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ON THE IMAGINARY QUADRATIC DOI-NAGANUMA LIFTING

OF MODULAR FORMS OF ARBITRARY LEVEL

SOLOMON FRIEDBERG*

In this paper, we use the theta function method [10] to give explicit
Doi-Naganuma type maps associated to an imaginary quadratic field K,
lifting cusp forms on any congruence subgroup of SL(2, Z) to forms on
SL{2, C) automorphic with respect to an appropriate arithmetic discrete
subgroup. The case of class number one, and form modular with respect
to group Γ0(D) and character Xo = (—D/*), where — D is the discriminant
of Ky has been treated by Asai [1], In order to complete his discussion,
we must first introduce a more general theta function associated to an
indefinite quadratic form (here of type (3,1)), which we regard as a spe-
cialization of a symplectic theta function (see also [4]). Needed spherical
harmonics appear naturally in such a context. While the definitions of
the liftings are then straightforward, explicit computations are difficult.
We develop the Fourier series [Theorems 3.1, 3.2, and 3.9] by expanding
on an idea of Asai [1], who noticed that the theta function splits into

simpler theta functions, but only on 4 = <α~1/2ί ., ) 0<αe2?>. (Note

that if we think of SL(2, C)ISU(2, C) as the quaternionic upper half space
{z + ak I z e C, 0 < a e R}, then A is the 'imaginary' k axis). Namely, we
develop an alternate expression for our theta function on all of SL(2, C)
(i.e. on the entire quaternionic upper half space), which gives this split-
ting on A [Proposition 3.7]. This alternate expression makes the direct
computation of the Fourier series of the lift feasible, and even in Asai's
situation appears to be a genuine simplification.

For k, N positive integers, and X a character mod JV, let Sk(Γ(N))
(resp. Sk(Γ0(N), X)) denote the space of cusp forms of weight k on Γ(N)
(resp. on Γ0(N) with character X). Then our liftings associate to each
form / e Sk(Γ(N)) a 2k — 1 vector of forms F on SL{2, C), automorphic
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2 SOLOMON FRIEDBERG

with respect to a certain subgroup conjugate to a congruence subgroup
of A = SL(2, <9K)9 and as a vector transforming by the appropriate sym-
metric representation under SU(2, C). As in Asai's paper, these forms
are eigenfunctions of the Casimir operator, with eigenvalue ((k — I)2 — l)/2.
Further, at each cusp the constant term of our lifted form F vanishes
if and only if / satisfies a certain orthogonality condition (orthogonality
to a certain theta function associated to the field with respect to the
Petersson inner product). In particular, a new eigenform has noncuspidal
lifts if and only if it is constructed from the explicit list of theta series
'coming from the field' [Corollary 3.3]. A linear combination of our basic
lifts gives a form with character Π0°N, where N = Norm (C/R), and for
this combination we get a result analogous to those of Doi and Naganuma
[3, 9]: a sum of the h(K) = class number of K lifted Dirichlet series cor-
responding to / = 2 a(n)e2πίnz, a new eigenform in any Sk(Γ0(N), X), is

The theta function method has been used in the real quadratic case
by Kudla [8] (although he did not calculate the lifted Fourier series there),
and for the case of signature (2, n — 2) by Rallis and Schiffman [13] and
Oda [11], Other methods used to study the real quadratic case include
those of Doi and Naganuma [3, 9] and Zagier [18]. The general question
of when such a correspondence should exist has been considered by Howe
[6]. Also, the results of Jacquet [7] and Saito [14] and Shintani can be
used to speak of liftings. Unfortunately, these other points of view are
difficult to use for explicit computations. We hope that our work will
give a prototype of the explicit computation of liftings, and that the ideas
involved will prove useful in these other contexts. For we feel that the
issue of the explicit computation of liftings is of genuine arithmetic
interest.

I would like to warmly thank Harold Stark for several helpful con-
versations.

Notation. e(x) = eπix.

§1. Theta functions and spherical harmonics

1.1. In this section we review some results of the author [4] which
we will use to construct theta functions; the same method should prove
useful for constructing theta functions for liftings in a variety of other
contexts. For an alternative approach, see Shintani [16].
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LIFTING OF MODULAR FORMS 3

Let $n be the Siegel upper half space

$n=: {ZeM(n9 C)\'Z= Z, Im(Z) positive definite} .

We write Z[v] = ιvZυ for veCn oτ M(n, C), Ze M(n, C). Then one defines

a symplectic theta function parametrized by ZelQn, u, υ, weCn, and / a

nonnegative integer, by:

9(Z, u, v, w,f) = 2 QwZ(m - v))fe(Z[m - v] + 2ύmu - ιuv) .
mezn

Then -9(Z, u, v, w, f) has a transformation law with respect to a suitable

subgroup of the integral symplectic group. Namely, call a symmetric

matrix in M(n, Z) even if it has even diagonal entries. Let

where I is the n X n identity, and

Γ = {Me Sp(n, Z)\eCA, ιBΌ are even} .

