧 ∈ A×𝐹, 𝑓 }.

If we write 𝐷×\(A𝐹, 𝑓 ⊗𝐹 𝐷)
×/𝐾 =

∐
𝑖∈𝐼 𝐷

×𝑔𝑖𝐾A×𝐹, 𝑓 for some finite set of elements 𝑔𝑖 ∈ (A𝐹, 𝑓 ⊗𝐹

𝐷)×, the natural map

𝐻0(𝐾, 𝑀) [𝜉] → ⊕𝑖∈𝐼𝑀
(𝐾A×𝐹, 𝑓 ∩𝑔

−1
𝑖 𝐷×𝑔𝑖)/𝐹

×

𝑓 ↦→ ( 𝑓 (𝑔𝑖))

is an isomorphism.
The calculations of [Tay06, Lemma 1.1] show that (𝐾A×𝐹, 𝑓 ∩ 𝑔

−1
𝑖 𝐷

×𝑔𝑖)/𝐹
× is a finite group with

order prime to p for all i (since we assumed 𝑝 ≠ 2). Thus, if M is a potentially orthonormalizable Banach
R-module, then so is 𝐻0(𝐾, 𝑀) [𝜉], and we will be able to apply the formalism of slope decompositions
to quaternionic modular forms with fixed central character. More precisely, we may consider the action
of a compact operator U on 𝐻0(𝐾, 𝑀) [𝜉]. If 𝐻0(𝐾, 𝑀) [𝜉] admits a slope-≤ ℎ-decomposition, then
𝐻0 (𝐾, 𝑀) [𝜉]≤ℎ is a finite R-module which is a direct summand of 𝐻0(𝐾, 𝑀) [𝜉]. Since 𝐻0(𝐾, 𝑀) [𝜉]
is potentially orthonormalizable, 𝐻0 (𝐾, 𝑀) [𝜉]≤ℎ satisfies the property (Pr) of [Buz07] and by [Buz07,
Lemma 2.11] it is actually projective as an R-module.

The coefficient modules of interest to us are the modules of distributions 𝒟𝜅 constructed in [JN16],
and we fix a character 𝜉 : A×𝐹, 𝑓 /𝐹

× → Z𝑝 [[𝑇0/𝑍 (𝐾)]]
× as above. The operator 𝑈𝑝 commutes with

the action of A×𝐹, 𝑓 /𝐹
× on 𝒟𝜅 given by 𝜉, so𝑈𝑝 acts compactly on 𝐶∗(𝐾,𝒟𝜅 ) [𝜉]. We may construct a

corresponding spectral variety 𝒵𝜉 and eigenvariety datum (𝒵𝜉 ,ℳ𝜉 ,T, 𝜓), where ℳ𝜉 is the coherent
sheaf on 𝒵𝜉 coming from factorizations of the characteristic power series of 𝑈𝑝; we write 𝒳𝐷× , 𝜉 for
the corresponding eigenvariety.

By construction, 𝐻0(𝐾,𝒟𝜅 ) [𝜉]≤ℎ is a projective R-module whenever (𝑈, ℎ) is a slope datum. Then
[Che04, Lemme 6.2.10] implies that if ℳ𝜉 is nonzero, 𝒳𝐷× , 𝜉 is equidimensional of the same dimension
as 𝒲𝐹 .

Moreover, for each maximal point 𝑥 ∈ 𝒳𝐷× , 𝜉 , the corresponding Hecke eigensystem appears in 𝒳𝐷×

(with unrestricted central character), by construction. Then the interpolation theorem [JN19a, Theorem
3.2.1] implies that there is a closed immersion 𝒳red

𝐷× , 𝜉
↩→ 𝒳𝐷× , and dimension considerations imply

that its image is a union of irreducible components of 𝒳𝐷× .
This implies in particular that as (𝑈, ℎ) runs over slope data for 𝐶∗(𝐾,𝒟𝜅 ) [𝜉], the sets 𝑊 ′,ss

𝑈,ℎ ⊂ 𝑈
of semisimple weights constructed in Proposition 3.3.6 are Zariski dense. Then we may repeat the
argument of that proposition to conclude that 𝒳𝐷× , 𝜉 is itself reduced.

We have shown the following:

Proposition 3.6.1. Given a character 𝜉 : A×𝐹, 𝑓 /𝐹
× → 𝒪(𝒲𝐹 )

× as above, there is an eigenvariety
𝒳𝐷× , 𝜉 of quaternionic modular forms with central character 𝜉. It is reduced and equidimensional, and
it is naturally identified as a (possibly empty) union of irreducible components of 𝒳𝐷× .

We also wish to introduce eigenvarieties localized at maximal ideals of Hecke algebras. Let 𝔪 ⊂ T
be a maximal ideal. By Theorem 3.5.1 and Remark 3.5.2, the residual Hecke eigenvalues are locally
constant on 𝒳𝐷× . It follows that the restrictions ℳ𝔪 and ℳ𝜉 ,𝔪 are supported on unions of connected
components of 𝒵, which we write 𝒵𝔪 and 𝒵𝜉 ,𝔪, respectively. In particular, if (𝑈, ℎ) is a slope datum,
then𝐻0 (𝐾,𝒟𝑈 )≤ℎ,𝔪 and𝐻0 (𝐾,𝒟𝑈 )≤ℎ, 𝜉 ,𝔪 are again finite projective𝒪(𝑈)-modules. Then an identical
argument shows the following:
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Proposition 3.6.2. Given a character 𝜉 : A×𝐹, 𝑓 /𝐹
× → 𝒪(𝒲𝐹 )

× as above and a maximal ideal 𝔪 ⊂ T
as above, for any choice of Hecke algebra T′ (possibly different from T) there are eigenvarieties 𝒳T′

𝐷× ,𝔪

and 𝒳T
′

𝐷× , 𝜉 ,𝔪
of quaternionic modular forms localized at 𝔪. They are reduced and equidimensional,

and they are naturally identified as (possibly empty) unions of connected components of 𝒳T′
𝐷×

.

Remark 3.6.3. We write ℎ = 𝑚/𝑛 and consider the closed ball B𝑈,ℎ := {|𝑇𝑛 | ≤ |𝑢−𝑚 |} ⊂ A1
𝑈 for

some open affinoid 𝑈 ⊂ 𝒲𝐹 . Setting 𝑍𝑈,ℎ := 𝒵𝔪 ∩ B𝑈,ℎ (resp. 𝑍𝑈,ℎ := 𝒵𝜉 ,𝔪 ∩ B𝑈,ℎ), we abuse
terminology slightly and say that (𝑈, ℎ) is a slope datum for 𝒳𝐷× ,𝔪 (resp. 𝒳𝐷× , 𝜉 ,𝔪) if 𝑍𝑈,ℎ → 𝑈 is
finite of constant degree.

4. Overconvergent quaternionic modular forms

4.1. Definitions

We will use overconvergent cohomology to define and study spaces of overconvergent quaternionic mod-
ular forms. Maintaining our notation from §3.1, and in particular §3.6, we fix a level𝐾 ⊂

(
A𝐹, 𝑓 ⊗𝐹 𝐷

)×
and monoid 𝐾 ⊂ Δ ⊂

(
A𝐹, 𝑓 ⊗𝐹 𝐷

)×, and we set T to be either T(Δ 𝑝 , 𝐾 𝑝) or T(Δ , 𝐾).
The coefficients for our families of overconvergent modular forms will be a pseudoaffinoid algebra R

over Z𝑝; we set𝑈 := Spa 𝑅. We also fix a pseudouniformizer 𝑢 ∈ 𝑅. If 𝜅 : 𝑇0/𝑍 (𝐾) → 𝑅× is a weight,
we choose a norm |·| on R so that |·| is adapted to 𝜅 and multiplicative with respect to u, and log𝑝 |·| is
discrete (which we may do, by Lemma 4.1.1 below). Then the unit ball 𝑅0 ⊂ 𝑅 is a ring of definition
containing u.

Fix some 𝑟 ≥ 𝑟𝜅 . We let D𝑟 ,◦
𝜅 ⊂ D𝑟

𝜅 denote the unit ball, and we also consider larger modules
of distributions D<𝑟

𝜅 ⊃ D𝑟
𝜅 , with unit ball D<𝑟,◦

𝜅 ⊂ D<𝑟
𝜅 . Following §3.6, we also fix a character

𝜉 : A×𝐹, 𝑓 /𝐹
× → 𝑅× such that 𝜉 |𝐾𝑣∩𝒪×𝐹𝑣 agrees with the action of 𝐾𝑣 ∩ 𝒪

×
𝐹𝑣

on D𝑟
𝜅 , that is, such that

𝜉 |𝐾𝑣∩𝒪×𝐹𝑣
is trivial for 𝑣 � 𝑝 and 𝜉 |𝐼𝑣∩𝒪×𝐹𝑣 is equal to the action of 𝐼𝑣 ∩𝒪×𝐹𝑣 on D𝑟

𝜅 for 𝑣 | 𝑝.
The construction of the required norm on R is a variant of [JN16, Lemma 3.3.1], and we refer to that

paper for the terminology:

Lemma 4.1.1. If R is a pseudoaffinoid algebra over Z𝑝 and 𝜅 : 𝑇0/𝑍 (𝐾) is a weight, there is a norm
|·| on R such that |·| is adapted to 𝜅 and multiplicative with respect to u, the unit ball 𝑅0 is Noetherian,
and log𝑝 |·| is discrete.

Proof. Choose a Noetherian ring of definition 𝑅0 ⊂ 𝑅 formally of finite type over Z𝑝 . As in the proof
of [JN16, Lemma 3.3.1], 𝜅(𝑇0) ⊂ 𝑅

◦ and 𝜅(𝑇𝜖 ) ⊂ 1 + 𝑅◦◦; since both groups are topologically finitely
generated, we may replace 𝑅0 with a finite integral extension and assume that 𝜅(𝑇0) ⊂ 𝑅0, and we may
find some integer 𝑚 ≥ 1 so that 𝜅(𝑇𝜖 )𝑚 ⊂ 1 + 𝑢𝑅0.

Let 𝑅′ := 𝑅[𝑢1/𝑚], let 𝑅′0 := 𝑅0 [𝑢
1/𝑚] and let 𝑢′ := 𝑢1/𝑚. Then 𝑅′ is a finite R-module, so it has a

canonical topology, and the subspace topology it induces on R agrees with the original topology on R.
Now, for any 𝑎 ∈ R>1 we may define a norm |·|′ on 𝑅′ via

|𝑟 ′ |′ = inf{𝑎𝑠 | 𝑢′𝑠𝑟 ′ ∈ 𝑅′0}.

The restriction of |·|′ to R has the desired properties. �

When U is a subspace of 𝒲𝐹 , we can make a more precise statement. In this case, R is reduced, so the
ring of power-bounded elements 𝑅0 := 𝑅◦ is a ring of definition. Then we may define a norm |·| on R via

|𝑟 | := inf{𝑝−𝑛 | 𝑟 ∈ 𝑢𝑛𝑅0, 𝑛 ∈ Z}.

Lemma 4.1.2. If U is a rational subspace of 𝒲𝐹 and 𝜅 is the restriction of the universal character on
𝒲𝐹 , then |·| is adapted to 𝜅.
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The proof is essentially identical to that of [JN16, Lemma 6.3.1].
Recall that we have Fredholm power series

𝐹𝜅 := det
(
1 − 𝑇𝑈𝑝 | 𝐻

0(𝐾,D𝑟
𝜅 )
)

and
𝐹𝜅, 𝜉 := det

(
1 − 𝑇𝑈𝑝 | 𝐻

0(𝐾,D𝑟
𝜅 ) [𝜉]

)
and they are independent of 𝑟 ≥ 𝑟𝜅 , by [JN16, Proposition 4.1.2].

If 𝐻0(𝐾,D𝑟
𝜅 ) (resp. 𝐻0(𝐾,D𝑟

𝜅 ) [𝜉]) admits a slope ≤ ℎ-factorization, then the formalism of slope
decompositions implies that we have a decomposition

𝐻0(𝐾,D𝑟
𝜅 ) = 𝐻

0 (𝐾,D𝑟
𝜅 )≤ℎ ⊕ 𝐻

0(𝐾,D𝑟
𝜅 )>ℎ

resp.

𝐻0(𝐾,D𝑟
𝜅 ) [𝜉] = 𝐻

0(𝐾,D𝑟
𝜅 ) [𝜉]≤ℎ ⊕ 𝐻

0(𝐾,D𝑟
𝜅 ) [𝜉]>ℎ

for all 𝑟 ≥ 𝑟𝜅 , and the decomposition is independent of r.
Moreover, if 𝑟 ′ ∈ [𝑟𝜅 , 𝑟), the inclusions

D𝑟
𝜅 ⊂ D<𝑟

𝜅 ⊂ D𝑟 ′

𝜅

induce an isomorphism 𝐻0(𝐾,D𝑟
𝜅 )≤ℎ

∼
−→ 𝐻0(𝐾,D𝑟 ′

𝜅 )≤ℎ . We may therefore define

𝐻0(𝐾,D<𝑟
𝜅 )≤ℎ := im

(
𝐻0 (𝐾,D𝑟

𝜅 )≤ℎ → 𝐻0(𝐾,D<𝑟
𝜅 )

)
and

𝐻0(𝐾,D<𝑟
𝜅 ) [𝜉]≤ℎ := im

(
𝐻0(𝐾,D𝑟

𝜅 ) [𝜉]≤ℎ → 𝐻0(𝐾,D<𝑟
𝜅 ) [𝜉]

)
.

We make the additional definitions

𝐻0(𝐾,D<𝑟,◦
𝜅 )≤ℎ := im

(
𝐻0 (𝐾,D<𝑟,◦

𝜅 ) → 𝐻0(𝐾,D<𝑟
𝜅 ) → 𝐻0(𝐾,D<𝑟

𝜅 )≤ℎ

)
and

𝐻0(𝐾,D<𝑟,◦
𝜅 ) [𝜉]≤ℎ := im

(
𝐻0 (𝐾,D<𝑟,◦

𝜅 ) [𝜉] → 𝐻0 (𝐾,D<𝑟
𝜅 ) [𝜉] → 𝐻0 (𝐾,D<𝑟

𝜅 ) [𝜉]≤ℎ

)
.

We are now in a position to define spaces of overconvergent quaternionic modular forms, together
with an integral structure and Hecke algebras:

Definition 4.1.3. Suppose that 𝐻0 (𝐾,D<𝑟
𝜅 ) admits a slope-≤ ℎ-decomposition, where ℎ = 𝑎/𝑏 for 𝑎, 𝑏

positive and relatively prime integers. We define the modular forms of weight 𝜅 and slope-≤ ℎ to be the
module

𝑆𝜅 (𝐾)≤ℎ := 𝐻0(𝐾,𝒟𝜅 )≤ℎ;

it is a module over the Hecke algebra

T𝜅,≤ℎ := im
(
T ⊗Z𝑝 𝑅 → End𝑅 (𝑆𝜅 (𝐾)≤ℎ)

)
.
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We define two modules of integral overconvergent modular forms (and corresponding Hecke alge-
bras). As in §3.5, we set

𝑆<𝑟,◦𝜅 (𝐾)≤ℎ := 𝐻0 (𝐾,D<𝑟,◦
𝜅 )≤ℎ

and

T
<𝑟,◦
𝜅,≤ℎ := im

(
T ⊗Z𝑝 𝑅0 → End𝑅0

(
𝐻0(𝐾,D<𝑟,◦

𝜅 )≤ℎ

))
.

We also define a second lattice

𝑆◦𝜅 (𝐾)≤ℎ := im
(
T[{𝑢𝑎𝑈−𝑏𝜛𝑣

}𝑣 |𝑝] ⊗T 𝑆
<𝑟,◦
𝜅 (𝐾)≤ℎ → 𝑆𝜅 (𝐾)≤ℎ

)
which is stable under the operators 𝑢𝑎𝑈−𝑏𝜛𝑣

, as well; we set

T◦𝜅,≤ℎ := im
(
T[𝑢𝑎𝑈−𝑏𝜛𝑣

] ⊗Z𝑝 𝑅0 → End𝑅0

(
𝑆◦𝜅 (𝐾)≤ℎ

) )
.

