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Attenuation of turbulence in a periodic cube
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We conduct direct numerical simulations (DNS) to investigate the attenuation of
turbulence in a periodic cube due to the addition of prolate spheroidal solid particles.
Even with a dilute volume fraction of O(10−2), particles can drastically attenuate the
turbulence. Our DNS show that the turbulent kinetic energy reduces more significantly
when the particles’ Stokes number is larger, size is smaller or aspect ratio is larger. We can
explain these results based on the formula proposed by Oka and Goto (2022 J. Fluid Mech.
949, A45), which relates the turbulence attenuation rate to the energy dissipation rate εp
around particles. More precisely, under the condition that the volume fraction of particles
is fixed, εp is larger when the Stokes number and, therefore, the relative velocity between
fluid and particles are larger, the particle size is smaller or the aspect ratio is larger. These
results also imply that the rotation of the anisotropic particles plays only a limited role
in the attenuation of turbulence when the Stokes number of particles is sufficiently large,
because the main cause of the attenuation is the relative translational velocity between
fluid and particles.

Key words: turbulent flows, multiphase and particle-laden flows

1. Introduction
By adding a small amount of solid particles to turbulent flows, we can drastically modulate
turbulence. This interesting phenomenon has been well known since the last century
when seminal experiments of particle-laden pipe flow (Tsuji & Morikawa 1982) and
free jet (Levy & Lockwood 1981) were conducted. Gore & Crowe (1989) summarised
experimental data at that time to conclude that the particle size D compared with the
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integral length L (i.e. the size of the largest eddies) of turbulence is the important
parameter and turbulence can be augmented (or attenuated) when D/L is larger (or
smaller) than 0.1. The target of the present study is the attenuation of turbulence by
particles smaller than L .

Gore & Crowe (1989) already mentioned the mechanism of the turbulence attenuation,
where small particles acquire the kinetic energy of turbulence from the most energetic
(i.e. the largest) eddies. However, the physical mechanism of turbulence modulation
is still under debate because it is difficult to draw a concrete picture of the complex
phenomenon only by experiments, and because it is also difficult to conduct parametric
study in laboratory. In contrast, since the seminal study by Elghobashi (1994), direct
numerical simulations (DNS) of multi-phase turbulence have been developing to be
powerful enough for effective parameter surveys. Therefore, the combination of state-
of-the-art measurements and DNS is rapidly advancing the understanding of turbulence
modulation by solid particles (Balachandar & Eaton 2010; Brandt & Coletti 2022). Even
if we only look at the literature in the simplest case, i.e. the modulation of turbulence
in a periodic cube, which is also the target of the present study, a number of DNS
were conducted (ten Cate et al. 2004; Homann & Bec 2010; Yeo et al. 2010; Lucci,
Ferrante & Elghobashi 2010, 2011; Gao, Li & Wang 2013; Wang et al. 2014; Schneiders,
Meinke & Schröder 2017; Oka & Goto 2022; Peng, Sun & Wang 2023; Su et al. 2023;
Cannon, Olivieri & Rosti 2024; Chiarini, Cannon & Rosti 2024) to reveal the statistics
and dynamics of particle-turbulence interactions. Among these studies, it is particularly
important to note the observation made by ten Cate et al. (2004), Yeo et al. (2010),
Gao et al. (2013) and Wang et al. (2014) that, when turbulence is attenuated, the energy
spectrum is attenuated (and augmented) in the wavenumber range corresponding to length
scales larger (and smaller) than particles, because this is consistent with the physical
mechanism of turbulence attenuation examined in the present article; namely, particles
acquire the energy from the largest eddies and dissipate it in the shedding particle-size
vortices around them.

Thanks to parametric studies by DNS and accumulations of experimental data, the
condition of turbulence attenuation (or augmentation) was proposed in terms of not only
the normalised particle size D/L (Gore & Crowe 1989), but also other parameters such as
the volume fraction Λ, the mass loading and the Stokes number,

St = τp

T
, (1.1)

where τp and T denote the particle velocity relaxation time due to the Stokes drag and the
turnover time of the largest vortices, respectively. For example, Tanaka & Eaton (2008)
proposed a dimensionless number and even recently, Peng et al. (2023) also suggested
another parametrisation for the turbulence modulation. Note that in the present study, we
define the Stokes number (1.1) by T because it quantifies the particles’ ability to follow
the most energetic motion in turbulence, but other definitions of the Stokes number are
sometimes used (see e.g. Bordoloi & Variano 2017). Note also that the target of the present
study is turbulence modulation by particles much heavier than carrier fluid, where added
mass effects are negligible.

We also investigated this issue by DNS of the attenuation of turbulence in a periodic
cube due to spherical particles (Oka & Goto 2022) to show that the turbulent kinetic energy
K ′ can be reduced by approximately half, even if the volume fraction Λ is as small as
8× 10−3, if St is sufficiently larger than 1 and D is smaller than L . This implies that
both D/L and St are important parameters. We also demonstrated that when St is large
enough, particle-size vortices are shed from particles because of large-enough relative
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velocity between fluid and particles, and then the energy which the particles acquire from
the largest eddies is dissipated in these shedding vortices. Then, we showed that we can
estimate the attenuation rate,

A= 1− K ′

K ′0
, (1.2)

where K ′0 is the average turbulent kinetic energy of the single-phase flow, by considering
the average energy dissipation rate εp in the wake. More precisely, the average energy
input rate ε0, which is assumed to be the same as in the single-phase turbulence, is the
sum of the average flux εc of the energy cascade in the particle-laden turbulence and the
average dissipation rate εp around particles:

ε0 = εc + εp . (1.3)

Since ε0 and εc are the energy flux in the single- and multi-phase flows, respectively, we
can estimate them as

ε0 =Cε

(K0 + K ′0)3/2

L0
and εc =Cε

(K0 + K ′)3/2

L0
(1.4)

by the dissipation law of Taylor (1935). Here, K0 and L0 denote the kinetic energy of
mean flow and integral length in the single-phase flow, respectively, which are assumed to
be the same as those in the particle-laden flow (see the verification of these assumptions
in Appendix A). The coefficient Cε is the dissipation coefficient, which depends on flow
(Goto & Vassilicos 2009). Substituting (1.4) into (1.3), we can relate A to εp as

1−
(

1− A
1+ α

)3/2

= εp

ε0
(1.5)

with α being defined as the ratio K0/K ′0 of the kinetic energy of mean flow to the turbulent
kinetic energy in the single-phase flow. Oka & Goto (2022) numerically verified (1.5) by
estimating the energy dissipation rate around the particles as

ε†
p =C pΛ

〈�u3〉p
D

, (1.6)

where �u is the relative velocity between fluid and particles, C p is a constant of O(1), and
〈 · 〉p denotes the average over particles and time. The superscript dagger of ε

†
p indicates

a theoretical expression (1.6) for εp. Although the physical picture shown here is based
on the classical view described in the second paragraph of this section, the crucial point
to derive (1.5) is that we consider the change in the cascading energy flux. Recently,
Balachandar, Peng & Wang (2024) further developed this picture towards the subgrid
modelling of particle-laden turbulence.