Then Sp(n, R) acts on £>w in the usual way. We have

THEOREM 1.1. For

= (c B
M

such that Z(CZ + D)-lCZ[w\ = 0 if f> 1,

ΰ(MZ, Au + Bυ, Cu + Dv, \AZ + B)~lZwJ)

= x(M) det (CZ + D)1/2&(Z, u, υ, w, f) .

Here x(M) is an eighth root of unity.

When a choice of the square root is made, the value of x(M) can

be explicitly determined. See Stark [17] or Friedberg [4]. In the next

section, we shall give it precisely for the case of use here.

1.2. Let i f b e a discrete rank n Z-module in Cn, Q e M(n, C) give

an integral quadratic form of type (p, q) with respect to Ψ` = J2f ® R (so

if L is a matrix whose columns are basis vectors of j£f, then lLQL is

equivalent to ( p _τ) over GL(n, R)). Say p + q = n. Associated to Q

is a family of majorants: R e M(n, C), ιR = E, RQ~ιR = Q, and E[^] > 0 for
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SOLOMON FRIEDBERG

all £ e Se - {0}. Write ιxQy = (x, y). Then for any such R, and z = x +

iye&, u,v,weCn,feZ>0, such that Qw = i?κ; (similar results hold

when QM; = —Rw), and Q[M;] = 0 if / > 1, we define

0fe u, v, w, f) = r/ 2 Σ («M - ^ ( ( * Q + frW -υ] + 2(£, u) - (u, υ)) .

Then we have

THEOREM 1.2. Say σ = (% J ) e SL(2, Q) is szicλ ίΛαί ( c( ί L

αnL)-i

0(<7£, αw + 6ί;, cw + dυ, wyf) = χ(σ)(cz + dyp-q)/2+f0(z9 u, v, w,f) .

Here by (cz + d)1/2 we mean the principal value square root (—ττ/2 <

arg (21/2) < π/2). For d an odd prime.

where εd = L ^ Ξ o `^AΛ* an& (—) α r e Legendre symbols.

Remarks. One can then use Dirichlet's theorem to determine χ for

any odd d; the case of odd c, but even d, is harder (cf. [4]). Also, the

Γ condition can be rephrased in terms of 3? and its Q-dual .Sf* in an

obvious way.

Proof. Note

y-v`θiz, u, v, w,f) = z-f$(xιLQL + i/LRL, ιLQu, L~% L-`w,f) .

Set x'LQL + ifLRL = Z, ιLQu = u\ L'ιv = ι/. Then the actions of
(a b\ Λ ί u\ ., ,, .. n ί al b'LQIΛ
I r on ^ and I j are the same as the actions of ί (tτnτ\i Sf )

on Z and ί u, ] (in an obvious commutative diagram sense). Using The-

orem 1.1 completes the proof (for details, see [4]).

The important thing about Theorem 1.2 for our purposes is that the

transformation formula is independent of the choice of R. However, the

possible majorants fill out the symmetric space attached to SO(Q). Thus

our theta function is really a function of z and R as well as the other

variables, and by integrating with respect to z we lift a form to a func-

tion of JR. First, though, we need to make an appropriate choice of

quadratic form Q, and study precisely the associated spherical harmonics

(specified by w above).
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LIFTING OF MODULAR FORMS

1.3 For the remainder of this paper we specialize the notation of

Section 1.2 as follows. We use Λf(2, C) = C\ and consider the real vector

subspace Ψ` = {XeM(2, C)\ιX = X]. Then G = SL(29 C) acts on Ψ` by

X8 = ιgXg. We give quadratic form Q by Q[X] = — 2 det X, with majorant

R: R[X] = tr (X2). Then J?^ is also a majorant for any geG, where

Rg[X] = iϊ[X*]. Note Q is of type (3,1) and Rκ = R for all K e SU(2, C)

= K. Also, (X, Y) = (X*, y*) for all g e G . This guarantees that once

one finds w satisfying the conditions of Section 1.2 with respect to R, w8'1,

which satisfies them with respect to R8, occurs in the theta functions as

Asai [1] has described a natural basis for the 2£ — 1 dimensional

space of spherical harmonic polynomials p(X) = (w, X)k~ι where w is as

in Section 1.2 for our choice of Q and R. Namely, put

A = %a b)(a

and define the homogeneous polynomial ηk>a(X) of degree k — 1 as the

coefficient of α*-i-«5*;-i+α i n (χ9 A ^ " 1 for each integer a such that \a\ <

k — 1 (this would be ηk-lfCt in Asai's notation). Further, put τ](k)(X) =

(ηktl-k(X), , η^-^X)). For example, ηJ™ r\ = {~f,m -p, r). We have

LEMMA 1.3 [Asai]. The polynomials ηkίa{X), \a\ < k — 1, are a basis

for the space of spherical harmonic polynomials.