If 𝜉 : A×𝐹, 𝑓 /𝐹
× → 𝑅×0 is a continuous character as above and 𝐻0 (𝐾,D<𝑟

𝜅 ) [𝜉] admits a slope-≤ ℎ de-
composition, we define the modular forms with central character 𝜉 to be 𝑆𝜅, 𝜉 (𝐾)≤ℎ := 𝐻0(𝐾,𝒟𝜅 ) [𝜉]≤ℎ
and similarly for integral modular forms with central character 𝜉.

Remark 4.1.4. We expect that 𝑆◦𝜅 (𝐾)≤ℎ and the corresponding Hecke algebra T◦𝜅,≤ℎ depend on r, but
we have suppressed that from the notation for the sake of compactness.

Remark 4.1.5. We will write T<𝑟,◦𝐾,𝜅,≤ℎ and T◦𝐾,𝜅,≤ℎ for these Hecke algebras if the level is not clear
from context.

We again write ℎ = 𝑎/𝑏 with 𝑎, 𝑏 positive and relatively prime integers. If 𝑆𝜅 (𝐾)≤ℎ (resp. 𝑆𝜅, 𝜉 (𝐾)≤ℎ
has rank d, then the characteristic polynomial of 𝑢𝑎𝑈−𝑏𝜛𝑣

is a monic degree-d polynomial over R. By
the definition of a slope decomposition, its roots are integral at every rank-1 point of Spa 𝑅. Hence,
the coefficients actually live in 𝑅◦ and 𝑢𝑎𝑈−𝑏𝜛𝑣

is power-bounded on 𝑆𝜅 (𝐾)≤ℎ (resp. 𝑆𝜅, 𝜉 (𝐾)≤ℎ. In
particular, if R is reduced and 𝑅0 = 𝑅◦, we see that 𝑆◦𝜅 (𝐾)≤ℎ (resp. 𝑆◦𝜅, 𝜉 (𝐾)≤ℎ) is given concretely by∑

(𝑖𝑣 ) ∈{0,...,𝑑−1}Σ𝑝

∏
𝑣 |𝑝

(𝑢𝑎𝑈−𝑏𝜛𝑣
)𝑖𝑣

(
𝑆<𝑟,◦𝜅 (𝐾)≤ℎ

)
.

In particular,𝑈𝑏 (𝑑−1)
𝑝

(
𝑆◦𝜅 (𝐾)≤ℎ

)
⊂ 𝑆<𝑟,◦𝜅 (𝐾)≤ℎ (and similarly for 𝑆◦𝜅, 𝜉 (𝐾)≤ℎ).

We now fix a choice of Hecke algebra. Let S denote the set of places of F such that 𝑣 | 𝑝, D is
ramified at v, or 𝐾𝑣 ≠ O×𝐷,𝑣 . For 𝑣 ∉ 𝑆, we define

𝑆𝑣 :=
[
𝐾
( 𝜛𝑣

𝜛𝑣

)
𝐾
]
, 𝑇𝑣 :=

[
𝐾
( 1

𝜛𝑣

)
𝐾
]
∈ 𝐾\(A𝐹, 𝑓 ⊗ 𝐷)

×/𝐾

for some fixed uniformizer 𝜛𝑣 of 𝒪𝐹𝑣 .
We define the Hecke algebra T to be the free commutative Z𝑝-algebra generated by {𝑈𝜛𝑣 }𝑣 |𝑝 and

{𝑆𝑤 , 𝑇𝑤 }𝑤∉𝑆 . Since Δ 𝑝 acts on the modules of distributions D<𝑟,◦
𝜅 and Hecke operators away from p

preserve the slope decomposition, we may view 𝑆<𝑟,◦𝜅 (𝐾)≤ℎ as a T-module.
We also describe the so-called diamond operators after modifying the tame level 𝐾 𝑝. Suppose we

have a finite set Q of places of F such that for each 𝑣 ∈ 𝑄, 𝑣 � 𝑝, Nm 𝑣 ≡ 1 (mod 𝑝), D is split at v, and
𝐾𝑣 = GL2(𝒪𝐹𝑣 ). For each 𝑣 ∈ 𝑄, we again let 𝐾0(𝑣) ⊂ H(𝐹𝑣 ) denote the subgroup {( ∗ ∗0 ∗ ) mod 𝑣},
and we consider the homomorphism

𝐾0(𝑣) → 𝑘 (𝑣)× → Δ 𝑣
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given by composing (
𝑎 𝑏
𝑐 𝑑

)
↦→ 𝑎𝑑−1

with the projection to the p-power quotient 𝑘 (𝑣)× → Δ 𝑣 . Let 𝐾−(𝑣) denote the group

𝐾−(𝑣) :=
{
( 𝑎 ∗𝑐 𝑑 ) ∈ 𝐾0(𝑣) | 𝑎𝑑

−1 ↦→ 1 in Δ 𝑣

}
for each 𝑣 ∈ 𝑄, and let

𝐾0(𝑄) :=
∏
𝑣 ∈𝑄

𝐾0(𝑣) ·
∏
𝑣∉𝑄

𝐾𝑣

and

𝐾−(𝑄) :=
∏
𝑣 ∈𝑄

𝐾−(𝑣) ·
∏
𝑣∉𝑄

𝐾𝑣 .

Then 𝐾0(𝑣)/𝐾
−(𝑣) � Δ 𝑣 , and every ℎ ∈ Δ𝑄 :=

∏
𝑣 ∈𝑄 Δ 𝑣 gives rise to a Hecke operator

〈ℎ〉 :=
[
𝐾−(𝑄) ℎ̃𝐾−(𝑄)

]
on 𝑆<𝑟,◦𝜅 (𝐾−(𝑄)), where ℎ̃ is a lift of h to 𝐾0(𝑄); 〈ℎ〉 is independent of the choice of ℎ̃.

We let T−𝑄 be the free commutative Z𝑝-algebra generated by {𝑈𝜛𝑣 }𝑣 |𝑝, {𝑆𝑣 , 𝑇𝑣 }𝑣∉𝑆 , and {𝑈𝜛𝑣 }𝑣 ∈𝑄,

where 𝑈𝜛𝑣 := [𝐾−(𝑣)
(

1 0
0 𝜛𝑣

)
𝐾−(𝑣)]; it acts naturally on 𝑆<𝑟,◦𝜅 (𝐾−(𝑄))≤ℎ , and we let T<𝑟,◦

𝐾− (𝑄) ,≤ℎ

denote the 𝑅0-algebra its image generates in End𝑅0 (𝑆
<𝑟,◦
𝜅 (𝐾−(𝑄))≤ℎ). Similarly, we let T0,𝑄 be the

free commutative Z𝑝-algebra generated by {𝑈𝜛𝑣 }𝑣 |𝑝, {𝑆𝑣 , 𝑇𝑣 }𝑣∉𝑆 , and {𝑈𝜛𝑣 }𝑣 ∈𝑄, where 𝑈𝜛𝑣 :=
[𝐾0 (𝑣)

(
1 0
0 𝜛𝑣

)
𝐾0(𝑣)].

4.2. Integral overconvergent quaternionic modular forms

We need to make a closer study of the structure of the integral modules of distributions and their finite-
slope subspaces.

Lemma 4.2.1. If 𝜅 : 𝑇0/𝑍 (𝐾) → 𝑅× is a weight and 𝐻0(𝐾,𝒟𝜅 ) (resp. 𝐻0(𝐾,𝒟𝜅 ) [𝜉]) admits a slope-
≤ ℎ-decomposition, then 𝑆𝜅 (𝐾)≤ℎ (resp. 𝑆𝜅, 𝜉 (𝐾)≤ℎ) is a finite projective R-module. If the Fredholm
power series 𝐹𝜅 has a slope ≤ ℎ-factorization, then 𝑆𝜅 (𝐾)≤ℎ (resp. 𝑆𝜅, 𝜉 (𝐾)≤ℎ) is compatible with
arbitrary base change on R.

Proof. We prove the result for𝐻0(𝐾,𝒟𝜅 );𝐻0 (𝐾,𝒟𝜅 ) [𝜉] is handled similarly. It is enough to handle the
case where the tame level is neat. Then 𝑆𝜅 (𝐾)≤ℎ is a direct summand of the potentially orthonormalizable
Banach R-module𝐻0(𝐾,𝒟𝜅 ) which is finitely generate over R, so by [Buz07, Lemma 2.11] is projective.

If the Fredholm power series 𝐹𝜅 has a slope-≤ ℎ-factorization, then the slope decomposition is
functorial in R, by [JN16, Theorem 2.2.13]. �

Corollary 4.2.2. If 𝜅 : 𝑇0/𝑍 (𝐾) → 𝑅× is a weight and 𝐻0(𝐾,𝒟𝜅 ) (resp. 𝐻0 (𝐾,𝒟𝜅 ) [𝜉]) admits a
slope-≤ ℎ-decomposition, then 𝑆<𝑟,◦𝜅 (𝐾)≤ℎ (resp. 𝑆<𝑟,◦𝜅, 𝜉 (𝐾)≤ℎ) is a finite 𝑅0-module.

Proof. This follows from the equality𝐻0(𝐾,D𝑟
𝜅 )≤ℎ = 𝐻0 (𝐾,D<𝑟

𝜅 )≤ℎ and the fact thatD<𝑟,◦
𝜅 is bounded

in D<𝑟
𝜅 . �

Now, we consider the behavior of 𝐻0(𝐾,D<𝑟,◦
𝜅 ) [𝜉]≤ℎ under change of coefficients. Let 𝜅𝑅 :

𝑇0/𝑍 (𝐾) → 𝑅× be a weight. If 𝑓 : 𝑅 → 𝑅′ is a homomorphism of pseudoaffinoid algebras, we
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let 𝜅𝑅′ denote the composition 𝑇0/𝑍 (𝐾)
𝜅𝑅
−−→ 𝑅×

𝑓
−→ 𝑅′×. By [JN16, Corollary A.14], f is topologically

of finite type, so we have a surjection 𝑅〈𝑋1, . . . , 𝑋𝑛〉 � 𝑅′. If R is equipped with a norm adapted to
𝜅𝑅 and 𝑅0 ⊂ 𝑅 is the corresponding ring of definition, with 𝑢 ∈ 𝑅0 a pseudouniformizer, we define
𝑅′0 := 𝑅0〈𝑋1, . . . , 𝑋𝑛〉 and 𝑢′ := 𝑓 (𝑢).

Let 𝑎 := |𝑢 |𝑅. We define a norm |·|𝑅′ on 𝑅′ via

|𝑟 ′ |𝑅′ := inf{𝑎−𝑛 | 𝑟 ′ ∈ 𝑢′𝑛𝑅′0}.

Then 𝑅′0 is the unit ball of 𝑅′ with respect to |·|𝑅′ , and |𝑢′ |𝑅′ = |𝑢 |𝑅. Moreover, if |·|𝑅 is adapted to 𝜅𝑅,
then |·|𝑅′ is adapted to 𝜅𝑅′ .

Lemma 4.2.3. With notation as above, suppose that 𝑓 : 𝑅0 → 𝑅′0 is a finite map. Then the natural map
𝑅′0 ⊗̂𝑅0 D<𝑟,◦

𝜅𝑅 → D<𝑟,◦
𝜅𝑅′ is a topological isomorphism (with respect to the 𝑢′-adic topology), where the

completed tensor product is taken with respect to the u-adic topology on D<𝑟,◦
𝜅𝑅 and the 𝑢′-adic topology

on 𝑅′0.

Proof. We first check that the morphism 𝑅′0 ⊗̂𝑅0 D<𝑟,◦
𝜅𝑅 → D<𝑟,◦

𝜅𝑅′ is an isomorphism of 𝑅′0-modules.
The discussion after [JN16, Proposition 3.2.7] shows that

D<𝑟,◦
𝜅𝑅 �

∏
𝛼

𝑅0 · 𝑢
−𝑛𝑅 (𝑟 ,𝑢,𝛼)n𝛼,

where 𝑛𝑅 (𝑟, 𝑢, 𝛼) :=
⌊
|𝛼 | log𝑝 𝑟
log𝑝 |𝑢 |𝑅

⌋
, n is a certain (noncanonical but explicit) finite set (depending only

on the group-theoretic data we fixed at the beginning of §3), and 𝛼 is a multi-index (and similarly
for D<𝑟,◦

𝜅𝑅′ ). Now, 𝑅′0 is a finitely presented 𝑅0-module, and for any finitely presented 𝑅0-module M,
the natural morphism 𝑀 ⊗𝑅0

∏
𝛼 𝑅0 · 𝑢

−𝑛𝑅 (𝑟 ,𝑢,𝛼)b𝛼 →
∏

𝛼 𝑀 · 𝑢
−𝑛𝑅 (𝑟 ,𝑢,𝛼)b𝛼 is an isomorphism. By

construction, 𝑛𝑅 (𝑟, 𝑢, 𝛼) = 𝑛𝑅′ (𝑟, 𝑢′, 𝛼) for all 𝛼, so the claim follows.
Finally, the morphism 𝑅′0 ⊗̂𝑅0 D<𝑟,◦

𝜅𝑅 → D<𝑟,◦
𝜅𝑅′ is clearly continuous, so the open mapping theorem

implies that it is a topological isomorphism. �

Corollary 4.2.4. With notation as above, suppose that 𝑓 : 𝑅0 → 𝑅′0 is a finite map. If 𝐹𝜅 has a slope
≤ ℎ-factorization, then the natural map

𝑅′0 ⊗𝑅0 𝑆
<𝑟,◦
𝜅𝑅 , 𝜉
(𝐾)≤ℎ → 𝑆<𝑟,◦𝜅𝑅′ , 𝜉

(𝐾)≤ℎ

is surjective.

Proof. Writing 𝐷×\(A𝐹, 𝑓 ⊗𝐹 𝐷)
×/𝐾 =

∐
𝑖∈𝐼 𝐷

×𝑔𝑖𝐾 for some finite set of elements 𝑔𝑖 ∈ (A𝐹, 𝑓 ⊗𝐹
𝐷)×, we have an isomorphism

𝐻0(𝐾,D<𝑟,◦
𝜅𝑅 ) [𝜉] � ⊕𝑖∈𝐼

(
D<𝑟,◦
𝜅𝑅

) (𝐾A×𝐹, 𝑓 ∩𝑔
−1
𝑖 𝐷×𝑔𝑖)/𝐹

×

.

For every map 𝑅 → 𝑅′ as above, Lemma 4.2.3 implies that the base change map

𝑅′0 ⊗̂
𝑅0
⊕𝑖D<𝑟,◦

𝜅𝑅 → ⊕𝑖D<𝑟,◦
𝜅𝑅′

is an isomorphism. Moreover, the calculations of [Tay06, Lemma 1.1] show that the order of
(𝐾A×𝐹, 𝑓 ∩ 𝑔

−1
𝑖 𝐷

×𝑔𝑖)/𝐹
× is prime to p for all i, so the base change map 𝑅′0 ⊗̂𝑅0 𝐻

0(𝐾,D<𝑟,◦
𝜅𝑅 ) [𝜉] →

𝐻0 (𝐾,D<𝑟,◦
𝜅𝑅′ ) [𝜉] is an isomorphism.
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Now, we have a commutative diagram

𝑅′0 ⊗̂𝑅0 𝐻
0 (𝐾,D<𝑟,◦

𝜅𝑅

)
[𝜉] 𝑅′ ⊗̂𝑅 𝐻

0 (𝐾,D<𝑟
𝜅𝑅

)
[𝜉] 𝑅′ ⊗𝑅 𝐻

0 (𝐾,D<𝑟
𝜅𝑅

)
[𝜉]≤ℎ

𝐻0 (𝐾,D<𝑟,◦
𝜅𝑅′

)
[𝜉] 𝐻0

(
𝐾,D<𝑟

𝜅𝑅′

)
[𝜉] 𝐻0

(
𝐾,D<𝑟

𝜅𝑅′

)
[𝜉]≤ℎ

∼ ∼

(where the fact that the right vertical arrow is an isomorphism follows from Lemma 4.2.1). This implies
first of all that the map 𝑅′ ⊗𝑅 𝐻

0 (𝐾,D<𝑟
𝜅𝑅

)
[𝜉] → 𝐻0

(
𝐾,D<𝑟

𝜅𝑅′

)
[𝜉] carries 𝑅′0 ⊗𝑅0 𝑆

<𝑟,◦
𝜅𝑅 , 𝜉
(𝐾)≤ℎ to

𝑆<𝑟,◦𝜅𝑅′ , 𝜉
(𝐾)≤ℎ.

