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Abstract
We review the progress on the applications of the vortex-surface field (VSF). The VSF isosurface is a vortex
surface consisting of vortex lines. Based on the generalized Helmholtz theorem, the VSF isosurfaces of the same
threshold at different times have strong coherence. As a general flow diagnostic tool for studying vortex evolution,
the numerical VSF solution is first constructed in a given flow field by solving a pseudo-transport equation driven
by the instantaneous frozen vorticity, and then the VSF evolution is calculated by the two-time method. From the
database of numerical simulations or experiments, the VSF can elucidate mechanisms in the flows with essential
vortex dynamics, such as isotropic turbulence, wall flow transition, flow past a flapping plate and turbulence–flame
interaction. The characterization of VSFs reveals the correlation between robust statistical features and the critical
quantities needed to be predicted in engineering applications, such as the friction coefficient in transition, thrust in
bio-propulsion and growth rate in interface instability. Since the VSF evolution captures the essential Lagrangian-
based dynamics of vortical flows, it inspires novel numerical methods on cutting-edge hardware, e.g. graphic and
quantum processors.

Impact Statement
Vortex dynamics plays a crucial role in the fundamental problems of turbulence and transition and in the
engineering applications of high-speed flight, combustion and bio-inspired robotics. On the other hand,
there is no consensus on the vortex identification, and there is a lack of a general framework to convert
the qualitative observation of coherent structures into predictive models. The vortex-surface field serves as
a general flow diagnostic tool. It paves an avenue to investigate the mechanism of energy cascade and the
evolution of coherent structures in turbulence and transition from the Lagrangian viewpoint, and inspires a
series of simple models and novel simulation methods in engineering applications.
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1. Introduction

We review the progress on the theory and applications of the vortex-surface field (VSF). The VSF
serves as a general flow diagnostic tool and inspires Lagrangian-based models and simulation methods.
In particular, the VSF can be used to tackle the critical issues of vortex dynamics in turbulence and
transition.

The fluid motion is governed by the Navier–Stokes (NS) equations. The high nonlinearity in the
equations causes the turbulent flow to manifest both order and randomness, e.g. large-scale coherent
structures (Adrian, 2007; Lee & Wu, 2008; Robinson, 1991) in shear turbulence, and small-scale velocity
fluctuations satisfying the Gaussian distribution remote from the wall (Pope, 2000). The co-existence
of ordered and random natures makes the turbulence problem notoriously difficult.

The studies on turbulence can be roughly classified into two schools based on structures and statis-
tics. The former one prefers analysis from certain equations, such as the dynamic system (Holmes,
Lumley, Berkooz, & Rowley, 2012), vortex model/dynamics (Pullin & Saffman, 1998) and topologi-
cal fluid dynamics (Moffatt, 2021); the latter one prefers statistical analysis from stochastic processes,
such as non-equilibrium statistical physics (Frisch, 1995; He, Jin, & Yang, 2017; Sreenivasan, 1999).
Both turbulence schools have achieved remarkable progresses, but meanwhile they have obvious weak-
nesses. The structure-based studies can provide qualitative and quantitative descriptions (Lozano-Durán
& Jiménez, 2014; Robinson, 1991) but lack a universal approach to developing predictive models. The
statistical theory reveals statistical features of small-scale turbulence but lacks the information of large-
scale motions in practical flows. Therefore, the present turbulence theory can only deal with relatively
ideal cases of turbulence, without a theoretical framework fusing structural and statistical studies.

The transition is another classical challenging problem in fluid dynamics (Eckhardt, Schneider,
Hof, & Westerweel, 2007; Mullin, 2011; Reynolds, 1883), and it is also a critical issue in aerospace
applications. In high-speed flight, the flow on the aerospace vehicle has a rapid transition from the
laminar to turbulent state (Fedorov, 2011; Zhong & Wang, 2012). The emergence of coherent structures
often accompanies the surge of the skin friction and aerodynamic heating (Lee & Jiang, 2019), causing
bumps and ablation on aero-vehicles (Leyva, 2017). In such complex transitional processes, it is crucial
to effectively identify the coherent structures and their evolution, and accurately characterize their impact
on the transport of momentum and energy. On the other hand, the direct measurement of aerodynamic
forces and heating becomes extremely difficult in the experiments of supersonic/hypersonic transition
in wall-bounded flows (Hakkinen, 2004; Schetz, 2010; Zhu, Yuan, Zhang, & Lee, 2013).

