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Abstract

In this paper we develop a Kantorovich-like theory for Chebyshev’s method, a well-known iterative
method for solving nonlinear equations in Banach spaces. We improve the results obtained previously by
considering Chebyshev’s method as an element of a family of iterative processes.
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1. Introduction

Chebyshev’s method is a well-known iterative process used to solve nonlinear
equations. It is named after the famous Russian mathematician Pafnuty L. Chebyshev
(1821–1894), who introduced an algorithmic approach for solving algebraic equations
y = f (x). This process was based on Newton’s method and on the expansion as a
power series of the inverse of the function f . Chebyshev presented his method in
a paper entitled ‘The calculation of the roots of an equation’, written when he was a
student in 1840–1841. He was awarded a silver medal by the Department of Physics
and Mathematics of the University of Moscow, where he was studying [22].

For real or complex-valued functions Chebyshev’s method can be written as

tn+1 = tn −
(
1 +

1
2

L f (tn)
) f (tn)

f ′(tn)
, n = 0, 1, 2, . . . , (1.1)

where

L f (t) =
f (t) f ′′(t)

f ′(t)2
. (1.2)

The method (1.1) goes under various names [22]. For instance, it is called Euler’s
method in [6, 17, 22], the method of tangent parabolas in [2], the super-Newton method
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in [18], the Euler–Chebyshev method in [17, 22], Schröder’s method in [12], and the
inverse quadratic interpolation method in [8, 11]. However, in the Russian literature
the method is attributed to Chebyshev and this is nowadays accepted by many authors
(see [1, 4, 7, 21], for instance).

Chebyshev’s method can be generalised for solving nonlinear systems of equations
or, more generally, for solving operator equations defined in Banach spaces [1, 3, 4, 9,
13, 19]. In this framework, let X and Y be two Banach spaces and let F : Ω ⊆ X→ Y be
a nonlinear twice Fréchet differentiable operator defined in an open convex domain Ω.
Then Chebyshev’s method for solving the operator equation

F(x) = 0 (1.3)

can be written in the form

xn+1 = xn − (I + 1
2 LF(xn))F′(xn)−1F(xn), n = 0, 1, 2, . . . , (1.4)

where I is the identity operator on X and LF(x) is the linear operator formally defined
as follows:

LF(x) = F′(x)−1F′′(x)F′(x)−1F(x).

This operator and its relationship with Newton’s method were studied in [14]. In [13]
the method is studied as a part of the family of iterative processes

xn+1 = xn − (I + 1
2 LF(xn)(I − αLF(xn))−1)F′(xn)−1F(xn), n = 0, 1, 2, . . . ,

which includes, together with Chebyshev’s method (α = 0) other famous iterative
methods such as the Halley (α = 1/2) or super-Halley (α = 1). In the latter paper a
unifying theory for methods of this kind is developed; however, there is a serious
omission. Only the quadratic order of convergence is guaranteed for the methods
with 0 ≤ α < 1/2 although it is well known that Chebyshev’s method is cubically
convergent [22].

In this paper we particularise our study to Chebyshev’s method (1.4) in Banach
spaces, and we provide a semilocal convergence theorem that guarantees the third
order of convergence. Thus, we improve the result given in [13]. In recent papers
(see [4, 5, 7, 15, 20]) we can find theorems on the convergence of Chebyshev’s
method that differ both in their assumptions and their results. In this paper we state a
Kantorovich-like theorem for Chebyshev’s method along the same lines followed by
Zheng and Robbie [24] for Halley’s method.

2. Some preliminary results

In the general framework of Kantorovich theory [16], to prove the semilocal
convergence of a third-order iterative method in Banach space (see [13, 23, 24], for
instance), we assume throughout this paper the following conditions.

(i) There exists a point x0 ∈Ω where the linear operator Γ0 = F′(x0)−1 is defined.
(ii) ‖Γ0(F′′(x) − F′′(y))‖ ≤ k‖x − y‖, x, y ∈Ω, k > 0.
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(iii) ‖Γ0F(x0)‖ ≤ a, ‖Γ0F′′(x0)‖ ≤ b.
(iv) The equation

p(t) =
k
6

t3 +
b
2

t2 − t + a = 0 (2.1)

has one negative root and two positive roots r1 and r2 (r1 ≤ r2).
(v) S = {x : ‖x − x0‖ ≤ r1} ⊆Ω.