To prove surjectivity, we may lift 𝑓 ∈ 𝑆<𝑟,◦𝜅𝑅′ , 𝜉
(𝐾)≤ℎ to an element of 𝑅′0 ⊗̂𝑅0 𝐻

0 (𝐾,D<𝑟,◦
𝜅𝑅

)
[𝜉] since

the left vertical arrow is an isomorphism. Its image in 𝑅′ ⊗𝑅 𝐻0 (𝐾,D<𝑟
𝜅𝑅

)
[𝜉]≤ℎ is therefore an element

of 𝑅′0 ⊗𝑅0 𝑆
<𝑟,◦
𝜅𝑅 , 𝜉
(𝐾)≤ℎ in the preimage of f. �

We may also extend [Kis09a, Lemma 2.1.4] and [Kis09a, Lemma 2.1.7] to statements about families
of integral overconvergent modular forms.

Proposition 4.2.5. Let 𝜅 : 𝑇0/𝑍 (𝐾) → 𝑅× be a weight, and let 𝜒 : Δ𝑄 → 𝑅× be a character. For any
finite set of primes Q as in §4.1, suppose that 𝐻0(𝐾0(𝑄),𝒟𝜅 ) and 𝐻0(𝐾−(𝑄),𝒟𝜅 ) admit slope-≤ ℎ-
decompositions. Then the natural map∑

ℎ∈Δ𝑄

𝜒(ℎ)−1〈ℎ〉 :
(
𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄))≤ℎ

)
Δ𝑄=𝜒

→ 𝑆<𝑟,◦𝜅, 𝜉 (𝐾
−(𝑄))

Δ𝑄=𝜒
≤ℎ

is an isomorphism.

Here,
(
𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄))≤ℎ

)
Δ𝑄=𝜒

is the maximal quotient of 𝑆<𝑟,◦𝜅, 𝜉 (𝐾
−(𝑄))≤ℎ on which Δ𝑄 acts by 𝜒;

if 𝜒 is the trivial character, this is simply the coinvariants.

Proof. We first assume that K is neat. Writing 𝐷×\(A𝐹, 𝑓 ⊗𝐹 𝐷)
×/𝐾0(𝑄) = �𝑖∈𝐼𝐷×𝑔𝑖𝐾0(𝑄), we have

a finite disjoint union

𝐻0 (𝐾−(𝑄),D<𝑟,◦
𝜅 ) [𝜉] = ⊕𝑖∈𝐼 ⊕ℎ∈Δ𝑄 D<𝑟,◦

𝜅 .

We claim that Δ𝑄 acts freely on 𝐷×\(A𝐹, 𝑓 ⊗𝐹 𝐷)
×/𝐾−(𝑄). But if 𝐷×𝑔𝑖ℎ 𝑗𝐾−(𝑄) = 𝐷×𝑔𝑖′ℎ 𝑗′𝐾−(𝑄),

then the neatness hypothesis 3.1.1 implies that 𝑖 = 𝑖′ and 𝑗 = 𝑗 ′. Hence, we have

𝐻0(𝐾−(𝑄),D<𝑟,◦
𝜅 ) [𝜉] = ⊕𝑖∈𝐼 𝑅0 [Δ𝑄] ⊗𝑅0 D<𝑟,◦

𝜅

and we can write∑
ℎ∈Δ𝑄

𝜒(ℎ)−1〈ℎ〉 :
(
𝐻0(𝐾−(𝑄),D<𝑟,◦

𝜅 ) [𝜉]
)
Δ𝑄=𝜒

∼
−→ 𝐻0(𝐾−(𝑄),D<𝑟,◦

𝜅 ) [𝜉]Δ𝑄=𝜒

and ∑
ℎ∈Δ𝑄

𝜒(ℎ)−1〈ℎ〉 :
(
𝐻0 (𝐾−(𝑄),D<𝑟

𝜅 ) [𝜉]
)
Δ𝑄=𝜒

∼
−→ 𝐻0 (𝐾−(𝑄),D<𝑟

𝜅 ) [𝜉]
Δ𝑄=𝜒 .
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If 𝐾 ′ � 𝐾 with 𝐾 ′ neat and [𝐾 : 𝐾 ′] prime to p, then
∑
ℎ∈Δ𝑄 𝜒(𝑑)〈ℎ〉 induces diagrams(

𝐻0(𝐾−(𝑄),D<𝑟,◦
𝜅 ) [𝜉]

)
Δ𝑄=𝜒 𝐻0 (𝐾−(𝑄),D<𝑟,◦

𝜅 ) [𝜉]Δ𝑄=𝜒

(
𝐻0(𝐾 ′−(𝑄),D<𝑟,◦

𝜅 ) [𝜉]
)𝐾 ′/𝐾
Δ𝑄=𝜒 𝐻0 (𝐾 ′−(𝑄),D<𝑟,◦

𝜅 ) [𝜉]Δ𝑄=𝜒,𝐾 ′/𝐾

∼

∼

∼

∼

and (
𝐻0(𝐾−(𝑄),D<𝑟

𝜅 ) [𝜉]
)
Δ𝑄=𝜒 𝐻0(𝐾−(𝑄),D<𝑟

𝜅 ) [𝜉]
Δ𝑄=𝜒

(
𝐻0(𝐾 ′−(𝑄),D<𝑟

𝜅 ) [𝜉]
)𝐾 ′/𝐾
Δ𝑄=𝜒 𝐻0(𝐾 ′−(𝑄),D<𝑟

𝜅 ) [𝜉]
Δ𝑄=𝜒,𝐾 ′/𝐾 .

∼

∼
∼

∼

Using [JN16, Proposition 2.2.11], for any level K we obtain an isomorphism∑
ℎ∈Δ𝑄

𝜒(ℎ)−1〈ℎ〉 : 𝑆𝜅, 𝜉 (𝐾−(𝑄)≤ℎ)Δ𝑄
∼
−→ 𝑆𝜅, 𝜉 (𝐾0(𝑄))≤ℎ .

Then we have a diagram

0 𝐼Δ𝑄,𝜒𝐻
0 (𝐾− (𝑄) ,D<𝑟,◦) [𝜉 ] 𝐻 0 (𝐾− (𝑄) ,D<𝑟,◦) [𝜉 ] 𝐻 0 (𝐾− (𝑄) ,D<𝑟

𝜅 ) [𝜉 ]
Δ𝑄=𝜒 0

0 𝐼Δ𝑄,𝜒𝐻
0 (𝐾− (𝑄) ,D<𝑟 ) [𝜉 ]≤ℎ 𝐻 0 (𝐾− (𝑄) ,D<𝑟 ) [𝜉 ]≤ℎ 𝐻 0 (𝐾0 (𝑄) ,D<𝑟

𝜅 ) [𝜉 ]
Δ𝑄=𝜒
≤ℎ

0,

where 𝐼Δ𝑄 ,𝜒 ⊂ 𝑅0 [Δ𝑄] denotes the ideal generated by the elements 〈ℎ〉 − 𝜒(ℎ) for ℎ ∈ Δ𝑄. A diagram
chase shows that we have the desired isomorphism∑

ℎ∈Δ𝑄

𝜒(ℎ)−1〈ℎ〉 :
(
𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄))≤ℎ

)
Δ𝑄=𝜒

∼
−→ 𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄))
Δ𝑄=𝜒
≤ℎ .

�

Now, assume that R is a local field with uniformizer u, that is, a finite extension of Q𝑝 or F𝑝 ((𝑢)).
Then by [AS, Theorem 4.4.2], it is automatic that 𝐻0 (𝐾,𝒟𝜅 ) and 𝐻0 (𝐾,𝒟𝜅 ) [𝜉] admit slope-≤ ℎ-
decompositions (and that 𝐹𝜅 and 𝐹𝜅, 𝜉 admit slope-≤ ℎ-factorizations).

Proposition 4.2.6. If R is a local field, with ring of integers 𝑅0 and uniformizer 𝑢 ∈ 𝑅0, the module
𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄))≤ℎ is finite projective over 𝑅0 [Δ𝑄].

Proof. To check that 𝑆<𝑟,◦𝜅, 𝜉 (𝐾
−(𝑄)≤ℎ) is projective over 𝑅0 [Δ𝑄], we may replace 𝑅0 with a finite

extension, so we may assume that 𝑅0 contains the values of all characters 𝜒 : Δ𝑄 → 𝑅
×. If Δ 𝑣 has order

𝑝𝑛𝑣 , we can write 𝑅0 [Δ𝑄] explicitly (but noncanonically) as 𝑅0 [{𝑥𝑣 }𝑣 |𝑝]/({𝑥
𝑝𝑛𝑣
𝑣 −1); this assumption

implies that the polynomials 𝑥𝑝
𝑛𝑣

𝑣 − 1 split completely, and the ideals 𝐼Δ𝑄 ,𝜒 introduced above are the
nonmaximal prime ideals of 𝑅0 [Δ𝑄].

On the other hand, we have a family of surjections

𝐻0 (𝐾−(𝑄),D<𝑟,◦
𝜅 ) [𝜉]≤ℎ � 𝐻0(𝐾−(𝑄),D<𝑟,◦

𝜅 ) [𝜉]
Δ𝑄=𝜒
≤ℎ .

The target is a lattice in 𝐻0(𝐾−(𝑄),D<𝑟
𝜅 ) [𝜉]

Δ𝑄=𝜒
≤ℎ ; since 𝑅0 is a discrete valuation

ring, 𝐻0 (𝐾−(𝑄),D<𝑟,◦
𝜅 ) [𝜉]

Δ𝑄=𝜒
≤ℎ is free of some rank 𝑑𝜒. Since 𝑅0 [Δ𝑄] is a local ring,

𝐻0 (𝐾−(𝑄),D<𝑟,◦
𝜅 ) [𝜉]≤ℎ can be generated by 𝑑𝜒 elements as a 𝑅0 [Δ𝑄]-module.
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Furthermore, 𝑅0 [Δ𝑄]Δ𝑄=𝜒 � 𝑅0. Since 𝐻0 (𝐾−(𝑄),D<𝑟,◦
𝜅 ) [𝜉]

Δ𝑄=𝜒
≤ℎ cannot be generated as an 𝑅0-

module by fewer than 𝑑𝜒 elements, this implies that the ranks 𝑑𝜒 agree for all characters 𝜒; call this
number d.

We therefore have a presentation of 𝑆<𝑟,◦𝜅, 𝜉 (𝐾
−(𝑄)≤ℎ):

𝑅0 [Δ𝑄]
⊕𝑑′ → 𝑅0 [Δ𝑄]

⊕𝑑 → 𝑆<𝑟,◦𝜅, 𝜉 (𝐾
−(𝑄)≤ℎ) → 0.

Since the surjection 𝑅0 [Δ𝑄]
⊕𝑑 → 𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄)≤ℎ) is an isomorphism modulo each 𝐼Δ𝑄 ,𝜒, the image
of 𝑅0 [Δ𝑄]

⊕𝑑′ in 𝑅0 [Δ𝑄]
⊕𝑑 is contained in 𝐼Δ𝑄 ,𝜒𝑅0 [Δ𝑄]

⊕𝑑 . In particular, if 𝑑 ′ ≠ 0, then the Fitting
ideals of 𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄)≤ℎ) are contained in ∩𝜒 𝐼Δ𝑄 ,𝜒.
On the other hand, the module 𝐻0 (𝐾−(𝑄),D<𝑟

𝜅 ) [𝜉] is potentially orthonormalizable as an 𝑅[Δ𝑄]-
module, so by [JN16, Theorem 2.2.2] 𝐻0(𝐾−(𝑄),D<𝑟

𝜅 ) [𝜉]≤ℎ is a finite projective 𝑅[Δ𝑄]-module. In
particular, for each prime𝔭 ⊂ 𝑅[Δ𝑄], there is some integer 𝑑𝔭 ≤ 𝑑 such that Fitt𝑘 (𝑆𝜅, 𝜉 (𝐾−(𝑄))≤ℎ,𝔭) =
0 for 𝑘 < 𝑑𝔭 and Fitt𝑘 (𝑆𝜅, 𝜉 (𝐾−(𝑄))≤ℎ,𝔭) = 𝑅[Δ𝑄]𝔭 for 𝑘 ≥ 𝑑𝔭. But the formation of Fitting ideals is
functorial in the coefficients, and ∩𝜒 𝐼Δ𝑄 ,𝜒 does not generate the unit ideal in 𝑅[Δ𝑄], so 𝑑 ′ = 0 and
𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄)≤ℎ) is free of rank d over 𝑅0 [Δ𝑄]. �

We may consider characteristic polynomials of operators on 𝑆𝜅, 𝜉 (𝐾−(𝑄))≤ℎ, viewed as either a rank-
d projective 𝑅[Δ𝑄]-module, or as a rank-𝑑 |Δ𝑄] projective R-module. In particular, we have seen that
if ℎ = 𝑎/𝑏, the R-linear characteristic polynomial of 𝑢𝑎𝑈−𝑏𝜛𝑣

has coefficients in 𝑅◦. Using properties of
circulant matrices, we see that the 𝑅[Δ𝑄]-linear characteristic polynomial of 𝑢𝑎𝑈−𝑏𝜛𝑣

has coefficients in
𝑅◦ [Δ𝑄].

Corollary 4.2.7. Let notation be as above, and let d denote the rank of 𝑆𝜅, 𝜉 (𝐾0(𝑄))≤ℎ . Suppose that R
is reduced and 𝑅0 = 𝑅◦. Then the natural map∑

ℎ∈Δ𝑄

〈ℎ〉 :
(
𝑆◦𝜅, 𝜉 (𝐾

−(𝑄))≤ℎ

)
Δ𝑄
→ 𝑆◦𝜅, 𝜉 (𝐾0(𝑄))≤ℎ

is surjective, and its kernel is annihilated by 𝑢 (𝑑−1)𝑎.