Although Oka & Goto (2022) numerically demonstrated that (1.5) can accurately
estimate the attenuation rate A, (1.2), this demonstration was made only for spherical
particles. However, it is known that anisotropic particles sometimes more effectively
modify turbulence than spherical ones (Voth & Soldati 2017, § 6.2). For example,
Paschkewitz et al. (2004) showed by DNS with a constitutive equation that rigid fibres
can significantly reduce the drag of turbulent channel flow. Many other researchers
also investigated the issue of turbulence attenuation and turbulent drag reduction due to
anisotropic particles by DNS (Eshghinejadfard, Hosseini & Thévenin 2017; Ardekani &
Brandt 2019; Schneiders et al. 2019; Wang, Xu & Zhao 2021; Olivieri, Cannon & Rosti
2022; Cannon et al. 2024) and experiments (Ljus, Johansson & Almstedt 2002; Bellani
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et al. 2012; Capone, Romano & Soldati 2015). As a study related to the present one, Zhao,
George & van Wachem (2015) numerically showed that turbulence is more significantly
attenuated with anisotropic particles with larger St and larger aspect ratios. Mandø (2009)
also examined, by experiments, the modulation of turbulent jet by particles with different
shapes and they observed that for a common equivalent diameter,

D∗ = (6V/π)1/3 , (1.7)

where V is the volume of a particle, anisotropic particles (disks and spheroids) attenuate
turbulence intensity more than spherical ones.

These previous studies motivate us to investigate the effects of particle shape in
turbulence attenuation. However, to systematically investigate the effects, we must examine
cases with different shapes of particles under each condition of particles (i.e. Λ, D∗/L
and St) and flow (i.e. boundary conditions and the Reynolds number). Thus, in the present
study, we restrict ourselves in the case where the particle shape is prolate spheroidal and
turbulence is in a triply periodic domain without walls. More concretely, we conduct DNS
with different values of D∗/L , St and the aspect ratio χ of prolate spheroidal particles
for a fixed value of the volume fraction Λ and the Reynolds number of turbulence. Then,
we demonstrate that the above-mentioned physical mechanism of turbulence attenuation is
valid even for the anisotropic particles and the estimation (1.5) of A in terms of εp holds.
We also generalise (1.6) for εp around anisotropic particles.

2. Direct numerical simulation

2.1. Numerical method
We conduct DNS of turbulence with solid prolate spheroids in a periodic cube using the
same numerical code used in our previous study (Fujiki et al. 2024), in the appendix
of which we showed the validation of the code. Here, we briefly describe the numerical
method.

First, for fluid motion, we suppose that it is governed by the Navier–Stokes equation,

∂u
∂t
+ u ·∇u=− 1

ρ f
∇ p+ ν∇2u+ f + f←p, (2.1)

and the continuity equation,

∇ · u= 0, (2.2)

for an incompressible fluid. Here, u(x, t) is the velocity field at position x and time t ,
p(x, t) is the pressure field, and ρ f and ν are the fluid mass density and kinematic
viscosity, respectively. In (2.1), f (x) is an external steady force, which is expressed as

f = (− sin x cos y,+ cos x sin y, 0) (2.3)

(Goto, Saito & Kawahara 2017; Oka & Goto 2022), and f←p(x, t) is the force due to
particles. Using the simplified mark and cell (SMAC) method, we numerically solve
(2.1) and (2.2) under periodic boundary conditions in a cube with side Lbox = 2π).
The spatial derivatives are evaluated using the second-order central difference method.
The convection and viscous terms are temporally integrated using the second-order
Adams–Bashforth method and Crank–Nicholson method, respectively.

Table 1 lists the parameters such as the number N 3 of grid points for DNS and
statistics of the simulated turbulence. Here, we have evaluated the integral length as
L = 3π

∫∞
0 k−1 E(k)dk/4

∫∞
0 E(k)dk, where E(k) is the temporally averaged energy
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N 3 ν Rλ Lbox/L L/η η/�x c

RUN256 2563 8× 10−3 47 5.4 47 1.0 6.3× 10−2

RUN384 3843 8× 10−3 47 5.3 48 1.5 6.4× 10−2

Table 1. Parameters and statistics of the single-phase turbulence. We have taken temporal averages over
approximately 250T with T = L/u′ being the integral time. Here, Rλ, L and η are the Taylor-length-based
Reynolds number, integral length and Kolmogorov length, respectively; and c= u′�t/�x is the CFL number
defined by the fluctuating velocity u′, the grid width �x = Lbox/N and the time increment �t for the temporal
integration.

spectrum of turbulence, and the Taylor length as λ=√10νK ′/ε, where

K ′ = 1
2

〈|u(x, t)−U (x)|2〉 (
U (x)= u(x, t)

)
(2.4)

is the average turbulent kinetic energy per unit mass and ε is its dissipation rate. Here, 〈 · 〉
and · denote the spatial and temporal averages, respectively. Then, we have evaluated
the Taylor-length-based Reynolds number as Rλ = u′λ/ν with u′ =√2K ′/3 and the
Kolmogorov length as η= ε−1/4ν3/4. In table 1, we also list the Courant–Friedrich–
Lewy (CFL) number, which we have set sufficiently smaller than unity for numerical
stability.

Next, we describe the numerical method to simulate the motion of spheroidal particles
with mass density ρp, major radius a and minor radius b. Particle’s velocity v p(t) and
angular velocity ωp(t) obey Newton’s equations of motion,

m
dv p

dt
= f← f + f↔p (2.5)

and

d
(
Iωp

)
dt

= T← f + T↔p, (2.6)

respectively. Here, m(= 4πρpab2/3) is the particle mass and I is the moment of inertia.
On the right-hand sides of these equations, f← f and T← f denote the force and torque
acting on a particle by the surrounding fluid, respectively, and f↔p and T↔p denote the
interaction force and torque between particles, respectively. In the present DNS, since we
neglect gravity, the energy is injected only by the external force (2.3) on fluid.

We treat particle-fluid interaction by an immersed boundary method proposed by
Uhlmann (2005) to evaluate forces f←p in (2.1) and f← f in (2.5) and torque T← f in
(2.6). On the other hand, we treat particle-particle interaction by the discrete element
method (DEM) to evaluate f↔p in (2.5) and T↔p in (2.6). In the present DEM, similarly
to Moriche et al. (2023), we consider only the normal component of the contact force due
to elastic collisions, which is proportional to the squared overlap distance.