R 2.1. The following conditions are equivalent to condition (iv). Both of them
can be deduced just by assuming p′(ρ) ≤ 0, where ρ is the local minimum of the
polynomial p(t) defined in (2.1).

(1) a ≤ (b2 + 4k − b
√

b2 + 2k)/(3k(b +
√

b2 + 2k)).
(2) 9k2a2 + 18abk + 6ab3 ≤ 3b2 + 8k.

R 2.2. Notice that the polynomial p(t) defined in (2.1) has in addition a negative
root. We denote it as −r0 with r0 > 0.

L 2.3. Let us define the scalar sequence {tn} by

t0 = 0, tn+1 = H(tn) = tn −
(
1 +

1
2

Lp(tn)
) p(tn)

p′(tn)
, n ≥ 0, (2.2)

where p(t) is the polynomial defined in (2.1). Then {tn} is monotonic increasing and
convergent to r1, the smallest positive zero of p(t).

P. As p(t0) = a > 0, we know that t0 < r1. By the mean value theorem,

t1 − r1 = H′(s0)(t0 − r1),

for some s0 ∈ (t0, r1). Note that

H′(t) =
Lp′(t)2

2(1 − Lp′(t))2
(1 − Lp(t))2(3 − Lp′(t)),

where Lp(t) is defined in (1.2) and Lp′(t) is defined as

Lp′(t) =
p′(t)p′′′(t)

p′′(t)2
.

Taking into account that p(t) is positive, decreasing and convex on the interval [0, r1],
and that H′(t) ≥ 0 on [0, r1], it follows that t1 ≤ r1.

On the other hand,

t1 − t0 = −
p(t0)
p′(t0)

(
1 +

1
2

Lp(t0)
)
≥ 0.

Then we obtain tn ≤ r1 and tn−1 ≥ tn for all n ≥ 1 by mathematical induction, since
(tn−1, r1) ⊂ (t0, r1).

So the sequence (2.2) is convergent to r1. �
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L 2.4. Let ρ be the only positive root of p′(t) = 0, where p(t) is the polynomial
defined in (2.1). Under the conditions (i)–(v) previously defined, if ‖x − x0‖ ≤ ρ, then
the inverse F′(x)−1 exists and

‖F′(x)−1F′(x0)‖ ≤ −
1

p′(‖x − x0‖)
,

‖F′(x0)−1F′′(x)‖ ≤ p′′(‖x − x0‖).

P. Note that

p′(t) =
k
2

t2 + bt − 1

has two real roots given by

t+ =
−b +

√
b2 − 2k
k

, t− =
−b −

√
b2 − 2k
k

.

Then, when ‖x − x0‖ < t+, it follows that

p′(‖x − x0‖) =
k
2
‖x − x0‖

2 + b‖x − x0‖ − 1 < 0.

Thus, under the conditions of the theorem,∥∥∥∥∥ f ′(x0)−1 f ′′(x0)(x − x0) +

∫ 1

0
f ′(x0)−1( f ′′(x0 + t(x − x0)) − f ′′(x0)) dt(x − x0)

∥∥∥∥∥
≤ b‖x − x0‖ +

k
2
‖x − x0‖

2 < 1.

Considering the mean value theorem, it follows that

f ′(x) = f ′(x0) +

∫ 1

0
f ′′(x0 + t(x − x0)) dt(x − x0),

where

f ′(x0)−1 f ′(x) = I + f ′(x0)−1 f ′′(x0)(x − x0)

+

∫ 1

0
f ′(x0)−1( f ′′(x0 + t(x − x0)) − f ′′(x0)) dt(x − x0).