A striking feature of turbulence is the existence of multi-scale vortical structures with strong nonlinear
interactions (Davidson, 2004; Pullin & Saffman, 1998). These structures, occupying a small fraction of
volume, can have an impact on the momentum transport and generation of the turbulent kinetic energy,
so they are described as the sinews of turbulent motion (Moffatt, Kida, & Ohkitani, 1994). To reduce the
complexity on the mathematical treatment of the NS equations, we can take the curl of the velocity and
then obtain the vorticity and its transport equation. The vorticity equation removes the non-locality due
to the pressure term in the momentum equation, so the vorticity tends to concentrate in local regions
and forms organized structures (Jimenez, Wray, Saffman, & Rogallo, 1993; She, Jackson, & Orszag,
1990). Based on the attached eddy hypothesis (Townsend, 1976), the statistically self-similar coherent
structures inspire the structure-based models in wall turbulence (Chung & Pullin, 2009; Liu & Zheng,
2021; Marusic & Monty, 2019).

The global vorticity structures are integrated from the vorticity field, e.g. its integral line and surface
are vortex line and surface, respectively. The vortex surface (also called vorticity surface Wu, Ma,
& Zhou, 2015a) is tangent to the vorticity everywhere, and it generally has tube/sheet-like shapes.
The importance of the vorticity is rooted in two fundamental theorems in fluid mechanics. First, the
Helmholtz vorticity theorem (Helmholtz, 1858) and its extension (Hao, Xiong, & Yang, 2019) provide
an elegant description of the motion of vortex surfaces. The theorem pointed out that the vortex surface
is a material surface, as frozen in the velocity, in an inviscid flow. By contrast, the vortex surface can
have topological changes (Kida & Takaoka, 1994; Yao & Hussain, 2022) in a viscous flow, so convoluted
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multi-scale vortical structures can be generated in flows at a large Reynolds number (Re). Second, the
vorticity can be transformed into the velocity via the Biot–Savart theorem, and thus the global geometry
and topology of vortex surfaces reflect evolutionary features of the velocity.

However, there is no consensus on the best method to identify vortical structures. There is even no
clear mathematical definition for ‘vortex’. Most studies described the vortex as a bundle of vortex lines
(Jimenez et al., 1993; She et al., 1990), or adopted the vortex criteria based on the Eulerian local velocity
(Chong, Perry, & Cantwell, 1990; Hunt, Wray, & Moin, 1988; Jeong & Hussain, 1995; Liu, Gao, Tian,
& Dong, 2018; Zhou, Adrian, Balachandar, & Kendall, 1999). The vortex criteria are capable of identi-
fying the ‘vortex core’ – a region with strong local rotational motion. On the other hand, the evolution of
such identified structures lacks a simple evolution equation, so one may only qualitatively describe the
identified result and cannot develop a predictive model based on the identified structures. Additionally,
there is no objective standard to choose the vortex criterion and the isocontouring threshold, so such
vortex visualization is prone to subjectivity (Epps, 2017; Wu, 2018).

For comparison, the vortex surface in a Lagrangian framework contains the flow history of vortex
dynamics, but its study was restricted to conceptional discussions due to the difficulty in the construction
of vortex surfaces and the breakdown of the Helmholtz theorem in viscous flows. Tracking the vortex
surface was believed to be impossible under the violation of the Helmholtz theorem, which is one of
the major obstacles to understanding the timewise evolution of vortical structures in turbulence and
transition.

The development of the VSF (Yang & Pullin, 2010) reshapes the structure identification and charac-
terization based on the vorticity. The VSF is a three-dimensional (3-D) scalar field, whose isosurface
is a vortex surface consisting of vortex lines. It is straightforward to extend the idea of VSF to identify
other integral surfaces, e.g. the magnetic surface (Hao & Yang, 2021) and stream surface (Katsanoulis,
Kogelbauer, Kaundinya, Ault, & Haller, 2023), in various vector fields in physics. The VSF method
builds a quantitative framework to study the Lagrangian vortex dynamics, which extends the Helmholtz
theorem to viscous flows and has been applied to various flow applications. Being distinguished from
the Eulerian vortex criteria, which only consider the instantaneous local velocity, the VSF contains the
history of vortex stretching and twisting in the view of Lagrangian-like tracking. This overcomes the
weakness on the lack of time coherence and causality between the structures identified at different times
in the existing Eulerian methods. In addition, the recently developed identification methods of flow
structures also stressed the Lagrangian tracking (Haller, 2015; Zhu & Xi, 2019), non-locality (Wang
& Peters, 2006) and objectivity (Haller, 2005).