To simulate the rotational motion governed by (2.6), we employ the method used by
Moriche, Uhlmann & Dušek (2021), where we introduce the frame attached to each
particle with its origin being the particle centre and with axes parallel to the particle’s
major and minor axes. Using the angular velocity ω′p in this frame, we can rewrite (2.6) as

I ′
dω′p
dt
+ω′p × I ′ω′p = R

(
T← f + T↔p

)
. (2.7)
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Here, I ′ is the principal moment of inertia,

I ′ = β

⎛
⎜⎝

2mb2/5 0 0
0 m(a2 + b2)/5 0
0 0 m(a2 + b2)/5

⎞
⎟⎠ (2.8)

and R is the rotation matrix between the two frames expressed as

R=
⎛
⎜⎝

q2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 + q0q3) 2 (q1q3 − q0q2)

2 (q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2 (q2q3 + q0q1)

2 (q1q3 + q0q2) 2 (q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎞
⎟⎠ (2.9)

with quaternion q = (q0, q1, q2, q3). In terms of ω′p = (ω′px , ω′py, ω′pz), we can express
the temporal evolution of the quaternion as

dq
dt
= 1

2

⎛
⎜⎜⎜⎝

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

0
ω′px

ω′py

ω′pz

⎞
⎟⎟⎟⎠ . (2.10)

Thus, we solve (2.7) and (2.10) instead of (2.6) for the rotational motion of particles. We
numerically integrate (2.5), (2.7) and (2.10) with the Euler method for the particle-particle
interaction terms and the second-order Adams–Bashforth method for the other terms. We
solve the governing equations for fluid and particles alternately so that we can treat coupled
motion of fluid and particles.

Note that we have introduced in (2.8) an artificial coefficient β to express the
inhomogeneous distribution of mass density in a particle; β = 1 corresponds to the
homogeneous density distribution. By the introduction of β, we can discuss whether
the rotation of particles is important or not in turbulence modulation (see § 3.3).

2.2. Particle parameters
We examine interaction between prolate spheroidal particles and the statistically stationary
turbulence with properties given in table 1. Then, the particles are characterised by four
parameters: the equivalent diameter D∗ = 2(ab2)1/3, which is defined as (1.7), the aspect
ratio χ = a/b (χ � 1), the mass density ratio γ = ρp/ρ f between the particle and fluid,
and coefficient β in (2.8) determining the inertial moment. We fix the particle volume
fraction Λ= (4πab2 Np/3L3

0), where Np is the number of particles, at 6.0× 10−3, which
is slightly more dilute than the system in our previous study (Oka & Goto 2022). Note that
since Λ is fixed, the number Np of particles increases as D∗ decreases.

First, we describe particle parameters with homogeneous mass density (β = 1). We
consider the two cases with relatively small diameters D∗/L = 0.16 and 0.24 (i.e.
D∗/η= 7.5 and 11). Here, we use the values of L and η in the single-phase flow. Then, we
change the aspect ratio (χ = 1, 3, 5 and 7) and mass density ratio (γ = 8, 32, 128 and 512)
to examine 32 cases in total. We show results on the basis of the Stokes number (1.1) in-
stead of γ . The Stokes number St denotes the ratio between the velocity relaxation time,

τp =

⎧⎪⎨
⎪⎩

2γ b2

9ν
(for χ = 1),

2γ b2 f (χ)

9ν
(for χ > 1),

(2.11)
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(a) D∗/L = 0.16

χ 2a/L 2a/η 2b/L 2b/η γ St β Str Np

1 0.16 7.6 0.16 7.6 8 1.9 1 2.0 422
1 0.16 7.6 0.16 7.6 32 7.4 1 8.0 422
1 0.16 7.6 0.16 7.6 128 30 1 32 422
1 0.16 7.6 0.16 7.6 512 119 1 127 422
3 0.33 16 0.11 5.2 8 1.7 1 2.0 422
3 0.33 16 0.11 5.2 32 6.7 1 8.2 422
3 0.33 16 0.11 5.2 128 27 1 33 422
3 0.33 16 0.11 5.2 512 107 1 131 422
5 0.47 22 0.093 4.4 8 1.5 1 1.9 422
5 0.47 22 0.093 4.4 32 5.9 1 7.6 422
5 0.47 22 0.093 4.4 128 24 1 31 422
5 0.47 22 0.093 4.4 512 95 1 122 422
7 0.58 28 0.083 4.0 8 1.3 1 1.8 422
7 0.58 28 0.083 4.0 32 5.4 1 7.1 422
7 0.58 28 0.083 4.0 128 22 1 28 422
7 0.58 28 0.083 4.0 512 86 1 114 422
7 0.58 28 0.083 4.0 32 5.4 1/4 1.8 422
7 0.58 28 0.083 4.0 32 5.4 1/16 0.45 422
7 0.58 28 0.083 4.0 512 86 1/16 7.1 422
7 0.58 28 0.083 4.0 512 86 1/64 1.8 422

(b) D∗/L = 0.24

χ 2a/L 2a/η 2b/L 2b/η γ St β Str Np

1 0.24 11 0.24 11 8 4.2 1 3.4 125
1 0.24 11 0.24 11 32 17 1 14 125
1 0.24 11 0.24 11 128 67 1 54 125
1 0.24 11 0.24 11 512 268 1 217 125
3 0.50 23 0.17 7.8 8 3.8 1 3.5 125
3 0.50 23 0.17 7.8 32 15 1 14 125
3 0.50 23 0.17 7.8 128 60 1 56 125
3 0.50 23 0.17 7.8 512 241 1 223 125
5 0.70 33 0.14 6.6 8 3.4 1 3.3 125
5 0.70 33 0.14 6.6 32 13 1 13 125
5 0.70 33 0.14 6.6 128 54 1 52 125
5 0.70 33 0.14 6.6 512 215 1 208 125
7 0.88 41 0.13 5.9 8 3.1 1 3.0 125
7 0.88 41 0.13 5.9 32 12 1 12 125
7 0.88 41 0.13 5.9 128 49 1 48 125
7 0.88 41 0.13 5.9 512 195 1 194 125
7 0.88 41 0.13 5.9 32 12 1/4 3.0 125
7 0.88 41 0.13 5.9 32 12 1/16 0.76 125
7 0.88 41 0.13 5.9 512 195 1/16 12 125
7 0.88 41 0.13 5.9 512 195 1/64 3.0 125

Table 2. Particle parameters for (a) D∗/L = 0.16 (RUN384 in table 1) and (b) D∗/L = 0.24 (RUN256).

where we define ξ =√χ2 − 1 and f (χ)= χ ln(χ + ξ)/ξ , of the spheroidal particles
(Shapiro & Goldenberg 1993) and the integral time T of single-phase turbulence. Note
that (2.11) is a reference particle relaxation time estimated by assuming the Stokes drag.
We list in table 2 the parameters of particles. The number of grid points in DNS is

1008 A6-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

13
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.137


H. Awai, Y. Motoori and S. Goto

N 3 = 3843 for D∗/L = 0.16 and N 3 = 2563 for D∗/L = 0.24 to ensure D∗/�x = 12,
where �x (= Lbox/N ) is the grid width.