Also, let (α b)n = \an, an~`b, -,abn~\ bn), and define the π-fold sym-

metric representation pn(g), for geG, by

((a bYg)n = Pn+2{g){a b)n .

Note that we have skewed the indexing by 2 here. Then as in Asai [1],

page 151, we have

LEMMA 1.4 [Asai]. η{k){Xκ) = η{k){X)p2k(ιt) for all iceK.

We can also show

LEMMA 1.5. For y > 0, X = (™ r) e Ψ`, we have

where Uβ

a) and Hγ are Laguerre and Hermite polynomials, respectively, and
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Ό SOLOMON FRIEDBERG

the sum is over β and ϊ nonnegatίve integers such that 2β + ϊ = k — a — 1
and a + β > 0.

Indeed, this follows at once by combining the homogeneity of ηkta of
degree k — 1 with Lemma 3 of Asai [1]. This formula will prove useful
later on.

Finally, let us define the theta function to be used in our liftings.
Let ^ be a lattice in f, Veif*, z = x + iye^ί9 and define a theta
function of the above type by

Θ,M v, g, &) = yί/2 Σ v«ΛX - vy)e((xQ + iy&)[x - V]),
xzsε

and denote the vector of theta functions by

θw(z, V, g, &) = (θk>1.k, . ,θttk_d

(for our purposes the variable u can be dispensed with). We often drop
J2f from the notation, when there is no ambiguity.

Our principal interest is the lifting associated to lattice

=zfί
m r\e^\meMZ,pePZ,reA,

where M, PeZ — {0}, and J is an ideal of Oκ. Slightly more generally,
let Άx = ΦK9 ' , £>h be a set of wide ideal class representatives, with each
J έ of minimal norm in its class. Take qt = 1, , qh ideal numbers for
these ideals in the sense of Hecke [5] recall N(J2<) = N(g<). We set

/ < = </5<gr1 and &% = | ( m r\ e rT\m eMZ, p ePZ, r e

Observe that

ttm r \ e Z , MpeZ,= tt

where 2)^ denotes the different. The lifting associated to jSf< and ideal
«/ is of course closely related to that associated to 3PX and ideal JΆ^
We can also use the variable V in the theta function to treat lattices
of Ψ` having as a sublattice some J2f i9 by summing over the various coset
representatives for the quotient.

For a function f{z) on ^ and a matrix σ = ία -, J e GL+(2, R), we

define
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LIFTING OF MODULAR FORMS 7

(/I M*)(z) = (det aY'\cz + d)-*f(σz)

where σz = (az + b)(cz + d)"1 as usual. Also, write r* d) = \—c~a )'

and for lattice ££ as above, put Nt — l.c.m. (MP, N(«/)Z>), where as above

—D is the discriminant of K.

PROPOSITION 1.6.

(1) For all σ = (^

, g) I [σ]k - Ud)θU*, V, g) .

In particular, for σ e Γ(N1),

θ*Λz>V,g)\[σ]k = θUta(*,V,g).

(2) For all tee K, Te G{0) = {ϊ e G\&` = JSf},

(3) θw(z, V, g, S£) = ( -

(4) βw(2r, v, βί-s f̂) = (-i)fc-^(fc)fe y , g,

(5) ff

Proo/. The first part follows immediately from Theorem 1.2. To
prove (2), combine Lemma 1.4 with the K invariance of Rg and the G
invariance of ( , ) . From the observation (of Asai) that ηkιa(X) =
( — ΐ)aηkf.a(X) and the realness of Q and R, (3) follows. As for (4), note

'g-1 = L ~1)g(_1

 X), V(l"1} = Ψ for all Ver`, and (1 ΛeK, and

use (3). (5) is similar to (2), though ί __ΛeK.

§2. The Doi-Naganuma lifting—Definition and basic results

2.1. DEFINITION. For feSk(Γ(N)), \a\ < k - 1, lattice se such that
N,\N, and Ve J*?*, the lift of / is given by

(2.1.1) Fa(g, V, £) = f θUz, V, g9 J?)f(ϊ)yk-2dxdy
J Γ(N)\ξ>!

and we write the associated vector lift as

This definition makes sense due to Proposition 1.6 (1) (independence
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8 SOLOMON FRIEDBERG

of the choice of fundamental domain) and obvious estimates which give
absolute convergence of the integral. Throughout this paper, F will
denote the lift of a form feSk(Γ(N)). As an immediate consequence of
Proposition 1.6, we have

THEOREM 2.1.