Proof. Since 𝑢𝑎𝑈−𝑏𝜛𝑣
is power-bounded for all 𝑣 | 𝑝 on both 𝑆𝜅, 𝜉 (𝐾0(𝑄))≤ℎ and 𝑆𝜅, 𝜉 (𝐾−(𝑄))≤ℎ , by

assumption, and𝑈𝜛𝑣 commutes with the diamond operators, surjectivity follows.
To study the kernel of

∑
ℎ∈Δ𝑄 〈ℎ〉, we first observe that for 𝑓 ∈ 𝑆◦𝜅, 𝜉 (𝐾

−(𝑄))≤ℎ , 𝑈𝑏 (𝑑−1)
𝑝 ( 𝑓 ) ∈

𝑆<𝑟,◦𝜅, 𝜉 (𝐾
−(𝑄))≤ℎ. Suppose 𝑓 ∈ 𝑆◦𝜅, 𝜉 (𝐾

−(𝑄))≤ℎ is in the kernel of
∑
ℎ∈Δ𝑄 〈ℎ〉. Since𝑈𝑝 commutes with

the diamond operators, (𝑢𝑎𝑈−𝑏𝑝 )𝑑−1( 𝑓 ) is also in the kernel of
∑
ℎ∈Δ𝑄 〈ℎ〉, and by Proposition 4.2.6 it

actually lives in 𝐼Δ𝑄𝑆<𝑟𝜅, 𝜉 (𝐾
−(𝑄))≤ℎ. But then

𝑢 (𝑑−1)𝑎 𝑓 = (𝑢𝑎𝑈−𝑏𝑝 )
𝑑−1𝑈𝑏 (𝑑−1)

𝑝 ( 𝑓 ) ∈ 𝐼Δ𝑄𝑆
◦
𝜅, 𝜉 (𝐾

−(𝑄))≤ℎ

as desired. �

Proposition 4.2.8. Suppose that 𝜅 is an open weight such that Spa 𝑅 contains a Zariski-dense set of
classical weights, and suppose that 𝐹𝜅 admits a slope ≤ ℎ-factorization. Let 𝐴𝑣 , 𝐵𝑣 ∈ T<𝑟,◦𝐾 be lifts of
𝛼𝑣 , 𝛽𝑣 , respectively. Then the map∏

𝑣 ∈𝑄

(𝑈𝜛𝑣 − 𝐵𝑣 ) : 𝑆<𝑟,◦𝜅, 𝜉 (𝐾)≤ℎ,𝔪 → 𝑆<𝑟,◦𝜅, 𝜉 (𝐾0(𝑄))≤ℎ,𝔪𝑄,0

is an isomorphism (where we view 𝑆<𝑟,◦𝜅, 𝜉 (𝐾)≤ℎ,𝔪 as a submodule of 𝑆<𝑟,◦𝜅, 𝜉 (𝐾0(𝑄))≤ℎ,𝔪).
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Proof. We may assume𝑄 = {𝑣}, by induction on the size of Q. Then the source and the target are finite
𝑅0-modules. After inverting u, [Kis09a, Lemma 2.1.7] implies that the map is an isomorphism when spe-
cialized to any sufficiently large classical weight. It follows that 𝑆𝜅, 𝜉 (𝐾)≤ℎ,𝔪 and 𝑆𝜅, 𝜉 (𝐾0 (𝑄))≤ℎ,𝔪𝑄,0

have the same rank over R. We claim that it suffices to check that𝑈𝜛𝑣 −𝐵𝑣 is surjective after specializing
at every maximal ideal of 𝑅0. Indeed, this implies that

𝑈𝜛𝑣 − 𝐵𝑣 : 𝑆𝜅, 𝜉 (𝐾)≤ℎ,𝔪 → 𝑆𝜅, 𝜉 (𝐾0(𝑄))≤ℎ,𝔪𝑄,0

is a surjection of projective R-modules of the same rank, so it is injective. Then the kernel of𝑈𝜛𝑣 − 𝐵𝑣
on 𝑆<𝑟,◦𝜅, 𝜉 (𝐾)≤ℎ,𝔪 is u-torsion. But 𝑆<𝑟,◦𝜅, 𝜉 (𝐾)≤ℎ,𝔪 has no u-torsion, by definition, so the kernel is trivial.

Thus, we need to check that

𝑈𝜛𝑣 − 𝐵𝑣 : F′ ⊗𝑅0 𝑆
<𝑟,◦
𝜅, 𝜉 (𝐾)≤ℎ,𝔪 → F′ ⊗𝑅0 𝑆

<𝑟,◦
𝜅, 𝜉 (𝐾0 (𝑄))≤ℎ,𝔪𝑄,0

is surjective for any specialization 𝑅0 → F′ at a maximal ideal. There is some maximal point 𝑥 ∈ Spa 𝑅
with residue field 𝑅𝑥 and ring of integers 𝑅𝑥,0 such that 𝑅0 → F′ factors through 𝑅0 → 𝑅𝑥,0, and by
Corollary 4.2.4 the maps 𝑅𝑥,0⊗𝑅0 𝑆

<𝑟,◦
𝜅, 𝜉 (𝐾)≤ℎ,𝔪 → 𝑆<𝑟,◦𝜅𝑥 , 𝜉

(𝐾)≤ℎ,𝔪 and 𝑅𝑥,0⊗𝑅0 𝑆
<𝑟,◦
𝜅, 𝜉 (𝐾0 (𝑄))≤ℎ,𝔪0,𝑄 →

𝑆<𝑟,◦𝜅𝑥 , 𝜉
(𝐾0(𝑄))≤ℎ,𝔪𝑄,0 are surjective. It therefore suffices to prove that

𝑈𝜛𝑣 − 𝐵𝑣 : F′ ⊗𝑅𝑥,0 𝑆
<𝑟,◦
𝜅𝑥 , 𝜉
(𝐾)≤ℎ,𝔪 → F′ ⊗𝑅𝑥,0 𝑆

<𝑟,◦
𝜅𝑥 , 𝜉
(𝐾0(𝑄))≤ℎ,𝔪𝑄,0

is surjective. But this is a map of vector spaces of the same dimension, so it is enough to prove injectivity.
The module F′ ⊗𝑅0 𝑆

<𝑟,◦
𝜅𝑥 , 𝜉
(𝐾)≤ℎ,𝔪 is a finite module over the Artin local ring T𝔪/𝜋, so if the kernel

of𝑈𝜛𝑣 − 𝐵𝑣 is nontrivial, it contains 𝑓 ≠ 0 which is 𝔪-torsion. In particular, 𝑇𝑣 ( 𝑓 ) = (𝛼𝑣 + 𝛽𝑣 )𝑥 and
𝑈𝜛𝑣 ( 𝑓 ) = 𝛽𝑣 .

Since

[𝐾0 (𝑣)
( 1

𝜛𝑣

)
𝐾0(𝑣)] =

∐
𝛼∈𝑘𝑣

(
1

𝛼𝜛𝑣 𝜛𝑣

)
𝐾0(𝑣),

where 𝛼̃ denotes a lift of 𝛼, we have

𝑈𝜛𝑣 𝑓 =
∑

𝑎∈𝑘 (𝑣)

( 1
𝛼𝜛𝑣 𝜛𝑣

) | 𝑓
But

(
1

𝛼𝜛𝑣 𝜛𝑣

)
=

( 1
𝜛𝑣

) ( 1
𝛼 1

)
and (

1
𝛼 1

) | 𝑓 = 𝑓 , since f is fixed by
( 1
𝛼 1

)
∈ GL2(𝒪𝐹𝑣 )by assumption,

so

𝑈𝜛𝑣 𝑓 = |𝑘 (𝑣) |
(

1
𝜛𝑣

) | 𝑓 = (
1
𝜛𝑣

) | 𝑓 .
Similarly, we have

[GL2 (𝒪𝐹𝑣 )
( 1

𝜛𝑣

)
GL2(𝒪𝐹𝑣 )] =

( 𝜛𝑣
1
)

GL2 (𝒪𝐹𝑣 )
⊔ ∐

𝛼∈𝑘𝑣

(
1
𝛼 𝜛𝑣

)
GL2(𝒪𝐹𝑣 )

so

𝑇𝑣 𝑓 = (
𝜛𝑣

1
) | 𝑓 + ∑

𝛼∈𝑘 (𝑣)

( 1
𝛼 𝜛𝑣

) | 𝑓 .
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Now, for any 𝛼 ∈ 𝑘 (𝑣),

( 1
𝛼 𝜛𝑣

) | 𝑓 = (
1
𝛼 1

) (
1
𝜛𝑣

) | 𝑓 = 𝛽𝑣 𝑓
so

(
𝜛𝑣

1
) | 𝑓 = (𝑇𝑣 −𝑈𝜛𝑣 ) ( 𝑓 ) = 𝛼𝑣 𝑓 .

But

(
𝜛𝑣

1
) | 𝑓 = (

1
1

) (
1
𝜛𝑣

) (
1

1
) | 𝑓 = (

1
𝜛𝑣

) | 𝑓 = 𝛽𝑣 𝑓
since f is fixed by

( 1
𝜛𝑣

)
∈ GL2 (𝒪𝐹𝑣 ), so 𝛼𝑣 = 𝛽𝑣 , which contradicts our assumption. �

Corollary 4.2.9. With notation as above, the map∏
𝑣 ∈𝑄

(𝑈𝜛𝑣 − 𝐵𝑣 ) : 𝑆◦𝜅, 𝜉 (𝐾)≤ℎ,𝔪 → 𝑆◦𝜅, 𝜉 (𝐾0(𝑄))≤ℎ,𝔪𝑄,0

is an isomorphism.

4.3. Varying the level

We record some results on the existence of slope decompositions as we vary the tame level. Fix a set of
places Q as above, and fix a maximal ideal 𝔪 ⊂ T which corresponds to the residual Hecke eigenvalues
at some maximal point of 𝒳𝐷× . There is a corresponding Galois representation 𝜌𝔪 : Gal𝐹 → GL2(F)
for some finite field F; it is unramified at all places of Q and the characteristic polynomial of 𝜌𝔪 (Frob𝑣 )
is 𝑋2 − 𝑇𝑣𝑋 + Nm(𝑣)𝑆𝑣 for all 𝑣 ∈ 𝑄. After replacing F with a quadratic extension if necessary,
we may assume that each such characteristic polynomial has roots {𝛼𝑣 , 𝛽𝑣 } in F; we assume that
𝛼𝑣 𝛽

−1
𝑣 ∉ {1,Nm(𝑣)±}.

Let 𝐸/Q𝑝 be a finite extension with ring of integers 𝒪𝐸 , uniformizer 𝜋 and residue field containing
F, and replace the Hecke algebras T and T𝑄,0 with 𝒪𝐸 ⊗Z𝑝 T and 𝒪𝐸 ⊗𝒪𝐸 T𝑄,0, respectively. Similarly,
replace the coefficient module 𝒟𝜅 with its base-change to 𝒪𝐸 so that the Hecke algebras continue to act
(the upshot is that we also base-change the resulting eigenvarieties from Z𝑝 to 𝒪𝐸 , but we suppress this
from the notation). Fix a root 𝛼𝑣 ∈ F of each characteristic polynomial, and fix a lift 𝐴𝑣 ∈ 𝒪𝐸 of each
𝛼𝑣 . Then we define 𝔪𝑄,0 ⊂ T𝑄,0 to be the maximal ideal generated by 𝔪 ∩ T𝑄,0 and𝑈𝜛𝑣 − 𝐴𝑣 for all
𝑣 ∈ 𝑄.

Lemma 4.3.1. Fix a central character 𝜉 : A×𝐹, 𝑓 /𝐹
× → 𝒪(𝒲𝐹 )

×. Then there is an isomorphism

𝒳
𝐾,T𝑄,0
𝐷× , 𝜉 ,𝔪

∼
−→ 𝒳

𝐾𝑄 (0) ,T𝑄,0
𝐷× , 𝜉 ,𝔪𝑄,0

, compatible with the respective morphisms to 𝒲𝐹 .

Proof. Let 𝑆𝜅 (𝐾)≤ℎ,𝔪 := T𝔪 ⊗T 𝑆𝜅 (𝐾)≤ℎ, and similarly for 𝑆𝜅 (𝐾𝑄 (0))≤ℎ,𝔪𝑄,0 . By [Kis09a, Lemma
2.1.7], for any slope h and any sufficiently large classical weight 𝜅, we have an isomorphism of T𝑄,0-
modules

𝑆𝜅 (𝐾)≤ℎ,𝔪
∼
−→ 𝑆𝜅 (𝐾𝑄 (0))≤ℎ,𝔪𝑄,0 .

By construction, classical points are dense in𝒳𝐾,T𝑄,0
𝐷× , 𝜉 ,𝔪

and𝒳𝐾𝑄 (0) ,T𝑄,0
𝐷× , 𝜉 ,𝔪𝑄,0

, so we may use [JN19a, Theorem
3.2.1] to construct morphisms of eigenvarieties

𝒳
𝐾𝑄 (0) ,T𝑄,0
𝐷× , 𝜉 ,𝔪𝑄,0

→ 𝒳
𝐾,T𝑄,0
𝐷× , 𝜉 ,𝔪
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and

𝒳
𝐾,T𝑄,0
𝐷× , 𝜉 ,𝔪

→ 𝒳
𝐾𝑄 (0) ,T𝑄,0
𝐷× , 𝜉 ,𝔪𝑄,0

.

These morphisms are mutually inverse, so they are isomorphisms. �

Corollary 4.3.2. Fix a central character 𝜉 : A×𝐹, 𝑓 /𝐹
× → 𝒪(𝒲𝐹 )

×. Let 𝑈 = Spa 𝑅 ⊂ 𝒲𝐹 be a
connected affinoid open, corresponding to a weight 𝜅, and fix ℎ ∈ Q>0. Then (𝑈, ℎ) is a slope datum
for 𝒳𝐾

𝐷× , 𝜉 ,𝔪
if and only if it is a slope datum for 𝒳𝐾0 (𝑄)

𝐷× , 𝜉 ,𝔪𝑄,0
.

Proof. We write ℎ = 𝑚/𝑛 and consider the closed ball B𝑈,ℎ := {|𝑇𝑛 | ≤ |𝑢−𝑚 |} ⊂ A1
𝑈 . If 𝒵 and 𝒵′

denote the spectral varieties for 𝒳𝐾
𝐷× , 𝜉 ,𝔪

and 𝒳
𝐾0 (𝑄)

𝐷× , 𝜉 ,𝔪𝑄,0
, respectively, we set 𝑍𝑈,ℎ := 𝒵 ∩ B𝑈,ℎ and

𝑍 ′𝑈,ℎ := 𝒵′ ∩ B𝑈,ℎ . We need to show that 𝑍𝑈,ℎ → 𝑈 is finite with constant degree if and only if
𝑍 ′𝑈,ℎ → 𝑈 is.

Since the morphisms 𝒵 → 𝒲𝐹 and 𝒵′ → 𝒲𝐹 are flat and we have assumed U is connected, it is
enough to prove that 𝑍𝑈,ℎ → 𝑈 is finite if and only if 𝑍 ′𝑈,ℎ → 𝑈 is. To see this, it is enough to show
the same statement about the morphisms 𝑍 red

𝑈,ℎ , 𝑍
′,red
𝑈,ℎ → 𝑈 on the underlying reduced subspaces.

Setting T := 𝒪𝐸 , we have

𝒵red = 𝒳𝐾,T
𝐷× , 𝜉 ,𝔪

and

𝒵
′,red = 𝒳

𝐾0 (𝑄) ,T

𝐷× , 𝜉 ,𝔪
.

Then as in Lemma 4.3.1, we have an isomorphism 𝒳𝐾,T
𝐷× , 𝜉 ,𝔪

→ 𝒳
𝐾0 (𝑄) ,T

𝐷× , 𝜉 ,𝔪
compatible with the respective

morphisms to 𝒲𝐹 , and the result follows. �

We may also compare slope data for 𝒳𝐾0 (𝑄)

𝐷×
and 𝒳

𝐾− (𝑄)

𝐷×
:

Lemma 4.3.3. Fix a central character 𝜉 : A×𝐹, 𝑓 /𝐹
× → 𝒪(𝒲)×. Let 𝑈 = Spa 𝑅 ⊂ 𝒲𝐹 be an affinoid

open, corresponding to a weight 𝜅, and fix ℎ ∈ Q>0. Then (𝑈, ℎ) is a slope datum for 𝒳
𝐾0 (𝑄)
𝐷,𝜉 if and

only if it is a slope datum for 𝒳𝐾− (𝑄)
𝐷,𝜉 .