Next, we explain the additional particle parameter β, which expresses the
inhomogeneous mass density distribution inside each particle. Note that, by changing the
value of β in (2.8), we can change the particles’ ability of rotation. When β = 1, the mass
density is homogeneously distributed; whereas when β < 1, it is larger around the particle
centre and such a particle can rotate more easily than the one with β = 1. Since β cannot
be arbitrarily large, we examine particles with β � 1. To quantify the rotational ability of
particles, we define the rotational Stokes number as

Str = τr

τD∗
, (2.12)

which denotes the ratio between the relaxation time (Jayaram et al. 2023),

τr =

⎧⎪⎨
⎪⎩

3β

10
τp (for χ = 1),

9β

40
c0 + χ2c1

f (χ)
τp (for χ > 1),

(2.13)

of the particle tumbling motion and the turnover time, τD∗(= ε
−1/3
0 D2/3∗ ), of vortices at

scale D∗. In (2.13), c0 and c1 are

c0 = 2χ2ξ + χ ln(χ − ξ)− χ ln(χ + ξ)

2ξ3 and c1 = −2ξ − χ ln(χ − ξ)+ χ ln(χ + ξ)

ξ3 ,

(2.14)

respectively. The rotational Stokes number Str represents the ability for the particles to
follow the swirling of vortices with size D∗. In the present study, in addition to the 32
kinds of particles with homogeneous density (β = 1), we simulate particles with different
values of Str corresponding to β = 1/4, 1/16 and 1/64 in the eight cases of the most
elongated (χ = 7) (see table 2).

Before showing the results, we recall that turbulence driven by (2.3) has mean flow. In
Appendix A, we show that particles with the dilute volume fraction do not significantly
change the average kinetic energy K of the mean flow or the integral length L . These
features are important because they are assumed in (1.4), which is required to derive the
formula (1.5) of attenuation rate. In the next section, we demonstrate that (1.5) holds even
for anisotropic particles.

3. Results

3.1. Attenuation of turbulent kinetic energy
In the following analysis, we evaluate statistics by taking temporal average over approxi-
mately 250T . The error bars in the following figures indicate the standard deviation. We
first show results for particles with homogeneous mass density distribution (β = 1).

Figure 1 shows the St-dependence of the temporal average K ′ of turbulent kinetic
energy normalised by the value K ′0 for the single-phase flow. The blue smaller symbols are
results for D∗/L = 0.16 and black larger ones are for D∗/L = 0.24. The shape of symbols
with different ellipticity represents the particle shape with different aspect ratios χ = 1,
3, 5 and 7. Note that the shape of the symbols is schematic. We see in this figure that,
for given D∗ and χ , turbulent kinetic energy is attenuated more significantly for larger
St . This tendency is common in both cases with spherical particles (circles in the figure)
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Figure 1. Average turbulent kinetic energy K ′ normalised by the value K ′0 for the single-phase flow as a
function of St . Blue smaller symbols are results for D∗/L = 0.16 and black larger ones are for D∗/L = 0.24.
The shape of symbols with different ellipticity represents the aspect ratios (χ = 1, 3, 5 and 7) of particles; note
that the shape of symbols is schematic and different from the examined spheroids. Error bars indicates the
standard deviation.

and with spheroidal ones (ellipses). We therefore conclude that the largeness of St is a
necessary condition for turbulence attenuation irrespective of particle shape.

Our previous study (Oka & Goto 2022) for spherical particles demonstrated that
shedding vortices behind particles play important roles in turbulence attenuation because
they are relevant for the additional dissipation rate εp. Similar vortices can be observed
around spheroidal particles with large St . Figures 2(a) and 2(b) show vortices (blue
objects) identified by isosurfaces of the enstrophy and particles (yellow ones). The
particles shown in these two panels have the same size (D∗/L = 0.16) and aspect ratio
(χ = 7) but different values of the Stokes number: (a) St = 1.3 and (b) 86. Panels (c) and
(d) show a cross-section of panels (a) and (b), respectively, which is perpendicular to the
four columnar vortices driven by external force (2.3). Since the most energetic large-scale
flow is parallel to this cross-section, we can easily judge whether or not shedding vortices
exist by the enstrophy indicated by the background colour in panels (c) and (d). We see
in the visualisations of panel (a, c) for St = 1.3 (and supplementary movie 1 available
at https://doi.org/10.1017/jfm.2025.137) that the enstrophy is distributed independently of
particles. This implies that vortices are generated through energy cascade even in the
presence of particles, and there is no additional energy dissipation around them in this case
with small St . In contrast, vortices are created behind particles with larger Stokes number
(St = 86) as shown in figure 2(b,d). Figure 2(e) shows the magnification of a subdomain
of figure 2(b). It is clear in figure 2(b,d,e) that elongated vortices are shed along particles.
Since these shedding vortices are as small as 10η, they are almost immediately dying due
to viscous effects. This additional energy dissipation in the shedding vortices leads to the
reduction in part of the cascading energy flux, and consequently turbulent kinetic energy
is attenuated. This is consistent with the physical picture described in the introduction.
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(a) (b)

(c)

(e)

(d)

Figure 2. Visualisation of vortices (blue objects) identified by isosurfaces of enstrophy and spheroidal particles
(yellow ones) with (a) St = 1.3 and (b) St = 86. Particle size is D∗/L = 0.16 and aspect ratio is χ = 7.
Panels (c) and (d) show z = 0 planes of panels (a) and (b), respectively. The background colour indicates the
magnitude of the enstrophy (lighter colours show the larger value). Panel (e) shows a subdomain of panel (b).
See also supplementary movie 1.

Figure 1 also shows that the attenuation rate of turbulent kinetic energy depends on not
only St , but also equivalent diameter D∗ and aspect ratio χ . More specifically, for given
St , turbulent kinetic energy is attenuated more significantly for smaller D∗ or larger χ .

Concerning particle size D∗, we can explain its effect on the turbulence attenuation
by the same argument as for spherical particles (Oka & Goto 2022); that is, smaller
particles can produce larger additional energy dissipation rate εp per unit mass because
it is inversely proportional to D∗ [see (1.6)]. We emphasise that this statement is valid
under the condition that the volume fraction Λ is constant.
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Figure 3. (a) Energy dissipation rate εp evaluated by (3.1) around particles as a function of St . (b) Numerical
verification of (1.5), which is indicated by the dashed straight line. The symbols are the same as in figure 1.