The VSF serves not only as a post-processing flow diagnostic tool, but also as a framework to
inspire novel flow simulation methods. The representation of Clebsch (1859) links the VSFs and
the velocity–vorticity field. Pioneered by Kuznetsov and Mikhailov (1980), Chern, Knöppel, Pinkall,
and Schröder (2017); Chern, Knöppel, Pinkall, Schröder, and Weißmann (2016) proposed the spherical
Clebsch map that overcomes the difficulty of the classical Clebsch map to represent the velocity field
with non-zero helicity, and meanwhile maintain the capability to reconstruct the VSF. Then, several
numerical simulation methods based on the spherical Clebsch map have been developed in computer
graphics. Chern et al. (2016) applied the Clebsch map to smoke simulation by solving the two-component
Schrödinger equation (Madelung, 1927; Sorokin, 2001). Then, Yang et al. (2021) extended the Clebsch
method with the gauge method (Saye, 2016) to simulate free-surface flows. Note that these methods
for fast and stable computations have notable artificial viscosities, so they have not been applied to the
computational fluid dynamics (CFD).

The outline of this paper is as follows. In § 2, we describe the theoretical framework and numer-
ical methods for the VSF. In § 3, we show that the VSF visualizations facilitate the elucidation of
critical mechanisms in turbulence, transition and other flow applications. In §§ 4 and 5, we review
VSF-based models for predicting aerodynamic forces and mixing rates, and VSF-inspired meth-
ods for simulating vortical flows, respectively. Summary and outlook of the VSF study are given
in § 6.
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2. The VSF method

The VSF provides a Lagrangian-based framework for the identification, characterization and modelling
of flow structures. From the theoretical perspective, the global geometry of the vorticity, as a family
of integral surfaces of the vorticity, is represented by the VSF. By introducing the virtual circulation-
preserving velocity (Hao et al., 2019), the theorems of Helmholtz (1858) and Ertel (1942) can be
conceptually extended to viscous flows, so that the VSF evolution equation can be expressed in a
Lagrangian-like conservation form. Thus the VSF isosurfaces of the same threshold at different times
have strong coherence for tracking vortex surfaces.

2.1. Flow governing equations

In a 3-D fluid flow, the Eulerian velocity u is governed by the NS equations, including the continuum
equation

𝜕𝜌

𝜕t
+ ∇ · (𝜌u) = 0, (2.1)

the momentum equation
𝜕u
𝜕t

+ (u · ∇)u = ∇𝛱 + F, (2.2)

the energy equation and the equation of state. Here, 𝛱 = −p/𝜌 + 𝛯 denotes a generalized potential with
the pressure p, the density 𝜌 and the potential 𝛯 of conservative body forces, and

F =
1
𝜌
(∇ · 𝝉) + p∇

(
1
𝜌

)
+ f (2.3)

denotes a generalized non-ideal force term, where 𝝉 is the viscous stress tensor and f the non-
conservative external body force per unit mass.

An ideal flow, which is governed by the Euler equations, has F = 0. In a non-ideal flow, the three
terms on the right-hand side of (2.3) denote the viscous term in most real flows, the baroclinic term,
e.g. in compressible flows and combustion, and the non-conservative body force term, e.g. the Lorentz
force in magnetohydrodynamic (MHD) flows, respectively.

Taking the curl of (2.2) yields the transport equation

𝜕𝝎

𝜕t
− ∇ × (u × 𝝎) = ∇ × F, (2.4)

for the vorticity 𝝎 ≡ ∇×u. The Helmholtz theorem illustrates a frozen-in nature of 𝝎 in ideal flows with
F = 0, i.e. we can track a vortex surface convected by u. However, the Helmholtz theorem breaks down
in non-ideal flows with ∇ × F ≠ 0 (Truesdell, 1954). As sketched in figure 1(a), if we track a surface
which is a vortex surface at the initial time using u, the surface is no longer a vortex surface at later times.
This is a major obstacle to developing a Lagrangian formulation of the vortex dynamics in real flows.