Proof. Let 𝒵 and 𝒵′ be the spectral varieties for 𝒳𝐾0 (𝑄)
𝐷,𝜉 and 𝒳

𝐾− (𝑄)
𝐷,𝜉 , respectively, and let 𝑥 ∈ 𝑈 be

a maximal point. Then by Proposition 4.2.6 the module 𝐻0(𝐾−(𝑄),𝒟𝜅𝑥 ) [𝜉]≤ℎ is finite projective over
𝑘𝑥 [Δ𝑄] of constant rank, and the natural map 𝐻0 (𝐾−(𝑄),𝒟𝜅𝑥 ) [𝜉]≤ℎ,Δ𝑄 → 𝐻0 (𝐾0(𝑄),𝒟𝜅𝑥 )≤ℎ is an
isomorphism. It follows that the fiber of 𝑍𝑈,ℎ over x is finite of order d if and only if the fiber of 𝒵′
over x is finite of order 𝑑 |Δ𝑄 |. Since spectral varieties are flat over weight space, the result follows from
Theorem 3.1.2. �

5. Patching and modularity

5.1. Setup

Let us recall our goal. Assume 𝑝 ≥ 5. Fix a non-Archimedean characteristic p local field L with ring
of integers 𝒪𝐿 , residue field F𝑞 and uniformizer u. Fix a continuous odd representation 𝜌 : GalQ →
GL2(F𝑞) such that:
◦ 𝜌 is modular
◦ 𝜌 |GalQ(𝜁𝑝 ) is absolutely irreducible
◦ The image of 𝜌 contains SL2 (F𝑝)

https://doi.org/10.1017/fms.2023.116 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.116


40 R. Bellovin

◦ 𝜌 is unramified at all places away from p
◦ 𝜌 � 𝜒 ⊗

(
𝜒cyc ∗

1

)
for any character 𝜒 : GalQ → F×𝑞 .

The assumption that 𝜌 has large image is stronger than the typical hypothesis. This is because we need
to use [BH17, Theorem B.0.1] to ensure that we can work with middle-degree eigenvarieties for Hilbert
modular forms.

We wish to prove the following modularity theorem:

Theorem 5.1.1. Suppose 𝜌 : GalQ → GL2 (𝒪𝐿) is a continuous odd representation unramified away
from p and trianguline at p with regular parameters, whose reduction modulo u is as above. Then 𝜌 is
the twist of a Galois representation arising from an overconvergent modular form.

The predicted weight 𝜅 can be read off from the parameters of the triangulation, as can the predicted
slope h.

More precisely, we will show that 𝜌 corresponds to a class in 𝑆𝜅 (𝐾)≤ℎ, where 𝐾 = 𝐼 · 𝐾1(𝑁)
𝑝 =

𝐼 ·
∏

ℓ≠𝑝,ℓ�𝑁 GL2 (Qℓ) ·
∏

ℓ |𝑁 𝐾1(ℓ) for some 𝑁 ≥ 5 prime to p. To do this, we will consider an open
weight 𝜅 : 𝑇0 → 𝒪(𝑈)×, where𝑈 ⊂𝒲 contains a point corresponding to 𝜅 and (𝑈, ℎ) is a slope datum,
and we will study the spaces 𝑆𝜅 (𝐾−(𝑄))≤ℎ for varying sets of primes Q.

5.2. Patched eigenvarieties

In this section, we construct local pieces of patched quaternionic eigenvarieties, using the language of
ultrafilters of [Sch18, §9]. We fix a totally real field F split at all places above p and a totally definite
quaternion algebra D over F, which is ramified at all infinite places and split at all finite places. We
also fix the tame level 𝐾 𝑝 := GL2 (A𝑝

𝐹, 𝑓 ). We further assume that 𝐹/Q is abelian, so that Leopoldt’s
conjecture is known to hold. Unlike [Sch18], we do not assume that F has a unique prime above p; we
let Σ𝑝 := {𝑣 | 𝑝}. We expect these hypotheses can be relaxed considerably, but this is not necessary for
our applications. Fix some finite extension 𝐸/Q𝑝 with residue field containing F𝑞 .

Recall that there are Galois deformation rings 𝑅�
𝜌,Σ𝑝

and 𝑅𝜌,Σ𝑝 , parametrizing deformations of 𝜌
unramified outside of Σ𝑝 , where 𝑅�

𝜌
additionally parametrizes framings of the deformations at places of

Σ𝑝 . There is also a local framed deformation ring 𝑅�
𝜌,loc := ⊗̂𝑣 ∈Σ𝑝 𝑅�𝜌𝑣 , where 𝑅�

𝜌𝑣
parametrizes framed

deformations of 𝜌 |Gal𝐹𝑣 , and there is a natural map 𝑅�
𝜌,loc → 𝑅�

𝜌
.

We define a distinguished family of characters 𝜂univ : Gal𝐹 → Z𝑝 [[𝑇0/𝑍 (𝐾)]]
× over in-

tegral weight space. We have a universal weight 𝜆 = (𝜆1, 𝜆2), where each 𝜆𝑖 is a character∏
𝑣 ∈Σ𝑝 𝒪

×
𝐹𝑣
→ Z𝑝 [[𝑇0/𝑍 (𝐾)]]

×, and we define 𝜂𝑣 : 𝒪×𝐹𝑣 � Z×𝑝 → Z𝑝 [[𝑇0/𝑍 (𝐾)]]
× via 𝜂(𝑥) :=(

𝜆1 |𝒪×𝐹𝑣
(𝑥)𝜆2 |𝒪×𝐹𝑣

(𝑥)
)−1

. Then because we have assumed that Leopoldt’s conjecture holds for F, we
see that 𝜂𝑣 is independent of 𝑣 ∈ Σ; global class field theory gives us a corresponding character
GalQ → Z𝑝 [[𝑇0/𝑍 (𝐾)]]

×, which we restrict to Gal𝐹 to obtain 𝜂univ.
We fix an unramified continuous character 𝜓0 : Gal𝐹 → 𝒪𝐸 [[𝑇0/𝑍 (𝐾)]]

× such that the reduction 𝜓0
modulo the maximal ideal satisfies det 𝜌 = 𝜓0𝜂univ𝜒

−1
cyc, and we set 𝜓 := 𝜓0𝜂univ and 𝜓 ′ := 𝜓0𝜂univ𝜒

−1
cyc.

Then we constructed quotients

𝒪𝐸 [[𝑇0/𝑍 (𝐾)]] ⊗̂ 𝑅
�
𝜌,Σ𝑝
� 𝑅

�,𝜓′

𝜌,Σ𝑝

𝒪𝐸 [[𝑇0/𝑍 (𝐾)]] ⊗̂ 𝑅
�
𝜌,loc � 𝑅

�,𝜓′

𝜌,loc

𝒪𝐸 [[𝑇0/𝑍 (𝐾)]] ⊗̂ 𝑅𝜌,Σ𝑝 � 𝑅
𝜓′

𝜌,Σ𝑝

parametrizing families of deformations with fixed determinants.
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We also define families of weights 𝜅𝑣 over 𝒲𝐹 via

𝜅𝑣 = (𝜅𝑣1 , 𝜅𝑣,2) =
(
𝜆2 |
−1
𝒪×𝐹𝑣

, 𝜆1 |
−1
𝒪×𝐹𝑣

𝜒−1
cyc

)
.

In order to find sets of Taylor–Wiles primes, we impose the following standard hypotheses:

1. 𝑝 ≥ 5
2. 𝜌 |𝐹 (𝜁𝑝) is absolutely irreducible
3. If 𝑝 = 5 and 𝜌 has projective image PGL2 (F5), the kernel of 𝜌 does not fix 𝐹 (𝜁5)

Then we have the following relative version of [Kis09a, Proposition 2.2.4] (since we assumed p splits
completely in F, [𝐹 : Q] = |Σ𝑝 |):

Proposition 5.2.1. Let 𝑔 := dimF𝑞 𝐻
1 (Gal𝐹,Σ𝑝 , ad0 𝜌(1)) − 1. Then for each positive integer n, there

exists a finite set 𝑄𝑛 of places of F, disjoint from Σ𝑝 , of cardinality 𝑔 + 1 such that

1. for all 𝑣 ∈ 𝑄𝑛, Nm(𝑣) ≡ 1 (mod 𝑝𝑛), and 𝜌(Frob𝑣 ) has distinct eigenvalues
2. the global relative Galois deformation ring 𝑅�,𝜓

′

𝜌,Σ𝑝∪𝑄𝑛
parametrizing families of deformations with

determinant 𝜓 unramified outside Σ𝑝 ∪ 𝑄𝑛 can be topologically generated as an 𝑅�,𝜓
′

𝜌,loc-algebra by
g elements.

Proof. This follows from Lemma 2.1.1, as in [Kis09b, Proposition 3.2.5]. �

We fix such a set 𝑄𝑛 for each 𝑛 ≥ 1, as well as a nonprincipal ultrafilter 𝔉 on {𝑛 ≥ 1} (more
precisely, on its power set, ordered by inclusion). For notational convenience, we set 𝑄0 := ∅, and we
let 𝑄 ′𝑛 := 𝑄𝑛 ∪ Σ𝑝 . For each n, we again let 𝐾−(𝑄𝑛) ⊂ 𝐾0(𝑄𝑛) ⊂ 𝐺 (A𝑝

𝐹, 𝑓 ) � GL2(A𝑝
𝐹, 𝑓 ) be the

compact open subgroups

𝐾−(𝑄𝑛) :=
∏
𝑣∉𝑄𝑛

GL2 (𝒪𝐹𝑣 ) ×
∏
𝑣 ∈𝑄𝑛

𝐾−(𝑣) ⊂
∏
𝑣∉𝑄𝑛

GL2 (𝒪𝐹𝑣 ) ×
∏
𝑣 ∈𝑄𝑛

𝐾0(𝑣).

Let 𝜉 : A×𝐹, 𝑓 /𝐹
× → 𝒪(𝒲𝐹 )

× be the central character corresponding to 𝜓 via class field theory.
Now, we analyze the eigenvarieties 𝒳

𝐾− (𝑄𝑛)

𝐷×
. Let 𝜅 be a weight valued in a reduced pseudoaffi-

noid Z𝑝-algebra R, and write 𝑈 := Spa 𝑅. Assume that the Fredholm determinant corresponding to
𝐻0 (𝐾,𝒟𝜅 ) [𝜉] admits a slope-≤ ℎ-factorization for some slope ℎ = 𝑎/𝑏 (where 𝑎, 𝑏 are relatively prime
nonnegative integers); by Corollary 4.3.2 and Lemma 4.3.3, the Fredholm determinants corresponding
to 𝐻0(𝐾0(𝑄𝑛),𝒟𝜅 ) [𝜉] and 𝐻0(𝐾−(𝑄𝑛),𝒟𝜅 ) [𝜉] also admit slope-≤ ℎ-factorizations. We also assume
that R can be equipped with a norm adapted to 𝜅 such that the corresponding unit ball is the ring of
definition 𝑅0 = 𝑅◦; this is possible, for example, if U is an affinoid open or a maximal point in 𝒲𝐹 by
Lemma 4.1.2. Then we fix some 𝑟 > 𝑟𝜅 .

The modularity of the residual representation 𝜌 means that 𝜌 corresponds to a maximal ideal 𝔪 ⊂ T.
For each 𝑣 ∈ 𝑄𝑛, we fix a root 𝛼𝑣 of the characteristic polynomial 𝑋2 − 𝑇𝑣𝑋 + Nm(𝑣)𝑆𝑣 of 𝜌(Frob𝑣 )
(increasing F𝑞 , and hence E, if necessary), and we consider the corresponding maximal ideal𝔪𝑄𝑛 ⊂ T

−
𝑄𝑛

(as in §3.6).
Then we have a collection of diagrams

𝒪𝐸 ×𝒳
𝐾− (𝑄𝑛)

𝐷× , 𝜉 ,𝔪𝑄𝑛

∐
𝜌 Spa 𝑅𝜌,𝑄𝑛∪Σ𝑝

𝒪𝐸 ×𝒲𝐹 .

wt
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The preimage wt−1(𝑈) in the slope-≤ ℎ part of the eigenvariety has the form
Spa

(
T𝐾− (𝑄𝑛) ,𝜅 , 𝜉 ,≤ℎ ,T

◦
𝐾− (𝑄𝑛) ,𝜅 , 𝜉 ,≤ℎ

)
, and since 𝒳

𝐾− (𝑄𝑛)

𝐷× , 𝜉 ,𝔪𝑄𝑛
is reduced, T◦

𝐾− (𝑄𝑛) ,𝜅 , 𝜉 ,≤ℎ
⊂

T𝐾− (𝑄𝑛) ,𝜅 , 𝜉 ,≤ℎ is a ring of definition.
For each n, the module of overconvergent modular forms 𝑆𝜅, 𝜉 (𝐾−(𝑄𝑛))≤ℎ is a T𝐾− (𝑄𝑛) ,𝜅 , 𝜉 ,≤ℎ-

module, and it is projective as an R-module; let d be its rank over R. The T<𝑟,◦
𝐾− (𝑄𝑛) ,𝜅 , 𝜉 ,≤ℎ

-submodule
𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ is a lattice in 𝑆𝜅, 𝜉 (𝐾−(𝑄𝑛))≤ℎ. Recall from Definition 4.1.3 that there is a second
lattice

𝑆◦𝜅, 𝜉 (𝐾
−(𝑄𝑛))≤ℎ :=

∑
𝑣 |𝑝

∑
𝑖≥0
(𝑢𝑎𝑈−𝑏𝜛𝑣

)𝑖
(
𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ

)
which is stable under the operators 𝑢𝑎𝑈−𝑏𝜛𝑣

, as well.
Let 𝑅𝜓′

𝜌,𝑄′𝑛
|𝑈 denote the localization 𝑅0 ⊗̂𝒪𝐸 [[𝑇0/𝑍 (𝐾 ) ]]

𝑅
𝜓′

𝜌,𝑄′𝑛
; the formal scheme Spf 𝑅𝜓′

𝜌,𝑄′𝑛
|𝑈

is an integral model for the pseudorigid space 𝑈 × Spa 𝑅𝜓′

𝜌,𝑄′𝑛
. Similarly, we will write

𝑅
�,𝜓′,𝜅
tri,𝜌,𝑄′𝑛 ,≤ℎ

|𝑈 for the localization 𝑅0 ⊗̂𝒪𝐸 [[𝑇0/𝑍 (𝐾 ) ]]
𝑅
�,𝜓′,𝜅
tri,𝜌,𝑄′𝑛 ,≤ℎ

and 𝑅�,𝜓
′,𝜅

tri,𝜌,loc,≤ℎ |𝑈 for the localization

𝑅0 ⊗̂𝒪𝐸 [[𝑇0/𝑍 (𝐾 ) ]]
𝑅
�,𝜓′,𝜅
tri,𝜌,loc,≤ℎ . Using the existence of Galois representations, we see that T◦

𝐾− (𝑄𝑛) ,𝜅 , 𝜉 ,≤ℎ

is a 𝑅𝜓′

𝜌,𝑄′𝑛
|𝑈 -algebra.

By Lemma 4.2.6, 𝑆<𝑟,◦𝜅, 𝜉 (𝐾
−(𝑄𝑛))≤ℎ,𝔪−

𝑄𝑛
is a finite 𝑅0 [Δ𝑄𝑛 ]-module, with

𝑅0 ⊗𝑅0 [Δ𝑄𝑛 ] 𝑆
<𝑟,◦
𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ,𝔪−
𝑄𝑛
� 𝑆<𝑟,◦𝜅, 𝜉 (𝐾0(𝑄𝑛))≤ℎ,𝔪0,𝑄𝑛 .

Since the augmentation ideal 𝐼Δ𝑄𝑛 is contained in the Jacobson radical of 𝑅0 [Δ𝑄𝑛 ], this implies that
𝑆<𝑟,◦𝜅, 𝜉 (𝐾0 (𝑄𝑛))≤ℎ,𝔪0,𝑄𝑛 and 𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ,𝔪−
𝑄𝑛

can be generated by the same number of elements
(over 𝑅0 and 𝑅0 [Δ𝑄𝑛 ], respectively).