It follows that, by Neumann’s lemma, the inverse of f ′(x0)−1 f ′(x) exists and equals
f ′(x)−1 f ′(x0). Then

‖ f ′(x)−1 f ′(x0)‖ ≤
1

1 − b‖x − x0‖ −
k
2‖x − x0‖

2
=

1
p′(t)

and

‖ f ′(x0)−1 f ′′(x)‖ ≤ ‖ f ′(x0)−1 f ′′(x0)‖ + ‖ f ′(x0)−1[ f ′′(x0) − f ′′(x)]‖

≤ b + k‖x − x0‖ = p′′(‖x − x0‖),

and the proof of the lemma is complete. �
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L 2.5. With the same notation and assumptions as above, we can write F(xn+1)
in the following way:

F(xn+1) =
1
8

F′′(xn)y2
n +

1
2

F′′(xn)ΓnF(xn)yn +

∫ xn+1

xn

(F′′(x) − F′′(xn))(xn+1 − x) dx,

where Γn = F′(xn)−1 and yn = LF(xn)ΓnF(xn).

P. By Taylor’s formula, and taking into account condition (2), we deduce that

F(xn+1) = F(xn) + F′(xn)(xn+1 − xn) +
1
2

F′′(xn)(xn+1 − xn)2

+

∫ xn+1

xn

(F′′(x) − F′′(xn))(xn+1 − x) dx

= −
1
2

F′′(xn)ΓnF(xn)ΓnF(xn) +
1
2

F′′(xn)(ΓnF(xn))2

+
1
8

F′′(xn)y2
n +

1
2

F′′(xn)ΓnF(xn)yn

+

∫ xn+1

xn

(F′′(x) − F′′(xn))(xn+1 − x) dx,

and the result holds. �

3. Main results

We are now in a position to prove the following Kantorovich-type theorems for
Chebyshev’s method (1.4).

T 3.1. Let us assume that conditions (i)–(v) introduced in the previous section
hold. Then the sequence {xn} defined by Chebyshev’s method (1.4) is well defined,
remains in S and converges to a solution x∗ of (1.3). In addition, the following error
estimation is satisfied:

‖x∗ − xn‖ ≤ r1 − tn, (3.1)

where {tn} is the sequence defined in (2.2), that is, Chebyshev’s method applied to the
polynomial p(t) defined in (2.1), and r1 is the smallest positive zero of p(t).

P. Following [24], we have to prove that the following conditions are true for all
nonnegative integers n:

(1) xn ∈ S = {x : ‖x − x0‖ ≤ r1};
(2) the inverse Γn = F′(xn)−1 exists;
(3) ‖Γ0F(xn)‖ ≤ p(tn);
(4) ‖ΓnF′(x0)‖ ≤ −1/p(tn);
(5) ‖Γ0F′′(xn)‖ ≤ p′′(tn);
(6) ‖xn+1 − xn‖ ≤ tn+1 − tn.
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Firstly, notice that (6) is an immediate consequence of (1)–(5). Next, (i)–(v)
guarantee that (1)–(5) are true for n = 0. Let us assume now that (1)–(5) are true
for n ≤ k. Then (6) also holds and

‖xk+1 − x0‖ ≤ tk+1 − t0 < r1 ≤ ρ.

Consequently xk+1 ∈ S . From Lemma 2.4, Γk+1 = F′(xk+1)−1 also exists and (4) and (5)
hold for n = k + 1.

Now, from Lemma 2.5,

‖Γ0F(xk+1)‖ =
1
8
‖Γ0F′′(xk)y2

k‖ +
1
2
‖Γ0F′′(xk)ΓkF(xk)yk‖

+

∥∥∥∥∥∫ 1

0
Γ0(F′′(xk + u(xn+1 − xk)) − F′′(xk))(1 − u) du(xk+1 − xk)

∥∥∥∥∥
≤

1
8

Lp(tk)3 p(tk) +
1
2

Lp(tk)2 p(tk) +
k
6

(tk+1 − tk)3 = p(tk+1).