However, concerning aspect ratio χ , it is unclear whether we can describe the
χ -dependence solely in terms of the additional energy dissipation rate εp around particles.
This is a crucial issue because for larger Stokes numbers (say, St � 20), more elongated
particles attenuate turbulence more significantly and the χ -dependence of the attenuation
rate is non-negligible (figure 1).

To consider the effect of particle shape, we therefore examine the dependence of εp on
St , D∗ and χ . Here, we numerically compute the local average of the energy dissipation
rate around each particle as

εp = 1
L3

box

( ∫
Ωp

ε(x, t) dV − VΩpε

)
, (3.1)

where Ωp denotes the spheroidal shell between the particle surface and another spheroid
with the major and minor radii being a + 3D∗/4 and b+ 3D∗/4, respectively, and VΩp

denotes the volume of Ωp. The first term on the right-hand side of (3.1) denotes the
local energy dissipation rate around particles. However, since this quantity includes the
dissipation rates due to both the shedding vortices and vortices generated by energy
cascade, we subtract the latter contribution expressed by the second term so that we can
estimate the additional dissipation rate. Here, note that ε in the second term of (3.1) is the
average quantity in time and space (i.e. ε = 〈ε(x, t)〉).

Figure 3(a) shows the thus-evaluated εp, normalised by the energy dissipation rate ε0
in the single-phase flow, as a function of St . We see that εp gets larger for (i) larger
Stokes number St , (ii) larger aspect ratio χ and (iii) smaller equivalent diameter D∗. These
behaviours are similar to those of turbulence attenuation rate shown in figure 1, implying
that the turbulence attenuation rate relates to εp. In fact, plotting in figure 3(b) all the data
according to (1.5), we can confirm that (1.5) holds irrespective of St , D∗ and χ .

In summary, (1.5) describing turbulence attenuation is valid even for the anisotropic
particles. For the estimation of εp required for (1.5), we have numerically evaluated it by
(3.1). This direct evaluation however lacks a concrete relevance of εp to particle properties
such as St , D∗ and χ . On the other hand, for spheres, εp is described in terms of the
translational relative velocity �u and particle diameter D according to (1.6). In the next
subsection, we generalise (1.6) for anisotropic particles.
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3.2. Estimation of energy dissipation rate due to particles
To estimate the energy dissipation rate εp around particles, we first assume that εp is
determined by the translational motion of particles. Then, we can estimate it by using the
force Fp acting on a particle:

Fp = 1
2

CDρ f (�u)2 A , (3.2)

where CD is the drag coefficient, A(= π D2∗/4) is the cross-sectional area of a sphere with
diameter of D∗ and is the translational relative velocity between the particle v p and its
surrounding fluid. Here, denotes the average on the outer surface of the spheroidal shell
Ωp around each particle. Since a particle subjected to Fp inputs energy to flow at the rate
of Fp�u, the average energy dissipation rate per unit mass in wakes around all particles
in the system is expressed as

ε†
p =

3
4
Λ
〈CD�u3〉p

D∗
. (3.3)

This estimation of ε
†
p differs from (1.6) used for spheres by Oka & Goto (2022) because

they assumed that C p is a constant of O(1). For anisotropic particles, it is important to
consider the dependence of CD on the shape of particles as well as flow state surrounding
them. In fact, the instantaneous drag coefficient CD depends on the particle Reynolds
number Rep =�u D∗/ν, aspect ratio χ and angle φ between the major axis of the particle
and relative velocity. In the present study, to evaluate CD from �u and φ, we use the
expression,

CD(φ, Rep)=CD,φ=0 +
(
CD,φ=π/2 −CD,φ=0

)
sin2 φ , (3.4)

proposed by Sanjeevi, Dietiker & Padding (2022) according to their numerical re-
sults. Here, CD,φ = (a1/Rep + a2/Rea3

p ) exp(−a4 Rep)+ a5{1− exp(−a4 Rep)}, with ai
(i = 1, . . . , 5) being the coefficients depending on χ and φ. The values of these
coefficients are listed in table 2 of Sanjeevi et al. (2022). Figure 4(a) shows the
χ -dependence of 〈CD〉p for the case of the smallest particles with the largest St (i.e.
D∗/L = 0.16 and γ = 512). For larger χ , 〈CD〉p gets larger. This implies that ε

†
p is larger

for more elongated particles. We have also confirmed similar monotonically increasing
trend with respect to χ for the other particles. It is not trivial whether (3.4), which is
derived for a particle in uniform flow (Sanjeevi et al. 2022), gives a good approximation in
turbulence. However, the observation in figure 4(a) is consistent with the direct evaluation
of εp shown in figure 3(a). In addition, the increasing trend of 〈CD〉p with χ is also
consistent with the result for decaying turbulence by Schneiders et al. (2019), who
explained the trend in terms of particle orientations.

Furthermore, figure 4(b) shows the average 〈�u〉p of the relative velocity for all the
simulated particles. For given D∗ and χ , the relative velocity is larger for larger St , and
it tends to approximately u′ for St
 1. This is reasonable because St represents the
ability for particles to follow the swirling motion around the largest vortices. Incidentally,
although the feature that 〈�u〉p→ 1.5u′–2u′ for St
 1 is independent of the kind of
external force, the prefactor depends on forcing(see Oka & Goto 2022, figure 6).

Using the numerically evaluated averages of CD�u3, we estimate the energy dissipation
rate ε

†
p around particles by using (3.3). Figure 5(a) shows the relation between ε

†
p and

εp. We can observe that ε
†
p well coincides with εp. This means that the estimation

(3.3) accurately quantifies the energy dissipation rate around particles. In other words,
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Figure 4. (a) Averaged drag coefficient CD for particles with γ = 512 and D∗/L = 0.16 as a function of χ .
(b) Relative velocity normalised by u′ as a function of St . Symbols are the same as in figure 1.

0.4

0.3

0.2

0

0.1

0
0

0

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.10.40.30.20.1

ɛp
†/ɛ0

ɛ p†
/ɛ

0

(a) (b)

1
 −

 (
1
 −

 A
/(1

 +
 α

))
3
/2

ɛp/ɛ0

Figure 5. (a) Comparison of the energy dissipation rates between the numerical evaluation εp using (3.1) and
estimation ε

†
p using (3.3). Both values are normalised by the energy dissipation rate ε0 in the single-phase flow.

(b) Numerical verification of (1.5), where we use the value ε
†
p , instead of εp , for the energy dissipation rate.