Similarly, 𝑆◦𝜅, 𝜉 (𝐾
−(𝑄𝑛))≤ℎ,𝔪−

𝑄𝑛
is a finite 𝑅0 [Δ𝑄𝑛 ]-module. Since 𝑆◦𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ,𝔪−
𝑄𝑛

is gen-
erated by 𝑑 |Σ𝑝 | translates of 𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ,𝔪−
𝑄𝑛

, we see that the number of generators of
𝑆◦𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ,𝔪−
𝑄𝑛

over 𝑅0 [Δ𝑄𝑛 ] is bounded independently of n.
Set 𝑗 = 4|Σ𝑝 | − 1 and 𝑘 = |𝑄𝑛 | = 𝑔 + 1. Using local-global compatibility at places

in 𝑄𝑛, there is a homomorphism 𝑅0 ⊗̂Z𝑝 [[𝑦1, . . . , 𝑦𝑘 ]] → 𝑅
𝜓′

𝜌,𝑄′𝑛
|𝑈 such that the action of

𝑅0 ⊗̂Z𝑝 [[𝑦1, . . . , 𝑦𝑘 ]] on 𝑆◦𝜅, 𝜉 (𝐾
−(𝑄𝑛))

◦
≤ℎ,𝔪−

𝑄𝑛

is compatible with the action of 𝑅0 [Δ𝑄𝑛 ] via a fixed

surjection 𝑅0 ⊗̂Z𝑝 [[𝑦1, . . . , 𝑦𝑘 ]] → 𝑅0 [Δ𝑄𝑛 ].
We observe that we may view 𝑆𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ,𝔪−
𝑄𝑛

as a module over Spa 𝑅[Δ𝑄]×𝑈𝐶𝑈,ℎ , where
𝐶𝑈,ℎ is the annulus of radius h, by letting the coordinate on 𝐶𝑈,ℎ act as𝑈−1

𝑝 .
Now, we consider local-global compatibility at places in Σ𝑝 . Recall that the actions of 𝑢𝑎𝑈𝑏

𝜛𝑣
and

𝑢𝑎𝑈−𝑏𝜛𝑣
on 𝑆𝜅, 𝜉 (𝐾−(𝑄𝑛))≤ℎ are power-bounded for all 𝑣 | 𝑝. Thus, we can make 𝑆◦𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ,𝔪−
𝑄𝑛

into a module over 𝑅𝜓′

𝜌,𝑄′𝑛
|𝑈

〈
𝑝ℎ𝑇±1

1 , . . . , 𝑝ℎ𝑇±1
|Σ𝑝 |

〉
by letting 𝑇𝑖 act as 𝑈−1

𝜛𝑣𝑖
. But local-global compat-

ibility tells us that, over the analytic locus, 𝑆𝜅, 𝜉 (𝐾−(𝑄𝑛)) is supported on the trianguline locus, so
𝑆◦𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ,𝔪−
𝑄𝑛

is actually a 𝑅𝜓′,𝜅

tri,𝜌,𝑄′𝑛 ,≤ℎ
|𝑈 -module, where the coordinates of GΣ𝑝

𝑚 act as𝑈−1
𝜛𝑣

.
Since 𝑅𝜓′

𝜌,𝑄′𝑛
→ 𝑅

�,𝜓′

𝜌,𝑄′𝑛
is formally smooth of dimension j, we may construct a homomorphism

𝑅0 ⊗̂Z𝑝 [[𝑦1, . . . , 𝑦𝑘 , 𝑦𝑘+1, . . . , 𝑦𝑘+ 𝑗 ]] → 𝑅
�,𝜓′,𝜅
tri,𝜌,𝑄′𝑛 ,≤ℎ

|𝑈

compatible with

𝑅0 ⊗̂Z𝑝 [[𝑦1, . . . , 𝑦𝑘 ]] → 𝑅
𝜓′

𝜌,𝑄′𝑛
|𝑈
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such that 𝑦𝑘+1, . . . , 𝑦𝑘+ 𝑗 are the framing variables. Finally, we fix a surjection 𝑅�,𝜓
′

𝜌,loc [[𝑥1, . . . , 𝑥𝑔]] �

𝑅
�,𝜓′

𝜌,𝑄′𝑛
and a map 𝑅0 ⊗̂Z𝑝 [[𝑦1, . . . , 𝑦𝑘+ 𝑗 ]] → 𝑅

�,𝜓′

𝜌,loc [[𝑥1, . . . , 𝑥𝑔]] such that the corresponding diagram

𝑅0 ⊗̂Z𝑝 [[𝑦1, . . . , 𝑦𝑘+ 𝑗 ]] 𝑅
�,𝜓′,𝜅
tri,𝜌,loc,≤ℎ [[𝑥1, . . . , 𝑥𝑔]] |𝑈

𝑅
�,𝜓′,𝜅
tri,𝜌,𝑄′𝑛 ,≤ℎ

|𝑈

commutes.
Now, we can patch. We add framing variables by setting

𝑀<𝑟
𝑛 := Z𝑝 [[𝑦𝑘+1, . . . , 𝑦𝑘+ 𝑗 ]] ⊗̂

Z𝑝

𝑆<𝑟,◦𝜅, 𝜉 (𝐾
−
𝑄𝑛
)≤ℎ,𝔪−

𝑄𝑛

and
𝑀𝑛 := Z𝑝 [[𝑦𝑘+1, . . . , 𝑦𝑘+ 𝑗 ]] ⊗̂

Z𝑝

𝑆◦𝜅, 𝜉 (𝐾
−
𝑄𝑛
)≤ℎ,𝔪−

𝑄𝑛

so that
𝑅0 ⊗𝑅0 ⊗̂Z𝑝 [[𝑦1 ,...,𝑦𝑘+ 𝑗 ]]

𝑀<𝑟
𝑛 � 𝑆

<𝑟,◦
𝜅, 𝜉 (𝐾)≤ℎ,𝔪

for all 𝑛 ≥ 1, and
𝑅0 ⊗𝑅0 ⊗̂Z𝑝 [[𝑦1 ,...,𝑦𝑘+ 𝑗 ]]

𝑀𝑛 � 𝑆◦𝜅, 𝜉 (𝐾)≤ℎ,𝔪

for all 𝑛 ≥ 1.
For any open ideal 𝐼 ⊂ 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]], we define

𝑀<𝑟
𝐼 := 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]/𝐼 ⊗∏

𝑛≥1 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖 ]]/𝐼

∏
𝑛

𝑀<𝑟
𝑛 /𝐼

and
𝑀𝐼 := 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]/𝐼 ⊗∏

𝑛≥1 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖 ]]/𝐼

∏
𝑛

𝑀𝑛/𝐼 .

Here, the homomorphism
∏

𝑛≥1 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]/𝐼 → 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]/𝐼 is the localization map coming
from our choice of nonprincipal ultrafilter.

Passing to the inverse limit, we obtain the patched modules

𝑀<𝑟
∞ := lim

←−−
𝐼

𝑀<𝑟
𝐼

and
𝑀∞ := lim

←−−
𝐼

𝑀𝐼 .

Similarly, we may define patched global deformation rings 𝑅
�,𝜓′,𝜅
tri,𝜌,∞,≤ℎ,𝐼 |𝑈 and Hecke algebras

T
<𝑟,◦
∞,𝜅 ,≤ℎ,𝐼 and T◦

∞,𝜅 ,≤ℎ,𝐼 via

𝑅
�,𝜓′,𝜅
tri,𝜌,∞,≤ℎ,𝐼 |𝑈 := 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]/𝐼 ⊗∏

𝑛≥1 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖 ]]/𝐼

∏
𝑛

𝑅
�,𝜓′,𝜅
tri,𝜌,𝑄′𝑛 ,≤ℎ

|𝑈/𝐼

T
<𝑟,◦
∞,𝜅 ,≤ℎ,𝐼 := 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]/𝐼 ⊗∏

𝑛≥1 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖 ]]/𝐼

∏
𝑛

T
<𝑟,◦
𝐾− (𝑄𝑛) ,𝜅 ,≤ℎ

/𝐼

T◦∞,𝜅 ,≤ℎ,𝐼 := 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]/𝐼 ⊗∏
𝑛≥1 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖 ]]/𝐼

∏
𝑛

T◦𝐾− (𝑄𝑛) ,𝜅 ,≤ℎ
/𝐼
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Setting 𝑅�,𝜓
′,𝜅

tri,𝜌,∞,≤ℎ |𝑈 := lim
←−−𝐼

𝑅
�,𝜓′,𝜅
tri,𝜌,∞,≤ℎ,𝐼 |𝑈 ,T<𝑟,◦

∞,𝜅 ,≤ℎ := lim
←−−𝐼
T
<𝑟,◦
∞,𝜅 ,≤ℎ,𝐼 , andT◦

∞,𝜅 ,≤ℎ := lim
←−−𝐼
T◦
∞,𝜅 ,≤ℎ,𝐼 ,

we have a sequence of homomorphisms

𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]] → 𝑅
�,𝜓′,𝜅
tri,𝜌,loc,≤ℎ [[𝑥𝑖]] |𝑈 → 𝑅

�,𝜓′,𝜅
tri,𝜌,∞,≤ℎ |𝑈 → T

◦
∞,𝜅

compatible with their actions on 𝑀∞.
Note that for each open ideal I, we have a surjection

𝑅
�,𝜓′,𝜅
tri,𝜌,loc,≤ℎ [[𝑥𝑖]] |𝑈/𝐼 � 𝑅

�,𝜓′,𝜅
tri,𝜌,∞,≤ℎ,𝐼 |𝑈 .

Hence, we have a surjection

𝑅
�,𝜓′,𝜅
tri,𝜌,loc,≤ℎ [[𝑥𝑖]] |𝑈 � 𝑅

�,𝜓′,𝜅
tri,𝜌,∞,≤ℎ |𝑈

and a closed immersion

𝑋
�,𝜓′,𝜅
tri,𝜌,∞,≤ℎ |𝑈 :=

(
Spa 𝑅�,𝜓

′,𝜅

tri,𝜌,∞,≤ℎ |𝑈

)an
↩→ 𝑋

�,𝜓′,𝜅
tri,𝜌,loc,≤ℎ [[𝑥𝑖]] |𝑈 .

Furthermore, since 𝑅�,𝜓
′,𝜅

tri,𝜌,𝑄′𝑛 ,≤ℎ
|𝑈/(𝑦𝑖) � 𝑅

�,𝜓′,𝜅
tri,𝜌,Σ𝑝 ,≤ℎ

|𝑈 for all n, we see that 𝑅�,𝜓
′,𝜅

tri,𝜌,∞,≤ℎ |𝑈/(𝑦𝑖) �

𝑅
�,𝜓′,𝜅
tri,𝜌,Σ𝑝 ,≤ℎ

|𝑈 .

Lemma 5.2.2. The patched modules 𝑀<𝑟
∞ and 𝑀∞ are finite over 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]. In particular, they are

complete.

Proof. The powers of the ideal (𝑢, 𝑦1, . . . , 𝑦𝑘+ 𝑗 ) are cofinal in the set of open ideals of 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]],
and for any open ideals 𝐼 ⊂ 𝐼 ′ ⊂ 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]], the natural maps 𝑀<𝑟

𝐼 /𝐼
′ → 𝑀<𝑟

𝐼 ′ and 𝑀𝐼 /𝐼
′ → 𝑀𝐼 ′

are isomorphisms. Then [Sta18, Tag 09B8] implies that 𝑀<𝑟
∞ and 𝑀∞ are complete and 𝑀<𝑟

∞ /𝐼 � 𝑀
<𝑟
𝐼

and 𝑀∞/𝐼 � 𝑀𝐼 for all open ideals 𝐼 ⊂ 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]].
We have

𝑀<𝑟
∞ /(𝑢, 𝑦1, . . . , 𝑦𝑘+ 𝑗 ) � 𝑀<𝑟

(𝑢,𝑦1 ,...,𝑦𝑘+ 𝑗 )
� 𝑆<𝑟,◦𝜅, 𝜉 (𝐾)≤ℎ,𝔪/𝑢

which is 𝑅0-finite. Since the number of generators of 𝑀𝑛/(𝑢, 𝑦1, . . . , 𝑦𝑘+ 𝑗 ) over 𝑅0 is bounded inde-
pendently of n, 𝑀∞/(𝑢, 𝑦1, . . . , 𝑦𝑘+ 𝑗 ) is 𝑅0-finite. Hence, by [Mat89, Theorem 8.4], 𝑀<𝑟

∞ and 𝑀∞ are
𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]-finite. �

Proposition 5.2.3. If 𝑅 = 𝐿 is a field with ring of integers 𝒪𝐿 , then 𝑀<𝑟
∞ is a finite projective

𝒪𝐿 [[𝑦1, . . . , 𝑦𝑘+ 𝑗 ]]-module.

Proof. We claim it is enough to show that, for any open ideal I, 𝑀<𝑟
𝑛 /𝐼 is a free 𝒪𝐿 [[𝑦𝑖]]/𝐼-module of

rank d for all 𝑛 � 0. Indeed, because our ultrafilter is nonprincipal, this implies that 𝑀<𝑟
𝐼 is also a free

𝒪𝐿 [[𝑦𝑖]]/𝐼-module of rank d (since the localization
∏

𝑛≥1 𝒪𝐿 [[𝑦𝑖]]/𝐼 → 𝒪𝐿 [[𝑦𝑖]]/𝐼 factors through the
localization

∏
𝑛≥1 𝒪𝐿 [[𝑦𝑖]]/𝐼 →

∏
𝑛≥𝑛0 𝒪𝐿 [[𝑦𝑖]]/𝐼 for any 𝑛0 ≥ 1). Since 𝑀<𝑟

∞ is (𝑢, 𝑦1, . . . , 𝑦𝑘+ 𝑗 )-
adically separated, [Mat89, Theorem 22.3] implies that 𝑀<𝑟

∞ is flat over 𝒪𝐿 [[𝑦𝑖]] and hence projective.
By Proposition 4.2.6, 𝑆<𝑟,◦𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ is a projective 𝑅0 [Δ𝑄𝑛 ]-module of rank d for all n. Then
for 𝑛 � 0 (depending on I), 𝑀<𝑟

𝑛 /𝐼 is free over 𝒪𝐿 [[𝑦𝑖]] of rank d, so we are done. �

The modules 𝑀<𝑟
∞ and 𝑀∞ behave well under finite base change, in particular, under passage to

closed subspaces of U:

Lemma 5.2.4. Let 𝑓 : 𝑅0 → 𝑅′0 be a finite morphism, where 𝑅′0 is a Noetherian ring of definition in a
pseudoaffinoid algebra. Let 𝜅′ be the weight 𝑓 ◦ 𝜅, and let 𝑀 ′∞<𝑟 denote the patched module constructed
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from the modules of modular forms 𝑆<𝑟,◦𝜅′, 𝜉 (𝐾
−
𝑄𝑛
)≤ℎ,𝔪−

𝑄𝑛
. Then the natural maps

𝑅′0 ⊗̂Z𝑝 [[𝑦𝑖]] ⊗𝑅0 ⊗̂Z𝑝 [[𝑦𝑖 ]]
𝑀<𝑟
∞ → 𝑀<𝑟

∞
′

and
𝑅′0 ⊗̂Z𝑝 [[𝑦𝑖]] ⊗𝑅0 ⊗̂Z𝑝 [[𝑦𝑖 ]]

𝑀∞ → 𝑀 ′∞

are surjections.

Proof. We treat the first map; the second is similar. Let 𝑀 ′𝑛 := Z𝑝 [[𝑦𝑘+1, . . . , 𝑦𝑘+ 𝑗 ]] ⊗Z𝑝

𝑆<𝑟,◦𝜅′, 𝜉 (𝐾
−
𝑄𝑛
)≤ℎ,𝔪−

𝑄𝑛
. The open ideals 𝐼 ⊂ 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]] generate open ideals of 𝑅′0 ⊗̂Z𝑝 [[𝑦𝑖]] and are

cofinal, so it suffices to show that we have a surjection

𝑅′0 ⊗̂Z𝑝 [[𝑦𝑖]]/𝐼 ⊗𝑅0 ⊗̂Z𝑝 [[𝑦𝑖 ]]/𝐼
𝑀𝐼 → 𝑀 ′𝐼 :=

(
𝑅′0 ⊗̂Z𝑝 [[𝑦𝑖]]/𝐼

)
⊗∏

𝑛≥1 𝑅
′
0 ⊗̂Z𝑝 [[𝑦𝑖 ]]/𝐼

∏
𝑛≥1

𝑀 ′𝑛/𝐼 .