Hence (3) is also true for n = k + 1. Thus (1)–(5) hold for all n ≥ 0 and, as a
consequence, (6) holds too for all n ≥ 0. As {tn} is a convergent sequence, (6) implies
that {xn} is also convergent. Let us denote its limit by x∗. Letting n→∞ in (3), we
deduce that F(x∗) = 0, and then x∗ is a solution of (1.3). Finally, the error estimation
can be deduced by recursively applying (6) so

‖xn+ j − xn‖ ≤ tn+ j − tn, j ≥ 1,

and letting j→∞. �

Kantorovich’s theory [16] can be used not only to show the convergence of
an iterative method, but simultaneously as an existence and uniqueness theory for
nonlinear equations. In this regard, we can state the following result.

T 3.2. Let us assume that conditions (i)–(v) introduced in the previous section
hold. Then (1.3) has a solution x∗ that lies in the closed ball B1 = {x ∈ X : ‖x − x0‖r1} ⊆

Ω and is unique in the set B2 = {x ∈ X : ‖x − x0‖r2} ∩Ω, where r1 and r2 are the
positive roots of the polynomial p(t) defined in (2.1).

P. The fact that x∗ ∈ B1 follows directly by taking n = 0 in (3.1). To show the
uniqueness, we assume that there exists another solution y∗ of (1.3) in B(x0, r2).
Following [4, 10],

0 = F(y∗) − F(x∗) =

∫ 1

0
F′(x∗ + t(y∗ − x∗)) dt(y∗ − x∗).
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We prove that
∫ 1

0
F′(x∗ + t(y∗ − x∗)) dt is invertible. Notice that

I − Γ0

∫ 1

0
F′(x∗ + t(y∗ − x∗)) dt

= −Γ0

∫ 1

0

∫ x∗+t(y∗−x∗)

x0

F′′(z) dz dt

= −Γ0

∫ 1

0

∫ x∗+t(y∗−x∗)

x0

(F′′(x0) + (F′′(z) − F′′(x0))) dz dt,

and then ∥∥∥∥∥I − Γ0

∫ 1

0
F′(x∗ + t(y∗ − x∗)) dt

∥∥∥∥∥ ≤ k
6

r2
2 +

( k
6

r1 +
b
2

)
(r2 + r1).

We need to prove that
k
6

r2
2 +

( k
6

r1 +
b
2

)
(r2 + r1) < 1. (3.2)

To do this, let us define the polynomial

q(r) =
k
6

r2 +

( k
6

r1 +
b
2

)
r +

( k
6

r2
1 +

b
2

r1 − 1
)
.

Observe that q(0) < 0. Now, by using Cardano’s formulas we have r1 + r2 = r0 −

(3b/k) and r1r2 = 6a/kr0 where −r0, r1 and r2 are the roots of (2.1) Then q(r2) =

−p(−r0)/r0 = 0 and (3.2) is fulfilled. Thus the proof is complete. �
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[21] M. S. Petković, L. D. Petković and Y. D. Herceg, ‘On Schröder’s families of root-finding methods’,

J. Comput. Appl. Math. 233 (2010), 1755–1762.
[22] J. F. Traub, Iterative Methods for the Solution of Equations (Prentice Hall, Englewood Cliffs, NJ,

1964).
[23] T. Yamamoto, ‘On the method of tangent hyperbolas in Banach spaces’, J. Comput. Appl. Math.

21 (1988), 75–86.
[24] S. Zheng and D. Robbie, ‘A note on the convergence of Halley’s method for solving operator

equations’, J. Aust. Math. Soc. Ser. B 37 (1995), 16–25.

MANUEL A. DILONÉ, Dpto. de Investigación del ISFODOSU,
Santo Domingo, Dominican Republic
e-mail: dilonespinal@hotmail.es

MARTÍN GARCÍA-OLIVO, Politécnico Militar San Miguel Arcángel,
Santo Domingo, Dominican Republic
e-mail: martin1matdr@hotmail.com

JOSÉ M. GUTIÉRREZ, Dpto. de Matemáticas y Computación,
Universidad de La Rioja, Logroño, Spain
e-mail: jmguti@unirioja.es

https://doi.org/10.1017/S0004972712000743 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000743