(1) For teeK, ΐe G(S£\ F(Tgκ, V) = F(g, V^p2k(κ).

(2) F(g, v,se) = {-ιy~ιF{g, v,

(3) FQg-\ v, se) = (-iy-ψ(g9

 Ί

(4) -

Note that

β^G\a,δeΦx,βeqtPS(S,MP)~\ re

(here (α, 6) = g.c.d. (a, 6)). By abuse of notation, we write this group as
AHfatMSiS, MP)-\ qtPJ{J, MP)-1).

Thus in essence (2.1.1) lifts something of level N to something of level
between NNi^D'1 and NN(1Z). For i Φ 1, though G(j^) g Λ, Ĝ JSPj has
a subgroup conjugate to a congruence subgroup of Λ.

2.2. The extra variable V allows us to mix in characters. We give
several examples.

(A) Let Vι(ϋ) = ( Q / P Q); veZ/MPZ. This embeds Z/MPZ in &*.

Then one sees V^v)8' = V^aav) mod c$f for

Also, (as, MP) = 1 for #' e GC^). Thus the set S = {v e Z/MPZ |(ϋ, MP)
= r} is fixed by GCSfJ. Let ψ be a character on (Zl(MPr-`)zy, and set

2, g, ψ, r) = Σ ψ(vlr)θm(z, Vi(ι ), ft

Then β(«, g7g, ψ, r) = ψ(33)ff(«, ft ψ, r) for all gf e G(J?t) Π il o (P/λ so the
corresponding lift given by Petersson inner product with θ (a sum of the
A(/)'s of 2.1.1) satisfies

for all ^ ; as indicated above. Notice also that for
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LIFTING OF MODULAR FORMS

so for fe Sk(Γ0(N), X), the appropriate choice of ψ is ψ = XX0. This is the
linear combination of basic lifted forms mentioned in the introduction,
and also the one whose properties are analogous to those discovered in
the real quadratic case by Doi and Naganuma [3, 9].

(B) Similarly, we can mix in characters of (Z/MPZ)X by using
s i n c e V^8' ~ W ϋ ) m o d i ? for

6 Ao{M/ί) =

(C) Let τ: /ϊ1(&κΊfi-+ UKI^^&K be an Φκ module isomorphism.

Define V2(r) = β ζ\e £>* for r e Jϊ1®?. Again, for suitable gf, say g'

6 ΛNJf&zM, ftP), V2{r)8' ΞΞ V2(δar) mod jgf f. Thus, mixing in characters

ψ of ΘK\JJ%K as above, via 2 ψ(τ(r))θw(z, V2(r)9 g), one assigns to / a

corresponding lifted form which satisfies F(g'g) = ψ(δa)F(g) for all g' in

the appropriate subgroup of

2.3. For k > 2, 2V as above, and rc > 1, let

be the n-th Poincare series for Γ(N); here as usual j((a

 (A^) = cz

+ d9 and Γ^ = {ϊ e Γ(N) \ Too = oo}. Recall that the φn(z) generate

Sk(Γ(N)), since the Petersson inner product, which we denote throughout

by < , >, of φn(z) with / = Σm>o a(m)e(2mzlN) e Sk(Γ(N)) is given by

= f )*-Xk - 2)! α(τι) .

In order to lift the Poincare series, we need to justify an interchange of
summation and integration. Put P[X] = Q[X] + R[X].

LEMMA 2.2. For n a positive integer,

Σ P[X-V]-S

xese

is absolutely convergent for Re (s) > 1.

Proof. This is proven by an argument similar to Asai [1], Lemma 7.

LEMMA 2.3. For k > 2, the {vector) series
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10 SOLOMON FRIEDBERG

- V)g)P[(X - V)ψ*-k = ?<«..(& V)Σ

converges absolutely and uniformly on compact subsets of G.

Proof By combining Lemmas 4 and 8 of Asai [1], one can see that
the absolute value of each component of η{k)>n(g, V) is dominated by

c Σ P[X-V]-k/2

xe&

for a constant c. The result then follows from Lemma 2.2 above.

PROPOSITION 2.4. The Poίncarέ series φn(z) lifts to

Γ(k - l/2)π^-%khn(g, V).