The dashed lines in the both panels show linear lines with a slope of 1. Symbols are the same as in figure 1.

as explicitly demonstrated in figure 5(b), we can use the estimation ε
†
p in place of εp in

(1.5) to describe the turbulence attenuation rate in the case for spheroidal particles.
Although overall data shown in figure 5(b), as well as figure 3(b), support (1.5) and (3.3),

we observe systematic deviation from the diagonal line in these figures. More concretely,
for both sets of different particle diameters (blue and black symbols represent D∗ = 0.16L
and 0.24L , respectively), the deviation is larger for smaller St (i.e. smaller εp) cases.
This is because, when St � 10, the velocity difference between particles and fluid is not
determined only by the translational motion as will be discussed in the next subsection.

We emphasise the importance of the estimation (3.3) of εp because it tells us that the
energy dissipation rate around particles gets larger for larger �u, larger CD or smaller D∗
in a quantitative manner. In particular, since �u = O(u′) for St
 1 (figure 4b), we may
predict ε

†
p, and therefore A, as a function of particle shape parameters D∗ and χ . We also

emphasise that the estimation (3.3) is non-trivial because we estimate εp by considering
only translational motion of particles. In other words, we have neglected contribution from
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Figure 6. Temporal average K ′ of turbulent kinetic energy normalised by the value K ′0 for the single-phase
flow as functions of (a) St and (b) Str . The open symbols indicate results for particles with homogeneous mass
density with the same equivalent diameters (D∗/L = 0.16 and 0.24) and aspect ratio (χ = 7), but different
Stokes numbers. The partially filled ones indicate results for particles with different values of the inertial
moment; the width of the filled part of symbols is narrower for smaller β.

particle rotation in (3.3). As quantitatively demonstrated by Schneiders et al. (2019) for
decaying turbulence, in fact, the contribution to εp from translational motion of particles
dominates those from their rotations and fluid acceleration. We further discuss effects of
particle rotation in the next subsection.

3.3. Effects of the rotation of particles
As demonstrated in figure 5(b), the degree of turbulence attenuation is described by
additional energy dissipation rate ε

†
p around particles. We have also shown in figure 5(a)

that ε
†
p can be quantified by the translational relative velocity between particles and fluid.

In this subsection, we verify that the rotation of particles is less important on the turbulence
attenuation when St
 1. To this end, we simulate different kinds of particles, which have
inhomogeneous distribution of mass density inside, with different values of β (= 1/4,
1/16 and 1/64) for the inertial moment (see the second row from the right in table 2).
The rotational Stokes number Str of these particles is much smaller than particles with
homogeneous density, which means that the particles are more likely to rotate together
with circulation in vortices of size D∗. In such a case, the relative velocity, and therefore
the energy dissipation rate εp around particles, might be affected by difference in the
swirling of vortices and tumbling of particles.

Figure 6 shows the ratio K ′/K ′0 of turbulent kinetic energy in single-phase flow and
turbulence with particles with smaller values of β as functions of St in panel (a) and Str
in panel (b). The partially filled symbols indicate results for particles with inhomogeneous
mass density (β �= 1), while open symbols show those for particles with β = 1. This
figure shows that when St is sufficiently large (say, St � 10), even if Str is significantly
different, the degree of the attenuation is almost identical when D∗/L , St and χ are
the same. This implies that the effect of the rotation for εp is negligible and we can
estimate the energy dissipation rate by (3.3) for large-St particles. This result is consistent
with those by Schneiders et al. (2019) and explained as follows. Since the rotational
relative velocity �ur is determined by swirls of vortices with size D∗, it is estimated by
ε1/3 D1/3∗ in the inertial range of turbulence. If St is sufficiently large, this cannot be larger
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Figure 7. Energy spectra E normalised by the value E0 in the single-phase flow as a function of the
wavenumber k for (a) spheres (χ = 1) and (b) spheroids for χ = 7 with D∗/L = 0.24. Darker lines show larger
St . The red vertical line represents the wavenumber kD∗ = 2π/D∗ corresponding to the particle diameter. The
inset in panel (b) shows results (close-up around kD∗) for particles with γ = 512 and D∗/L = 0.24 but different
aspect ratios χ . Darker blue lines show larger χ .

than the translational relative velocity �u(≈ u′) because u′ ≈ ε1/3L1/3 and, therefore,
�ur/�u ≈ (D∗/L)1/3 < 1.

It is also interesting to observe in figure 6 that the attenuation rate depends on Str
for the case with the smallest value of St (= 5.4) indicated by the small blue symbols.
This implies that when 1 � St � 10, the attenuation occurs due to energy dissipation in
shedding vortices created by not only translational but also rotational motion. Therefore,
the assumption for the estimation (3.3) of εp is violated, which may lead to deviations in
figures 2(b) and 4(b) of the data for St � 10.

3.4. Modulation of energy spectrum
Before concluding this article, we investigate the scale-dependent modulation of turbulent
kinetic energy. In physical space, as shown in figure 2, a key ingredient of the turbulence
attenuation is shedding vortices in the wake behind particles because they dissipate the
energy at particle scale D∗. More precisely, because of the additional energy dissipation,
such vortices reduce the cascading energy flux in scales between integral length L and
particle size D∗, whereas they augment turbulence at scales smaller than D∗. This is
quantitatively confirmed in figure 7, which shows the energy spectrum E(k), normalised
by the value E0(k) in the single-phase flow, for spherical particles (χ = 1) in panel (a)
and most elongated spheroidal ones (χ = 7) in panel (b). The darker lines are results
with larger St . The wavenumber kD∗(= 2π/D∗) corresponding to participle size D∗ is
indicated by the red line. In both cases of spheres and spheroids, we observe that the
energy spectrum is indeed attenuated in the range k � kD∗ and augmented for k � kD∗ .
This observation is similar to previous results (ten Cate et al. 2004; Yeo et al. 2010;
Gao et al. 2013; Wang et al. 2014) for spherical particles and consistent with the above-
mentioned turbulence attenuation mechanism. Incidentally, the cross-over (E/E0 ≷ 1) of
the modulation for spheroids (figure 7b) is obscurer than that for spheres owing to the
effect of the length scale separation between major and minor radii. We can confirm this
in the inset of figure 7(b), which shows the dependence of E/E0 on the aspect ratio χ

(= 1, 3, 5 and 7). The cross-over becomes indeed obscurer for larger χ .
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4. Conclusions
We can describe the attenuation of turbulence by solid particles in a periodic cube in terms
of the additional energy dissipation rate εp in the wake behind particles. More precisely,
by considering that the cascading energy flux is reduced by εp, we can derive (1.5) for the
attenuation rate A defined as (1.2). Although (1.5) was verified for turbulence attenuation
due to spherical particles (Oka & Goto 2022), we have shown in the present study the
numerical evidence that the formula holds even for spheroidal particles and the method
how to estimate εp for such anisotropic particles. In the following, we summarise concrete
conclusions.