The left side is isomorphic to 𝑅′0 ⊗𝑅0 𝑀𝐼 (because 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]/𝐼 is discrete, by construction). Since
each map 𝑅′0 ⊗𝑅0 𝑀𝑛 → 𝑀 ′𝑛 is surjective (by Lemma 4.2.3, and since the transition maps

∏𝑘+1
𝑛=1 𝑀𝑛 →∏𝑘

𝑛=1 𝑀𝑛 are surjective, the Mittag–Leffler condition implies that the natural map

𝑅′0 ⊗𝑅0 𝑀𝐼 → 𝑀 ′𝐼

is surjective. �

We have constructed two coherent 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]-modules, 𝑀<𝑟
∞ and 𝑀∞; 𝑀∞ is naturally a

𝑅
�,𝜓′,𝜅
tri,𝜌,∞,≤ℎ |𝑈 -module, but 𝑀<𝑟

∞ is projective when U is a point, making its support over 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]

easier to analyze.
We now pass to the loci of the corresponding map

Spa 𝑅�,𝜓
′,𝜅

tri,𝜌,loc,≤ℎ [[𝑥𝑖]] |𝑈 → Spa 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]],

where 𝑢 ≠ 0, and we consider the analytification 𝑀an
∞ of 𝑀∞ as a coherent sheaf over 𝑋�,𝜓

′,𝜅

tri,𝜌,loc,≤ℎ |𝑈 ×

Spa Z𝑝 [[𝑥𝑖]].

Lemma 5.2.5. The support of 𝑀an
∞ is a Zariski-closed subspace of dimension

dim Spa 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]

[
1
𝑢

]
= dim𝑈 + (𝑔 + 1) + (4|Σ𝑝 | − 1) = dim𝑈 + 𝑔 + 4|Σ𝑝 |.

Proof. If 𝑥 : 𝑅 → 𝐿 is a maximal point and 𝒪𝐿 is the ring of integers of L, it suffices to show that
𝒪𝐿 ⊗𝑅0 𝑀∞ is supported on all of Spec𝒪𝐿 [[𝑦𝑖]]. We set 𝜅′ := 𝑥 ◦ 𝜅 and we let 𝑀 ′∞<𝑟 and 𝑀 ′∞ be
the patched modules constructed from the modules 𝑆<𝑟,◦𝜅′, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ,𝔪−
𝑄𝑛

and 𝑆◦𝜅′, 𝜉 (𝐾
−(𝑄𝑛))≤ℎ,𝔪−

𝑄𝑛
,

respectively. Since the natural map
𝒪𝐿 ⊗𝑅0 𝑀∞ → 𝑀 ′∞

is surjective, it suffices to show that 𝑀 ′∞ is supported on all of Spec𝒪𝐿 [[𝑦𝑖]]. To see this, we consider
the natural morphism 𝑀 ′∞

<𝑟 → 𝑀 ′∞.
We will show that 𝑀 ′∞<𝑟 → 𝑀 ′∞ is an isomorphism over a dense open subspace of Spec𝒪𝐿 [[𝑦𝑖]]. Let

𝑃𝑛 be the cokernel of 𝑀 ′𝑛<𝑟 → 𝑀 ′𝑛, and let P be the cokernel of 𝑀 ′∞<𝑟 → 𝑀 ′∞. Since the cokernel of

𝑆<𝑟,◦𝜅, 𝜉 (𝐾
−(𝑄𝑛))≤ℎ,𝔪−

𝑄𝑛
→ 𝑆◦𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ,𝔪−
𝑄𝑛

is finite and u-power-torsion, 𝑃𝑛 is also u-power-torsion.
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There is some integer 𝑘0 ≥ 0 such that

𝑢𝑘0𝑆◦𝜅′, 𝜉 (𝐾0(𝑄𝑛))≤ℎ,𝔪0,𝑄𝑛 ⊂ 𝑆
<𝑟.◦
𝜅′, 𝜉 (𝐾0(𝑄𝑛))≤ℎ,𝔪0,𝑄𝑛

and by Corollary 4.2.7 the kernel of(
𝑆◦𝜅, 𝜉 (𝐾

−(𝑄𝑛))≤ℎ,𝔪−
𝑄𝑛

)
Δ𝑄𝑛
→ 𝑆◦𝜅′, 𝜉 (𝐾0(𝑄𝑛))≤ℎ,𝔪0,𝑄𝑛

is annihilated by 𝑢 (𝑑−1)𝑎. Hence, there is some 𝑁 � 0 such that 𝑢𝑁 𝑃𝑛 ⊂ (𝑦𝑖)𝑃𝑛 for all n, and by
devissage, the modules 𝑃𝑛/(𝑦𝑖)𝑘𝑃𝑛 are annihilated by 𝑢𝑘𝑁 for all 𝑘, 𝑛 ≥ 0.

Next, we observe that we have exact sequences

0→ 𝑀<𝑟
𝑛 /(𝑦𝑖)

𝑘 → 𝑀𝑛/(𝑦𝑖)
𝑘 → 𝑃𝑛/(𝑦𝑖)

𝑘 → 0

for all n. Indeed, there are surjections

Tor𝒪𝐿 [[𝑦𝑖 ]]1 (𝒪𝐿 [[𝑦𝑖]]/(𝑦𝑖)
𝑘 , 𝑃𝑛) � ker

(
𝑀<𝑟

𝑛 /(𝑦𝑖)
𝑘 → 𝑀𝑛/(𝑦𝑖)

𝑘
)
.

But 𝑀<𝑟
𝑛 is projective over 𝒪𝐿 [[𝑦1]], so 𝑀<𝑟

𝑛 /(𝑦𝑖)
𝑘 has no u-torsion, whereas

Tor𝒪𝐿 [[𝑦𝑖 ]]1 (𝒪𝐿 [[𝑦𝑖]]/(𝑦𝑖)
𝑘 , 𝑃𝑛) is entirely u-power-torsion because 𝑃𝑛 is.

Let 𝐽𝑘 ⊂ 𝒪𝐿 [[𝑦𝑖]] be the ideal generated by 𝑢𝑁 𝑘 and (𝑦𝑖)𝑘 . Then the Tor long exact sequence gives
us exact sequences

Tor𝒪𝐿 [[𝑦𝑖 ]]/(𝑦𝑖 )
𝑘

1

(
𝑃𝑛/(𝑦𝑖)

𝑘 ,𝒪𝐿 [[𝑦𝑖]]/𝐽𝑘

)
→ 𝑀 ′𝑛

<𝑟
/𝐽𝑘 → 𝑀 ′𝑛/𝐽𝑘 → 𝑃𝑛/𝐽𝑘 → 0.

Moreover,

Tor𝒪𝐿 [[𝑦𝑖 ]]/(𝑦𝑖 )
𝑘

1

(
𝑃𝑛/(𝑦𝑖)

𝑘 ,𝒪𝐿 [[𝑦𝑖]]/𝐽𝑘

)
= (𝑃𝑛/(𝑦𝑖)

𝑘 ) [𝑢𝑁 𝑘 ] = 𝑃𝑛 = 𝑃𝑛/𝐽𝑘 .

Let 𝑃𝐽𝑘 denote the localization of
∏

𝑛≥1 𝑃𝑛/𝐽𝑘 at the ideal corresponding to our chosen ultrafilter.
We have an exact sequence

𝑃𝐽𝑘 → 𝑀 ′𝐽𝑘
<𝑟
→ 𝑀 ′𝐽𝑘 → 𝑃𝐽𝑘 → 0

and since the set {𝐽𝑘 } is cofinal in the set of open ideals of 𝒪𝐿 [[𝑦𝑖]], an exact sequence

𝑃→ 𝑀 ′∞
<𝑟
→ 𝑀 ′∞ → 𝑃→ 0.

But since 𝑢𝑁 𝑃 ⊂ (𝑦𝑖)𝑃, P is supported on a proper closed subscheme of Spf 𝒪𝐿 [[𝑦𝑖]]; away from the
support of P, the map 𝑀 ′∞<𝑟 → 𝑀 ′∞ is an isomorphism, as desired. �

The support of 𝑀an
∞ over 𝑋�,𝜓

′,𝜅

tri,𝜌,loc,≤ℎ |𝑈 ×Spa Z𝑝 [[𝑥𝑖]] is a Zariski-closed subspace, whose dimension
must therefore be

dim Spa 𝑅0 ⊗̂Z𝑝 [[𝑦𝑖]]

[
1
𝑢

]
= dim𝑈 + 𝑔 + 4|Σ𝑝 |.

But the morphism 𝑋
�,𝜓′,𝜅
tri,𝜌,loc |𝑈 → 𝑈 has relative dimension 4|Σ𝑝 | over an open subspace of U by

Proposition 2.3.5, so any nonempty irreducible components have total dimension dim𝑈 + 4|Σ𝑝 |. It
follows that the support of 𝑀an

∞ on 𝑋�,𝜓
′,𝜅

tri,𝜌,loc,≤ℎ |𝑈 × Spa Z𝑝 [[𝑥𝑖]] is the union of irreducible components.
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Finally, since we have a closed embedding

𝑋
�,𝜓′,𝜅
tri,𝜌,∞,≤ℎ |𝑈 ↩→ 𝑋

�,𝜓′,𝜅
tri,𝜌,loc,≤ℎ |𝑈 × Spa Z𝑝 [[𝑥𝑖]],

we conclude that the support of 𝑀∞ on 𝑋�,𝜓,𝜅tri,𝜌,∞,≤ℎ |𝑈 is also a union of irreducible components, which
we denote 𝒳

∞,𝜓,𝜅

𝐷× ,𝑈 ,≤ℎ
.

We have a sequence of morphisms

𝑋
�,𝜓′,𝜅
tri,𝜌,∞ |𝑈 ↩→ 𝑋

�,𝜓′,𝜅
tri,𝜌,loc |𝑈 × Spa Z𝑝 [[𝑥𝑖]] → Gad

𝑚,𝑈 × Spa Z𝑝 [[𝑦𝑖]]

(where we send the product of the factors of Gad
𝑚 in the definition of the trianguline varieties to the factor

of Gad
𝑚 on the right, corresponding to the action of 𝑈−1

𝑝 ); 𝑀∞ is a finite module on 𝑋�,𝜓
′,𝜅

tri,𝜌,∞ |𝑈 whose
pushforward to Gad

𝑚,𝑈 × Spa Z𝑝 [[𝑦𝑖]] is also finite.
We summarize this discussion:

Theorem 5.2.6. There is a space 𝒳
∞,𝜓,𝜅

𝐷× ,𝑈 ,≤ℎ
(which we call the patched eigenvariety over U), a finite

module 𝑀∞ supported on 𝒳
∞,𝜓,𝜅

𝐷× ,𝑈 ,≤ℎ
, (which we call the patched module) and a morphism

𝒳
∞,𝜓,𝜅

𝐷× ,𝑈 ,≤ℎ
→ Spa 𝑋�,𝜓

′,𝜅

tri,𝜌,loc,≤ℎ |𝑈 × Spa Z𝑝 [[𝑥𝑖]]

whose image is the union of irreducible components.

Since this morphism factors through the global trianguline variety, we also deduce the following
corollary:

Corollary 5.2.7. The support of 𝑀∞/(𝑦1, . . . , 𝑦𝑘 ) in the trianguline variety over
𝑋
�,𝜓′,𝜅
tri,𝜌,∞,≤ℎ |𝑈/(𝑦1, . . . , 𝑦𝑘 ) � 𝑋

�,𝜓′,𝜅
tri,Σ𝑝 ,𝜌,≤ℎ

|𝑈 is a union of irreducible components.

Remark 5.2.8. We carried out this construction locally because it is difficult to study the behavior of
𝑀<𝑟
∞ and 𝑀∞ under rational localization; we have not checked that the analytic patched modules 𝑀an

∞

form a coherent sheaf. However, because specialization maps induce surjections on patched modules,
as (𝑈, ℎ) varies over slope data, the supports of patched modules glue to a global patched eigenvariety
𝒳
∞,𝜓,𝜅

𝐷×
.

5.3. Modularity

We are now in a position to prove Theorem 5.1.1. We will say that a Galois representation 𝜌 is modular
if it comes from a point on the extended eigenvariety.

Proposition 5.3.1. Let 𝐹/Q be a real quadratic extension split at p such that the image of 𝜌 |Gal𝐹 contains
SL2 (F𝑝). Then 𝜌 : GalQ → GL2(𝐿) is modular if and only if 𝜌 |Gal𝐹 is modular.

Proof. We have the cyclic base-change morphism 𝒳GL2/Q,cusp → 𝒳GL2/𝐹,mid from §3.4, so if 𝜌 corre-
sponds to 𝑥 ∈ 𝒳GL2/Q,cusp, then 𝜌 |Gal𝐹 corresponds to the image of x in 𝒳GL2/𝐹,mid. To show the other
direction, we note that if 𝜌 |Gal𝐹 is associated to 𝑥 ′ ∈ 𝒳GL2/𝐹 , then the corresponding eigenvalues are
fixed by Gal(𝐹/Q). Since we assumed that the image of 𝜌 |Gal𝐹 contains SL2(F𝑝), by [BH17, Theorem
B.0.1] we may apply Corollary 3.4.7 to conclude that 𝑥 ′ is in the image of 𝒳GL2/Q,cusp. �

Choose 𝐹/Q a real quadratic extension split at p. We may additionally choose F such that the image
of 𝜌 |Gal𝐹 contains SL2(F𝑝), by requiring that ℓ splits in F for ℓ in some finite set of primes S of Q
such that {𝜌(Frobℓ)}ℓ∈𝑆 generate SL2(F𝑝). Maintaining the notation of the previous section, we let
𝐷/𝐹 be a totally definite quaternion algebra, split at all finite places, and we let 𝑅 := 𝒪𝐸 [[𝑇0/𝑍 (𝐾)]].
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The Jacquet–Langlands correspondence gives us a morphism of eigenvarieties 𝒳𝐷× → 𝒳GL2/𝐹 , so it
suffices to show that 𝜌 |Gal𝐹 corresponds to a point on 𝒳𝐷× .

Theorem 5.3.2. 𝜌 |Gal𝐹 corresponds to a point on 𝒳𝐷× .

Remark 5.3.3. There is some ℎ ∈ Q≥0 such that 𝜌 |Gal𝐹𝑣 is trianguline with parameter of slope-≤ ℎ for
each 𝑣 | 𝑝, and there is some open affinoid𝑈 ⊂𝒲𝐹 containing the weight of 𝜌 |Gal𝐹𝑣 such that (𝑈, ℎ) is
a slope datum for 𝒳𝐷× . In the following proof, we will work with a patched eigenvariety 𝑋�,𝜓

′,𝜅

tri,𝜌,∞,≤ℎ |𝑈 .
However, since our arguments only require working sufficiently close to the boundary, we are always
free to shrink U (or increase h). For compactness of exposition and notation, we therefore suppress
(𝑈, ℎ) from the proof.

Note that we may also arrange (𝑈, ℎ) so that the slope-≤ ℎ part of 𝒳𝐷× |𝑈 is nonempty. Indeed, we
have assumed that 𝜌 is modular, so there are components of 𝒳𝐷× with residual Galois representation
𝜌 |Gal𝐹 . Then [JN19b, Corollary 4.2.4] shows that such components contain classical points with parallel
weight 2, and the proof shows that we may find such points arbitrarily close to the boundary by varying
the p-nebentypus. Such classical points have slope-≤ 1, so we may ensure nonemptiness by increasing
h (and shrinking U, if necessary).

Proof. Let 𝜌0 := 𝜌 |Gal𝐹 . We have assumed that 𝜌 |GalQ𝑝 is trianguline, so we may write 𝐷rig (𝜌 |GalQ𝑝 ) as
an extension of rank-1 (𝜑, Γ)-modules:

0→ Λ𝐿,rig (𝛿1) → 𝐷rig (𝜌 |GalQ𝑝 ) → Λ𝐿,rig (𝛿2) → 0

for characters 𝛿1, 𝛿2 : Q×𝑝 ⇒ 𝐿×. After twisting, we may assume that 𝛿1 |Z×𝑝 is trivial. We fix a weight
𝜅0 according to 𝛿1 |Z×𝑝 and 𝛿2 |Z×𝑝 , and we fix an unramified character 𝜓0 : Gal𝐹 → 𝒪𝐸 [[𝑇0/𝑍 (𝐾)]]

×

deforming 𝜒cyc𝜅0,1𝜅0,2 det 𝜌 |Gal𝐹 .
It is enough to show that the point 𝑥0 ∈ 𝑋

�,𝜓′,𝜅
tri,𝜌0

corresponding to 𝜌0 is in the support of the patched
module 𝑀∞. To see this, we treat separately the cases when 𝜌 is ordinary or nonordinary at p.