Proof. This is a straightforward calculation, as in Kudla [8], Propo-
sition 1 the lemmas above allow one to perform the interchange given by

I ew{z,V,g)e(-2nzlN)y«-*dxdy

= Σ ViΛX- VY) ί <(xQ + iyK)ί(X - V)g] - 2nzlN)y«-3>*dxdy .
xe* J Γcc\tn

COROLLARY 2.5. For k > 2, the lifted forms are eίgenfunctίons of the
Casίmir operators on G, with eigenvalue ((k — I)2 — l)/2.

Proof It suffices to prove this for the images of the Poincare series,
since they span Sk(Γ(N)). But then using Proposition 2.4 and Asai [1],
Lemma 5, this is immediate.

While we have only considered the case k > 2 above, these results
are expected to extend to k — 2 by using Hecke's trick. More directly,
alternatively, Corollary 2.5 extends to all k > 0 as a result of Theorem 3.1
below.

§3. Fourier expansions and Dirichlet series

3.1. Throughout this section let j£? be one of the J2ft's above, and

/ be the corresponding /*. Write Feif* as V = (Y.1 V*\ Set S =

Trace (CjR).

Take a set of coset representatives St for ί1 ^)\SL(29 Z)/Γ(N); we

write p e & as p — y1 ^ 2). Without loss of generality, say ρ3 Φ 0 for all
\Ps Pi/

pe&. Let
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LIFTING OF MODULAR FORMS 11

C. = (
\k — a — 1

and for r, iλ, e / " 'S i 1 , put

r((0, r, v2) = p^e(-2p^(PMr) + S(v2r)

X Σ e(-2 ί> 3" 1(S(J(r
j/

Also, for fe Sk(Γ(N)), p e SL(2, Z), write /| [̂ `1] - Σ ap(ή)e(2nz/N). Define

a Grossencharacter by fα(r) = (r/|r|)Λ, and for μeC, 0 < veR, set g(μ,v)

= ^"1/2(o i ) Finally, for u e / " 1 ® ^ let φa(z, v) be given by

φa(z, ϋ)=Σ(r- v)°e(2N(r - φ ) .
re/

φa(zy v) is a modular form on Γ(iV), hy Theorem 1.2 (cf. Lemma 3.5 below).

THEOREM 3.1. For k > 0 cmd α > 0, fe Sk(Γ(N)) has lift given by

Fa(g(μ,v), V) = δn^xjδ^.pP-`ζφAz, v2),f)

+ Cy Σ Σ Σ {P-Hy-`ap{N.K{r))ξ«(r)
pe@ ί=i re/-1^1

tpz=-Pvχ mod MP rφO

X Ka(4πP-Hv\r\)e(2P-H(S(rp) - Piυj)τ(p, r, u2) .

, V, ££) = (~iyF_a(g, V, 3).

Here dυi moά Mf0 is one if v1 e MZ, and zero otherwise. Notice that in

fact precisely those cosets such that (̂ 3, MP) | Pυx occur nontrivially in the

sum.

In many cases we can simplify this expression. As an example, we

shall show

THEOREM 3.2. Let fe Sk(ΓQ(N),X), f\\(°N " ^ l = Σ b(n)e(2nz). Then

the Doί-Naganuma lift of f (A) of 2.2, with ψ = XX0 considered as a (not

necessarily primitive) character mod N, r = 1, P = 1, M = N, is given by

(3.1.1)

X

Here 3 e & is the purely imaginary generator of 55 ,̂ cmd
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12 SOLOMON FRIEDBERG

These theorems will be proved, after some preliminary computations,

in Sections 3.3 and 3.4 below. As an important Corollary of Theorem 3.2,

we will show that the Dirichlet series at a = 0 of an eigenform / when

h(K) = 1 is given by Σ 5(n)n-s Σ b(ή)χo(ή)τr:

Observe that though these theorems treat only the Fourier expansion

at infinity, they can be used to compute the Fourier expansion at any

cusp. For one gets the expansion at another cusp by computing

F(Tg(μ, v)> V) for r e GL(2, Θκ) (T e A gives only the principal cusps). But

F(Tg, V, JSPJ) = F(g, Vr, j£?0, and while 2\ may not be of the form sex (for

any M\ P'9 J`'), it is easy to see that JS?[ must contain a sublattice (of

finite index) of this type. If i > 1, the same is true for j£?i5 though one

must apply a V conjugate to T e GL(2, Θκ) in the same way that a sub-

group of G(Sft) is conjugate to a subgroup of Λ. So, since the conditions

for constant term zero come out in terms of the φjs at all cusps, we have

COROLLARY 3.3. All lifts (2.1.1) of a modular form f of weight k are

cuspidal if and only if f is orthogonal to Si, the space spanned by the

Φk-ife v,</i), for ideals «/ and υ in Jfϊ`&i1.