As demonstrated in figure 1, turbulent kinetic energy is more reduced by particles with
larger Stokes number St , (1.1), smaller size D∗, (1.7), or larger aspect ratio χ because
εp gets larger for particles with these properties (figure 3a) when the volume fraction Λ

of particles is kept constant. Incidentally, although we speculate that εp is proportional
to Λ for fixed D∗ because of (1.6), its numerical verification is left for a future study.
Figure 3(b) shows that once we estimate εp, we can estimate A through (1.5). This is the
first main conclusion and it implies that, similarly to the case with spherical particles, the
key quantity is εp.

Next, we have shown that εp can be estimated by (3.3), which depends on St , D∗ and
χ . For given D∗ and χ , εp is larger for larger St because the average relative velocity �u
is larger (figure 4b). Therefore, according to (3.3), εp takes larger values in the shedding
vortices visualised in figure 2(b,d,e) in the case with large St , which leads to larger A
because of (1.5). Equation (3.3) also explains that εp, and therefore A, become larger
for smaller D∗. Here, it is important that the estimation ε

†
p of the dissipation rate, (3.3),

depends on the drag coefficient CD , which is a function of χ , �u and the angle φ between
the major axis of particle and relative velocity. We have numerically estimated the average
of CD (figure 4a) to evaluate εp by (3.3) to show that the obtained value of ε

†
p almost

perfectly coincides with the direct estimation of εp (figure 5a). Therefore, as demonstrated
in figure 5(b), we can use ε

†
p in place of εp in (1.5).

These results lead to the second conclusion that we can predict the attenuation rate
by (1.5) through (3.3). In fact, when St is sufficiently large, particles acquire their
kinetic energy from the largest vortices, and the cascading energy flux is reduced. This
explains the reduction of the averaged energy spectrum E(k) in the wavenumber range
k � kD∗ (figure 7). On the other hand, the shedding vortices augment E(k) for k � kD∗
corresponding to length scales smaller than D∗. Since these behaviours of E(k) for the
anisotropic particles are similar to those for spherical ones (ten Cate et al. 2004; Yeo et al.
2010; Gao et al. 2013; Wang et al. 2014), we conclude that the physical mechanism of the
attenuation is also common.

We emphasise that we neglect effects of rotational motion of particles for εp in (3.3).
This is justified because the relative velocity between fluid and particles due to their
rotation cannot be larger than the swirling velocity ε1/3 D1/3∗ of vortices with particle size
D∗(< L), which is smaller than the translational relative velocity of O(u′) (≈ ε1/3L1/3)
for large-St particles. Although for small-St particles, the rotation of particles can affect
the relative velocity, this cannot be pronounced in the examined turbulence at the moderate
Reynolds number (Rλ ≈ 50). This is explicitly verified in figure 6, which shows that the
attenuation rate is independent of the inertial moment of particles for large-St particles.
We therefore conclude for the examined large-St cases that the reason why more elongated
particles attenuate turbulence more significantly is not their rotational motion, but it is due
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Figure 8. Average of (a) kinetic energy K of the mean flow and (b) integral length L normalised by the values
K0 and L0 for the single-phase flow, respectively, as a function of St . The symbols are the same as in figure 1.

to the fact that εp gets larger because smaller vortices are more likely to be shed from more
elongated particles.
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Appendix A. Verification of the assumptions for (1.4)
For the estimation of the energy flux εc in (1.4), which is required for (1.5), we have
assumed K ≈ K0 and L ≈ L0. To numerically verify these assumptions, we show in
figure 8(a) the average kinetic energy K of the mean flow and in figure 8(b) the integral
length normalised by those (K0 and L0) in the single-phase flow, respectively. We can
confirm that K/K0 and L/L0 are approximately unity regardless of the particle properties.
Although Chiarini et al. (2024) showed that the mean velocity field can be significantly
modulated in the case with a large volume fraction of particles, this is not the case in
the dilute regime investigated in the present study. It is also worth mentioning that heavy
particles with St � 1 can be swept out by the largest-scale stationary vortices (Oka & Goto
2021). Therefore, if we consider a denser case, particle clustering can affect the statistics
of turbulence modulation.

REFERENCES

ARDEKANI, M.N. & BRANDT, L. 2019 Turbulence modulation in channel flow of finite-size spheroidal
particles. J. Fluid Mech. 859, 887–901.

BALACHANDAR, S. & EATON, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1),
111–133.

BALACHANDAR, S., PENG, C. & WANG, L.-P. 2024 Turbulence modulation by suspended finite-sized
particles: toward physics-based multiphase subgrid modeling. Phys. Rev. Fluids 9 (4), 044304.

BELLANI, G., BYRON, M.L., COLLIGNON, A.G., MEYER, C.R. & VARIANO, E.A. 2012 Shape effects on
turbulent modulation by large nearly neutrally buoyant particles. J. Fluid Mech. 712, 41–60.

BORDOLOI, A.D. & VARIANO, E. 2017 Rotational kinematics of large cylindrical particles in turbulence.
J. Fluid Mech. 815, 199–222.

1008 A6-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

13
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.137
https://doi.org/10.1017/jfm.2025.137


H. Awai, Y. Motoori and S. Goto

BRANDT, L. & COLETTI, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid
Mech. 54 (1), 159–189.

CANNON, I., OLIVIERI, S. & ROSTI, M.E. 2024 Spheres and fibers in turbulent flows at various Reynolds
numbers. Phys. Rev. Fluids 9 (6), 064301.

CAPONE, A., ROMANO, G.P. & SOLDATI, A. 2015 Experimental investigation on interactions among fluid
and rod-like particles in a turbulent pipe jet by means of particle image velocimetry. Exp. Fluids 56 (1),
1–15.

CHIARINI, A., CANNON, I. & ROSTI, M.E. 2024 Anisotropic mean flow enhancement and anomalous
transport of finite-size spherical particles in turbulent flows. Phys. Rev. Lett. 132 (5), 054005.