We first assume that 𝜌 is ordinary at p. Then 𝜌0 |Gal𝐹𝑣 has the form

0→ 𝜒1,𝑣 → 𝜌0 |Gal𝐹𝑣 → 𝜒2,𝑣 → 0

for each 𝑣 | 𝑝, where 𝜒𝑖,𝑣 : Gal𝐹𝑣 ⇒ 𝒪×𝐸 are characters.
We wish to consider the slope-0 trianguline variety, which is the same as considering ordinary

deformations of these extensions (with determinant fixed). The characters 𝜒𝑖,𝑣 |𝒪𝐹𝑣 deform over weight
space, and the unramified characters specified by 𝜒1,𝑣 (𝑝) correspond to a point on Spf 𝒪𝐸 [[{𝑡𝑣 }𝑣 |𝑝]].
Note that since we specify a determinant at every point of weight space, deforming 𝜒1,𝑣 (𝑝) also uniquely
deforms 𝜒2,𝑣 (𝑝).

Thus, we see that the space

Spf 𝒪𝐸 [[𝑇0/𝑍 (𝐾), {𝑡𝑣 }𝑣 |𝑝]]

is the moduli space of pairs of characters. Moreover, away from a Zariski-closed subspace of this space,
the space of extensions of the universal characters is a rank-1 vector bundle. In particular, since 𝜅0 is
regular, over an open neighborhood of 𝜅0 in 𝒲𝐹 , this moduli space is irreducible (and contains the point
corresponding to 𝜌0). Adding framing variables and passing from extensions to Galois representations
preserve irreducibility of the moduli space.

Thus, it suffices to show that the ordinary patched module for some characteristic 0 weight 𝜅1
sufficiently near the boundary is supported on the fiber of this moduli space. We choose 𝜅1 so that it is
parallel. But the ordinary part of the Coleman–Mazur eigencurve is finite flat and surjective over weight
space, so we may choose ordinary overconvergent eigenforms of appropriate weight and transfer them
to 𝐷×, where they contribute to the support of the patched module, as desired.

https://doi.org/10.1017/fms.2023.116 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.116


Forum of Mathematics, Sigma 49

We now assume that 𝜌 is not ordinary at p so that 𝜌0 is not ordinary at either place above p. Since the
parameters of 𝐷rig(𝜌) were assumed regular, 𝑥0 is a smooth point of 𝑋�,𝜓

′,𝜅

tri,𝜌0 ,loc. Therefore, 𝑥0 is contained

in a unique irreducible component V of 𝑋�,𝜓
′,𝜅

tri,𝜌0 ,loc, and we can find an open affinoid neighborhood𝑉 ′ ⊂ 𝑉
of 𝑥0 so that 𝑉 ′ contains no ordinary parameters.

It follows that 𝜌0 can be analytically deformed to characteristic 0 (as in Example 2.3.4). In fact, the
morphism 𝑋

�,𝜓′,𝜅
tri,𝜌0 ,loc → 𝒲𝐹 is smooth in a neighborhood of 𝑥0; in particular, it is open, and we may

assume that the weights corresponding to the first term in the triangulation remain trivial as we deform,
at both places above p.

Recall that for any p-adic field 𝐾/Q𝑝 , given a character 𝛿 : 𝐾× → Q×𝑝 , its weight (wt𝜎 (𝛿))𝜎:𝐾↩→Q𝑝

is the tuple such that

lim
𝑎→0

|𝛿(1 + 𝑎) − 1 +
∑

𝜎 wt𝜎 (𝛿)𝜎(𝑎) |
|𝑎 |

= 0.

We say that 𝛿 is locally algebraic of weight (𝑘𝜎)𝜎 if wt𝜎 (𝛿) = 𝑘𝜎 ∈ Z for all 𝜎; equivalently, the
restriction of 𝛿 to some open subgroup of 𝒪×𝐾 is 𝜒𝑘 := 𝑥 ↦→

∏
𝜎 𝜎(𝑥)

−𝑘𝜎 . If 𝛿 is the parameter of
a trianguline (𝜑, Γ)-module, we say that it is locally algebraic of strongly dominant weight if 𝛿𝑖,𝜎 is
locally algebraic of weight (𝑘𝑖,𝜎) and 𝑘𝑖,𝜎 < 𝑘𝑖+1,𝜎 , for all i and 𝜎.

We claim that there is some locally algebraic strongly dominant 𝜅1 ∈𝒲
rig
𝐹 such that the fiber 𝑉 rig |𝜅1

is equidimensional of dimension 8. Indeed, since we chose a deformation of (𝜌0, 𝛿) keeping 𝛿1 |𝒪×𝐹,𝑝
trivial, it is enough to see that there are points of Spf Z𝑝 [[Z×𝑝]]rig which are locally algebraic of positive
weight arbitrarily close to the boundary, which follows from the calculations of, for example, [JN19b,
§2.7]. In fact, we can choose 𝜅1 to be locally algebraic of weights {0, 1} at both places above p.

We further claim that we may assume that 𝑉 ′,rig |𝜅1 consists of points corresponding to Galois
representations which are potentially Barsotti–Tate at both places above p. Indeed, two-dimensional
(characteristic 0) (𝜑, ΓQ𝑝 )-modules are classified in [Col08, §3.3], and after possibly replacing 𝜅1 with
a weight closer to the boundary which is locally algbraic of weights {0, 1}, the corresponding (𝜑, ΓQ𝑝 )-
modules are crystabelline.

Now, it suffices to show that the patched module for weight 𝜅1 is supported on all of 𝑉 ′,rig |𝜅1 . But a
dense open subspace of 𝑉 ′,rig |𝜅1 is a subspace of the generic fiber of one of the potentially Barsotti–Tate
deformation rings constructed in [Kis09c]. Then we may apply [Kis09b, Theorem 3.4.11] (with some
hypotheses relaxed in [Gee06]). �

A. Extensions of Zariski-closed subsets

The paper [Lou17] proves Riemann extension theorems for functions on normal pseudorigid spaces and
normal excellent formal schemes; in this appendix, we use those results to extend certain Zariski-closed
adic subsets (in the sense of [JN19a, §2.1]) of pseudorigid spaces over missing subsets of codimension
at least 2.

Proposition A.0.1. Let 𝔛 be a normal excellent formal scheme, which is nowhere discrete. If 𝑍 ⊂ 𝑋 :=
𝔛an is a Zariski-closed adic subset, then there is a closed formal subscheme ℨ ⊂ 𝔛 such that 𝑍 = ℨan.

Proof of Proposition A.0.1. We may assume that 𝔛 = Spf 𝑅, where R is a normal excellent domain with
ideal of definition 𝐽 = ( 𝑓1, . . . , 𝑓𝑛). Then by the definitions of [JN19a, §2.1], there is a coherent sheaf
I ⊂ 𝒪𝑋 of ideals such that 𝑍 = {𝑥 ∈ 𝑋 | I𝑥 ≠ 𝒪𝑋,𝑥}. We need to show that there is an ideal 𝐼 ⊂ 𝑅
whose associated sheaf agrees with I on X.

We define I+ := I ∩𝒪+𝑋 , and we set 𝐼 := Γ(𝑋, I+); by [Lou17, Proposition 6.2], 𝑅 = Γ(𝑋,𝒪+𝑋 ), so
we may view I as an ideal of R. It remains to show that for each affinoid open subspace Spa 𝑅′ ⊂ 𝑋 ,
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𝑅′ ⊗𝑅 𝐼 = I (Spa 𝑅′). To see this, we observe that we have a finite cover 𝑋 = ∪𝑖 Spa 𝑅
〈
𝐽
𝑓𝑖

〉
, so it suffices

to check this with 𝑅′ = Spa 𝑅
〈
𝐽
𝑓𝑖

〉
.

Setting 𝑅𝑖 := 𝑅
〈
𝐽
𝑓𝑖

〉
and𝑈𝑖 = Spa 𝑅

〈
𝐽
𝑓𝑖

〉
, we have an exact sequence of R-modules

0→ 𝐼 →
∏
𝑖

I+(𝑈𝑖) ⇒
∏
𝑖, 𝑗

I+(𝑈𝑖 ∩𝑈 𝑗 ).

For any fixed index 𝑖0, we may tensor with 𝑅◦𝑖0 and complete 𝑓𝑖0 -adically; as R is Noetherian, our sequence

0→ 𝑅◦𝑖0 ⊗̂𝑅
𝐼 →

∏
𝑖

(
𝑅◦𝑖0 ⊗̂𝑅

I+(𝑈𝑖)

)
⇒

∏
𝑖, 𝑗

(
𝑅◦𝑖0 ⊗̂𝑅

I+(𝑈𝑖 ∩𝑈 𝑗 )

)
remains exact. But 𝑅◦𝑖0 ⊗̂𝑅 I+(𝑈𝑖) generates I (𝑈𝑖0 ∩ 𝑈𝑖) and 𝑅◦𝑖0 ⊗̂𝑅 I+(𝑈𝑖 ∩ 𝑈 𝑗 ) generates I (𝑈𝑖0 ∩

𝑈𝑖 ∩𝑈 𝑗 ) after inverting a pseudouniformizer 𝑢𝑖0 of 𝑅𝑖0 for all 𝑖, 𝑗 , and {𝑈𝑖0 ∩𝑈𝑖}𝑖 is a cover of 𝑈𝑖0 , so
in fact 𝑅𝑖0 ⊗̂𝑅 𝐼 = I (𝑈𝑖0), as desired. �

Corollary A.0.2. Let E be a p-adic field, let𝔛 = Spa 𝑅1, where 𝑅1 := 𝒪𝐸 [[𝑥1, . . . , 𝑥𝑛1 ]]
〈
𝑦1, . . . , 𝑦𝑛2

〉
/𝐼,

and let 𝔜 := Spa 𝑅2, where 𝑅2 = 𝒪𝐸 [[𝑧1, . . . , 𝑧𝑚1]]
〈
𝑤1, . . . , 𝑤𝑚2

〉
/𝐽. Suppose that 𝑅1 has dimension at

least 2. Suppose that 𝑍 ⊂ 𝔛an×𝒪𝐸𝔜 is a Zariski-closed subset and that there is some integer 𝑁 ≥ 1 such
that 𝑍∩Spa 𝑅1

〈 𝑝
𝑢 ,

{ 𝑥𝑖
𝑢

}〉 [ 1
𝑢

]
×𝔜 is contained in the rational domain {𝑧𝑁𝑗 ≤ 𝑢 ≠ 0 for all 𝑗 = 1, . . . , 𝑚}

for each 𝑢 ∈ {𝜛𝐸 , 𝑥1, . . . , 𝑥𝑛1 }. Then there is a closed formal subscheme ℨ ⊂ 𝔛 ⊗̂𝒪𝐸 𝔜 such that
ℨan ∩ (Spa 𝑅1)

an×𝒪𝐸𝔜 = 𝑍 (where the intersection is taken inside
(
Spa 𝑅1 ⊗̂𝒪𝐸 𝑅2

)an).

Proof. Replacing Z with 𝑍 ∩ 𝑉 (𝐼)an ∩ 𝑉 (𝐽)an, we may assume that 𝐼 = 𝐽 = (0) so that 𝑅1 =
𝒪𝐸 [[{𝑥𝑖}]]〈{𝑦𝑘 }〉 and 𝑅2 = 𝒪𝐸 [[{𝑧 𝑗 }]]〈{𝑤ℓ }〉. Then by Proposition A.0.1 it suffices to extend Z to
a Zariski-closed subset of

(
Spa 𝑅1 ⊗̂𝒪𝐸 𝑅2

)an. This analytic locus, in turn, is covered by the affinoid
pseudorigid spaces

V𝑢 := Spa𝒪𝐸 [[{𝑥𝑖}𝑖 , {𝑧 𝑗 } 𝑗 ]]

〈
𝜛𝐸

𝑢
,
{ 𝑥𝑖
𝑢

}
𝑖
, {𝑦𝑘 }𝑘 ,

{ 𝑧 𝑗
𝑢

}
𝑗
, {𝑤ℓ }ℓ

〉 [
1
𝑢

]
for 𝑢 ∈ {𝜛𝐸 , 𝑥1, . . . , 𝑥𝑛1 } and

V𝑧 𝑗0 := Spa𝒪𝐸 [[{𝑥𝑖}𝑖 , {𝑧 𝑗 } 𝑗 ]]

〈
𝜛𝐸

𝑧 𝑗0
,

{
𝑥𝑖
𝑧 𝑗0

}
𝑖

, {𝑦𝑘 }𝑘 ,

{
𝑧 𝑗

𝑧 𝑗0

}
𝑗

, {𝑤ℓ }ℓ

〉 [
1
𝑧 𝑗0

]
for 𝑗0 = 1, . . . , 𝑚. Since the V𝑢 are contained in (Spa 𝑅1)

an×𝒪𝐸 𝑅2, we only need to extend the intersec-
tions 𝑍 ∩ V𝑧 𝑗0 to Zariski-closed subsets of V𝑧 𝑗0 .

We can cover each V𝑧 𝑗0 by its open subspaces defined by inequalities

V𝑧 𝑗0 ,𝜛𝐸 ,1 := {|𝑧𝑁+1𝑗0
| ≤ |𝜛𝐸 |}, V𝑧 𝑗0 ,𝑖,1 := {|𝑧𝑁+1𝑗0

| ≤ |𝑥𝑖 |}

for 𝑖 = 1, . . . , 𝑛1 and

V𝑧 𝑗0 ,2 := {|𝜛𝐸 | ≤ |𝑧
𝑁+1
𝑗0
| ≠ 0 and |𝑥𝑖 | ≤ |𝑧𝑁+1𝑗0

| ≠ 0 for all 𝑖}

so it suffices to find suitable Zariski-closed subsets of each of these spaces.
By assumption, 𝑍 ∩ V𝑧 𝑗0 ,2 is empty. Moreover,

V𝑧 𝑗0 , 𝑝,1 ⊂ (Spa 𝑅1)
an×𝒪𝐸 𝑅2
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and

V𝑧 𝑗0 ,𝑖,1 ⊂ (Spa 𝑅1)
an×𝒪𝐸 𝑅2

since the conditions |𝑧𝑁+1𝑗0
| ≤ |𝜛𝐸 | and 𝑧 𝑗0 ≠ 0 imply 𝜛𝐸 ≠ 0 (and similarly for {|𝑧𝑁+1𝑗0

| ≤ |𝑥𝑖 |} and
𝑧 𝑗0 ≠ 0). Thus, 𝑍 ∩ V𝑧 𝑗0 , 𝑝,2, 𝑍 ∩ V𝑧 𝑗0 ,𝑖,2 are defined by sheaves of ideals which agree on intersections
V𝑧 𝑗0 ,𝑖,1 ∩ V𝑧 𝑗0 ,𝑖′,1.

By construction, these sheaves agree on the overlaps V𝑧 𝑗0 , 𝑝,1 ∩ V𝑧 𝑗0 , 𝑝,2 = {|𝑧𝑁+1𝑗0
| = |𝜛𝐸 |} and

V𝑧 𝑗0 ,𝑖,1 ∩ V𝑧 𝑗0 ,𝑖,2 = {|𝑧𝑁+1𝑗0
| = |𝑥𝑖 |}. We have therefore extended the sheaf of ideals defining 𝑍 ∩ V𝑧 𝑗0 ∩

(Spa 𝑅1)
an×𝒪𝐸 𝑅2 to a sheaf of ideals on all of V𝑧 𝑗0 , as desired. �
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