To determine whether a specific lift is cuspidal, observe that there

are only a finite number of orthogonality conditions, which can, by the

remarks above, be explicitly given in any instance. For example, while

the lift (3.1.1) always has constant term zero at infinity, there is a non-

trivial orthogonality condition at zero, by Theorem 2.1, (3). Also, one

sees that the combination (C) is nontrivial for some nontrivial ψ.

3.2. The key step towards doing the integral (2.1.1) in general and

so computing the Fourier expansion is the rewriting of 0(fc) in another

way (Proposition 3.7) by using Theorem 1.2 on a sublattice of Sf to which

there corresponds a lower dimensional theta function. Lemma 1.5 also

plays an important role. In the following, Σβ,r indicates a sum over

nonnegative integers β and ϊ such that 2β + T = k — a — 1, a + β>0

(the choice of a will be clear from the context). Also, for X — yl1 r j e

Ψ`, V as above, we write X - V = (™x rΛ.

Define the Maass differential operator δλ9 λeR, by

δλ - (2πί)-1y-λ4-yx - (2τri)-1tey)-1 + A ) , and
dz I dz J
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% = $.•«,-» ί ί + A for 0 < t e Z.

LEMMA 3.4.

(1) WI kL) = (δ'J) I M i + M /or all σ e GL+(2, * ) .

(2) Set tr(z, m,p)=y'%8πyy>Ήr((2πyy>%m - p))e(-2mpx + iy(m* + p%

Then δ% = tr+2( for 0 < ΐ e Z, m, peR.

(3) δ'β{2az) = ί\ (-4wy)-eD/-»(4Kay)e(2az) for aeR.

(4.1) δHeiiSy-1)) = (2yy
2Ve(-ϊ)te(iv2y-i).

(4.2) δKy-`eQύty-`)) = y-`(2y)-V<(-l)V(i^-`)
Here L and H are Laguerre and Hermite polynomials, respectively.

Proof. Parts (1), (2), and (3) may be found in Asai [1], Lemma 9.

To prove part (4.1), induct on L Then (4.2) follows, as

For a, β > 0, z e § , , u, υ e C, define

φa,β(z, U,Ό)=`Σ y-tψ(4πyN(r - v))(r - v)"
rejf

X β(2N(r - υ)z + 2S(rΰ) - S(uv))

the φa(z9 υ) above is the same as φa>0(z, 0, v).

LEMMA 3.5. For a = {? h\ e Γ 0(ΰN(/)),

φa,β(σz, au + bυ, cu + dϋ) = X0(d)(cz + dy+v+`φ.^z, u, v) .

Proof. The case β = 0 follows from Theorem 1.2, with two dimen-

sional lattice given by </, and (u, v) = S(wϋ) giving Q = R. Then by

Lemma 3.4, (3), φa>β(z, u, v) = ( — 4^)^!"1^+ 1^α > 0, so by part (1) we are done.

LEMMA 3.6. For a > 0,

(3.2.1) x Σ φatβ(z, μp, v2 - m1μ)y-r(m1z + p)r

meMZ,peP~1Z

X e^Vj/-1 \mλz + p| 2 - S(ppv2) - 2pvA) .

Proof. First we establish for an integer Γ > 0 the equation

X e( — 2xm1(m1μμ + S(Γ2JQ) + p 4 )

(3.2.2) + iy(v2ml + v-2(m^/2 + S(r2μ)
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1 4 SOLOMON FRIEDBERG

X eiίy-Vlm.z + pf + 2p(miμμ + S(r2μ) - υj) .

For by applying the Poisson summation formula (Theorem 1.1 with

n = 1, Z = zP\ and M = (j ~ΛV one obtains (3.2.2) for ϊ = 0 (where

H7 — 1). For even T, we then apply δj/2 to the resulting equation; using

Lemma 3.4, parts (1), (2), and (4.1), and y-'\ 17® JYI = y-'(cz + d)r, one

gets (3.2.2). For odd T, we must first obtain (3.2.2)" with Γ = 1: apply

{<&πyβimύ-yβ(dldx) to the case r = 0 and add to this m^πyψ1 times

the result for ϊ = 0. Then applying ^r~1)/2 establishes (3.2.2) for arbitrary

T (alternatively, we can avoid the use of the Maass operators by a

more complicated application of the Poisson formula).

Next note

(m r\g(μ`v) _ ( mv mμ + r \
\r p) \mμ + f (mμμ + S(rμ) + p)v~ι)

When we sum over meMZ, r e / , for each β and ϊ in Σβ,r9

(mψ + r2yUβ

a)(Aπy^{mιμ + r2))e(2zN(miμ + r2))

times equation (3.2.2) and combine this with Lemma 1.5 and the definition
of φ, the result follows.