ELGHOBASHI, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309–329.
ESHGHINEJADFARD, A., HOSSEINI, S.A. & THÉVENIN, D. 2017 Fully-resolved prolate spheroids in turbulent

channel flows: a lattice Boltzmann study. AIP Adv. 7 (9), 095007.
FUJIKI, Y., AWAI, H., MOTOORI, Y. & GOTO, S. 2024 Attraction of neutrally buoyant deformable particles

towards a vortex. Phys. Rev. Fluids 9 (1), 014301.
GAO, H., LI, H. & WANG, L.-P. 2013 Lattice Boltzmann simulation of turbulent flow laden with finite-size

particles. Comput. Maths Applics. 65 (2), 194–210.
GORE, R.A. & CROWE, C.T. 1989 Effect of particle size on modulating turbulent intensity. Intl J. Multiphase

Flow 15 (2), 279–285.
GOTO, S., SAITO, Y. & KAWAHARA, G. 2017 Hierarchy of antiparallel vortex tubes in spatially periodic

turbulence at high Reynolds numbers. Phys. Rev. Fluids 2 (6), 064603.
GOTO, S. & VASSILICOS, J.C. 2009 The dissipation rate coefficient of turbulence is not universal and depends

on the internal stagnation point structure. Phys. Fluids 21 (3), 035104.
HOMANN, H. & BEC, J. 2010 Finite-size effects in the dynamics of neutrally buoyant particles in turbulent

flow. J. Fluid Mech. 651, 81–91.
JAYARAM, R., JIE, Y., ZHAO, L. & ANDERSSON, H.I. 2023 Dynamics of inertial spheroids in a decaying

Taylor–Green vortex flow. Phys. Fluids 35 (3), 033326.
LEVY, Y. & LOCKWOOD, F.C. 1981 Velocity measurements in a particle laden turbulent free jet. Combust.

Flame 40, 333–339.
LJUS, C., JOHANSSON, B. & ALMSTEDT, A.-E. 2002 Turbulence modification by particles in a horizontal

pipe flow. Intl J. Multiphase Flow 28 (7), 1075–1090.
LUCCI, F., FERRANTE, A. & ELGHOBASHI, S. 2010 Modulation of isotropic turbulence by particles of taylor

length-scale size. J. Fluid Mech. 650, 5–55.
LUCCI, F., FERRANTE, A. & ELGHOBASHI, S. 2011 Is Stokes number an appropriate indicator for turbulence

modulation by particles of Taylor-length-scale size? Phys. Fluids 23 (2), 025101.
MANDØ, M. 2009 Turbulence modulation by non-spherical particles. PhD thesis, Department of Energy

Technology, Aalborg University, Aalborg.
MORICHE, M., HETTMANN, D., GARCÍA-VILLALBA, M. & UHLMANN, M. 2023 On the clustering of low-

aspect-ratio oblate spheroids settling in ambient fluid. J. Fluid Mech. 963, A1.
MORICHE, M., UHLMANN, M. & DUŠEK, J. 2021 A single oblate spheroid settling in unbounded ambient

fluid: a benchmark for simulations in steady and unsteady wake regimes. Intl J. Multiphase Flow 136,
103519.

OKA, S. & GOTO, S. 2021 Generalized sweep-stick mechanism of inertial-particle clustering in turbulence.
Phys. Rev. Fluids 6 (4), 044605.

OKA, S. & GOTO, S. 2022 Attenuation of turbulence in a periodic cube by finite-size spherical solid particles.
J. Fluid Mech. 949, A45.

OLIVIERI, S., CANNON, I. & ROSTI, M.E. 2022 The effect of particle anisotropy on the modulation of
turbulent flows. J. Fluid Mech. 950, R2.

PASCHKEWITZ, J., DUBIEF, Y., DIMITROPOULOS, C.D., SHAQFEH, E.S. & MOIN, P. 2004 Numerical
simulation of turbulent drag reduction using rigid fibres. J. Fluid Mech. 518, 281–317.

PENG, C., SUN, Q. & WANG, L.-P. 2023 Parameterization of turbulence modulation by finite-size solid
particles in forced homogeneous isotropic turbulence. J. Fluid Mech. 963, A6.

SANJEEVI, S.K., DIETIKER, J.F. & PADDING, J.T. 2022 Accurate hydrodynamic force and torque correlations
for prolate spheroids from Stokes regime to high Reynolds numbers. Chem. Engng J 444, 136335.

SCHNEIDERS, L., FRÖHLICH, K., MEINKE, M. & SCHRÖDER, W. 2019 The decay of isotropic turbulence
carrying non-spherical finite-size particles. J. Fluid Mech. 875, 520–542.

SCHNEIDERS, L., MEINKE, M. & SCHRÖDER, W. 2017 Direct particle-fluid simulation of Kolmogorov-
length-scale size particles in decaying isotropic turbulence. J. Fluid Mech. 819, 188–227.

SHAPIRO, M. & GOLDENBERG, M. 1993 Deposition of glass fiber particles from turbulent air flow in a pipe.
J. Aerosol Sci. 24 (1), 65–87.

1008 A6-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

13
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.137


Journal of Fluid Mechanics

SU, W., ZHANG, H., FU, S., XIANG, X. & WANG, L. 2023 Particle-resolved direct numerical simulation of
particleladen turbulence modulation with high stokes number monodisperse spheres. Phys. Fluids 35 (10),
105120.

TANAKA, T. & EATON, J.K. 2008 Classification of turbulence modification by dispersed spheres using a novel
dimensionless number. Phys. Rev. Lett. 101 (11), 1–4.

TAYLOR, G.I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151 (873), 421–444.
TEN CATE, A., DERKSEN, J.J., PORTELA, L.M. & VAN DEN AKKER, H.E.A. 2004 Fully resolved simulations

of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233–271.
TSUJI, Y. & MORIKAWA, Y. 1982 LDV measurements of an air-solid two-phase flow in a horizontal pipe.

J. Fluid Mech. 120, 385–409.
UHLMANN, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows.

J. Comput. Phys. 209 (2), 448–476.
VOTH, G.A. & SOLDATI, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49 (1), 249–276.
WANG, L.-P., AYALA, O., GAO, H., ANDERSEN, C. & MATHEWS, K.L. 2014 Study of forced turbulence and

its modulation by finite-size solid particles using the lattice Boltzmann approach. Comput. Maths Applics.
67 (2), 363–380.

WANG, Z., XU, C.-X. & ZHAO, L. 2021 Turbulence modulations and drag reduction by inertialess spheroids
in turbulent channel flow. Phys. Fluids 33 (12), 123313.

YEO, K., DONG, S., CLIMENT, E. & MAXEY, M.R. 2010 Modulation of homogeneous turbulence seeded
with finite size bubbles or particles. Intl J. Multiphase Flow 36 (3), 221–233.

ZHAO, F., GEORGE, W. & VAN WACHEM, B.G. 2015 Four-way coupled simulations of small particles in
turbulent channel flow: the effects of particle shape and Stokes number. Phys. Fluids 27 (8), 083301.

1008 A6-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

13
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.137

	1. Introduction
	2. Direct numerical simulation
	2.1. Numerical method
	2.2. Particle parameters

	3. Results
	3.1. Attenuation of turbulent kinetic energy
	3.2. Estimation of energy dissipation rate due to particles
	3.3. Effects of the rotation of particles
	3.4. Modulation of energy spectrum

	4. Conclusions
	References