For μ = 0, Lemma 3.6 gives the 'splitting' of the theta function as
in [1], As we see, however, the μ = 0 case is only part of a more general
phenomenon. In its most useful form, we express this splitting as

PROPOSITION 3.7. For a>0,

**..(*, V,g(μ} v)) = (k- 1)!

(3.2.3)

This result will allow us to use Rankin's method to compute the
Doi-Naganuma lift, once we are able to compute the Fourier expansion
of the φaJ at all cusps (paragraph 3.3).

Proof. First consider the term in the sum of the right hand side of

l ΐ 6i \r

X e(iP-H2v2y-1 - P-H(S{v2μpϊ) + 2pAvJ))\[σp]k)
J
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(3.2.1) corresponding to mλ and p such that (mίyp) == P-H(mf,p'), where

mf, pr e Z are relatively prime, t Φ 0, and m! = c mod N, pf = d mod iV,

(c, d) = 1, where c and d are fixed. But there is a unique σ e Γ.d/C\Γ(N)

(where as usual Γ_d/C is the stabilizer of the cusp — d/c in Γ(N)) such

that {m! pf) — (c d)σ. Using Lemma 3.5 and a lengthy but straightforward

calculation, one sees

(3 2 4) Φa'β(Z> P~HμP'> V> ~ P

= φa>β(z, P-Hμd, v2 - P-Hμc)e(-P-HS(pdv2)) | [σ]a+2β+1 .

Also, pulling out greatest common divisors in the pairs (m^p),

{(m19p)\m1eMZ- υ19 p e P-`Z}

= {P'%mf,pf)\t9 m',pfeZ, t > 1, g.c.d. (m',p/) = 1,
tm! = -Pvx mod MP) ,

so we can reduce the sum of (3.2.1) to the sum over relatively prime

pairs {m',p') in congruence classes modiV specified by the coset repre-

sentatives St. Summing (3.2.4) over all m! and p' which are congruent

modiV to c and d respectively fills out all σ e Γ-d/c\Γ(N). Then using

Lemma 3.6 and the conjugacy of Γ-d/c to Γ^, one gets the second sum

in (3.2.3). There is an additional term (ml9 p) = (0, 0) which occurs if

and only if vt = 0 modM, and by (3.2.1) gives a nonzero contribution

only when V = 0; this is responsible for the first term.

3.3. We get the Fourier expansion of the φa,β at an arbitrary cusp

and use this to complete the proof of Theorem 3.1.

PROPOSITION 3.8. Let σ = (^ ^)e SL(2, Z), c Φ 0, and

τ'(σ, u, υ9 v')

-ί/2ί Σ e(2c-1(aN(i;//) + dN(ι/)) - &(v'(bυ -du- 2υ"c~1))) .

Then

φa>β(z, u9 v)\[σ]a+zβ+1

= (—i)«+ic«+2^-1 2 r ^ w ? v, v')φajβ(c2z, c(bv—du), u — c'Xav—v')) .

Proof. Note α - ^ α { C )( 1 ~ 1 ) ( C χ/Λ W e compute the action of

σ in the corresponding three parts. But for βf either β or /~1(£

and n relatively prime integers, one sees
m
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16 SOLOMON FRIEDBERG

*..,<*, «.",/0iff1 m[n)λ
L\ 1 / J α + 2/3 + 1

= 2 e(2mN(v/)/n — S((w — mvlii^v^φa^iz, u — mvjn, v

Combining this with Poisson summation ( I T ~~ J in Theorem 1.1 J gives

the required expression.

In some cases one can get simpler expressions for this expansion,

and thus a correspondingly simpler expression for the lift. We give one

variation on this theme in 3.4; another is to use the results of Asai [2]

when N(J^)D is square free. Also, for cosets in the theta group, one may

use Lemma 3.5 directly.

To get the expression of Theorem 3.1, one combines Propositions 3.7

and 3.8 with the formulas

Γ
Jo

exp{-αί -

for α, b > 0, and

(k - 1)! Σ 2r(βl r\ {a + /})!) ( 5 \
β,r \k — a — 1

given in Asai [1], page 161, after performing the interchange of summa-

tion and integration as indicated above. As for the 'constant' (V) term,

note that for all / e Sk(Γ(N)), v2 as above,

</, φa>β(z, 0, u2)> = 0 for β φ 0 .

Indeed, this follows from the straightforward generalization of Lemma 6

of Shimura [15] to Γ(N). Finally, the relationship between a > 0 and

a < 0 is simply a restatement of Theorem 2.1, (2).

3.4. In this section we state and prove a more general version of

Theorem 3.2. Let P = 1, M = N. We compute the lift associated to

V e S£* such that (vl9 N) = 1 in a simpler way, avoiding the sum of Propo-

sition 3.8. Namely, for p e &, we may assume (p3, N) = 1, or else p does

not occur in the sum (3.2.3). Then there are integers w and ιvf such

that wpz + Nw'pi — 1, so

_ J ,

One sees that for fe Sk(Γ0(N), X), a > 0,
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ίβtβ(z9 tμpi9 υ2 - tμpΆ) I [p-^y-'eiίtVy-1)} \ [σp], />

= x( — ps)N~r/2 Φa,β(z, tμpA, υ2 —
Jo Jo

where

f»(z)=f\\(~X)\ eSk(Γ0(N),χ).

Also, we have

wυ% - tμ),

where

This is proved by using Theorem 1.2 (notice we need an element

) e ^ ( 2 , Q) which may not be in SL(2, Z)). Combining these last
\
two formulas with (3.2.3) and a lengthy computation similar to that
sketched above, one gets the following result from which Theorem 3.2
immediately follows.

THEOREM 3.9. Let P = 1, M= N, (υl9 N) = 1, and fe Sk(ΓQ(N), %).
For each me Z, (m, N) = 1, Ze£ mm = 1 mod JV for some me Z. Then the
lifting (2.1.1) is given by

Fa(g(μ, v), V) = σav Σ *U-pύ Σ tk-1 Σ
t = l re/

= — vi mod N rΦO

(tμ - p3v2)) - 2psPiN(v2) - 2tPivt) ,

where C'J = C'J${p e S% \ (p3, N) = I})-1, and b(n) is as in Theorem 3.2.

3.5. To discuss Dirichlet series, for convenience we write

Fa(g(μ, v), V, if)

where ca depends only on a and k, and we understand here and in (3.5.1)
below that 2] means a sum over r in J'1^1 — 0. (C(r, V, J£?) and ca

can of course be read off directly from Theorems 3.1, 3.2, or 3.9). Notice

C^φ, V, &) - δVlΐίίOάM^P-\φk^z, v2),f) = ( - l ) * - 1 ^ . ^ , V, S) .
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18 SOLOMON FRIEDBERG

A standard argument using the Mellin transform

Γ (Fa(g(0, v), V, ££) - ίfc_lf |β |Cβ(0, V, &)vy-*-`dv
Jo

along with Theorem 2.1, (3), gives

PROPOSITION 3.10.

(3.5.1) Φa(s, V, £) = ca(2π)-2T(s + a/2)Γ(s - α/2) Σ C(r9 V, j2f)f(r)N(r)-

has a meromorphic continuation to the entire s plane, which is holomorphic

for \a\ < k — 1 and for \a\ = k — 1 except for simple poles of residue

-Cβ(0, V, JS?) 2 and {~l)k-ιCaφ, Vi,&i) 2 at s = (Λ - l)/2 ατιd (Jfe + l)/2

respectively when these quantities are nonzero. Φa has the functional equa-

tion Φa(s, v, se) = ( — l ) * - 1 * ^ - 5, v\ gι).

Consider the case given by Theorem 3.2. There

C(r) =
t\r

where the sum is over positive integers t such that (t)\(r) in J~ι<£ϊκ. In

the case of normalized new (eigen) form /, so b(ή) = (constant)

and class number one, the relevant Dirichlet series becomes

where

Ct(r) =
t\r i

and U is the number of units of K (this changes Φa by constants and

(DNίJQ)-8)- Note Cj is multiplicative, and for p\p, p)(N9 X0(p) = 1, resp.

— 1, we have

dip") = a(p*) , resp. ± {-in{p)fPf{k-l)a(p%n-2f) .
/=o

Thus, for a even (41 a, 6\a, in cases D — 4, 3, resp.), Re (s) sufficiently

large, a calculation shows that

Da(s) = Π (i - FGOCxGONfo)-' +
P

and in particular
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D0(s) = Σ Φ)n-S Σ a(ή)X0(ή)n-s .

In the case of h(K) > 1, adding the Dirichlet series corresponding

to the lattices J?i9 we similarly can obtain

(3.5.2) 2 a(n)σ(ή)n-s Σa{n)σ(ri)XQ{n)n-s

where σ' is any character of the ideal class group and for each rational

prime p we fix a prime p'\p in K, and then set

σ(p) =

and extend a multiplicatively (because (3.5.2) has an Euler product, it

is independent of the choice of p').

As a closing remark, note that the method of Section 4 of Asai [1]

extends to other situations (for example, using the results of Ogg [12]),

and leads to some interesting characterizations of forms in Si. However,

the general situation will require Rankin's method for arbitrary Λ(N),

with N not necessarily square free, and there are many details which

need to be checked, hence we shall not deal with this here.
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