2.2. The VSF equation and exact solutions

The VSF 𝜙v is a 3-D globally smooth scalar field. In the flow visualization using the VSF or other vortex
criteria, the three-component vorticity is converted into a scalar. In this way, an isosurface of such a
scalar with an appropriate isocontouring value can represent typical vortical structures, which suggests
a dimension reduction of flow information.

In the definition of the VSF, the vorticity is tangent at every point (except for vorticity nulls) on an
isosurface of 𝜙v. Some typical VSF isosurfaces, e.g. vortex surfaces, are shown in figure 2. Thus the
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Physical

velocity
Virtual

velocity

Initial vortex surface

(a) (b)

Figure 1. Sketch of the surface evolution convected by the (a) physical velocity and (b) virtual
circulation-preserving velocity from an initial time to a later time in a viscous flow. The initial vortex
tube consists of vortex lines. The vortex-surface tracking breaks down in (a) whereas it holds in (b).

(a) (b) (c)

Figure 2. Isosurfaces of the exact VSF: (a) vortex column in the integrable ABC flow, (b) vortex ring
and (c) knotted vortex tube. Some vortex lines are integrated from points on the isosurfaces.

VSF satisfies the constraint

𝝎 · ∇𝜙v = 0. (2.5)

Note that it is non-trivial to construct or evolve the VSF under this constraint both theoretically and
numerically.

From the theorem of Ertel (1942), the evolution equation of the VSF can be written in a Lagrangian
conserved form in an ideal flow (Hao et al., 2019). As sketched in figure 1(b), the evolution of vor-
tex surfaces in viscous flow is conceptually equivalent to tracking vortex surfaces using the virtual
circulation-preserving velocity.

For given 𝝎, the VSF solution can be obtained by solving (2.5), but the exact VSF solution only exists
in special cases. From the Frobenius theorem, a simple flow field with the vanishing helicity density
h ≡ u · 𝝎 can have non-unique exact VSF solutions (He & Yang, 2016). By solving characteristic
equations of 𝝎, several globally smooth exact VSF solutions were obtained in highly symmetric flow
fields, such as the Taylor–Green (TG) and Kida–Pelz fields (Boratav & Pelz, 1994; Brachet et al., 1983).

Note that the classical potentials of Clebsch (1859) also satisfy the VSF constraint (2.5), but it is
much more strict to obtain exact Clebsch potentials than the VSF, and most of the non-trivial Clebsch
potentials have singularities (Nore, Abid, & Brachet, 1997; Xiong & Yang, 2020). For a flow field with
h ≠ 0, the classical Clebsch potential does not exist, but as illustrated in figure 2(a), the exact VSF can
still exist in some special cases, such as the integral Arnold–Beltrami–Childress (ABC) flow (Dombre
et al., 1986).

Furthermore, the exact VSF was obtained in the knotted vorticity field (see figure 2c) with non-triv-
ial topology and local twisting vortex lines (Shen, Yao, Hussain, & Yang, 2023; Xiong & Yang, 2019a,
2020). The complexity of such fields can be characterized by the finite helicity (Moffatt, 1969) that is
the integral of h over a domain bounded by a vortex surface. This construction is related to generalized
Clebsch representations, which will be discussed in § 5.

https://doi.org/10.1017/flo.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2023.27


E33-6 Y. Yang, S. Xiong and Z. Lu

Misalignment

4

5

6

7

8

9

|ω|

(a) (b)

Figure 3. Comparison of vortex identification methods: (a) isosurface of |𝝎 | with 𝜖𝜙 ≈ 30 % and
(b) isosurface of the VSF colour coded by |𝝎 | with 𝜖𝜙 ≈ 5 % in HIT. Some vortex lines are integrated
from points on the isosurfaces.

2.3. Numerical construction of the VSF

Since it is generally hard to obtain an exact VSF solution for a flow field with chaotic vortex lines,
alternatively, numerical VSF solutions to the VSF constraint (2.5) are sought using two approaches. One
is to solve the characteristic equations of 𝝎 such as finding the global first integral of a set of nonlinear
ordinary differential equations (Katsanoulis et al., 2023; Yang & Pullin, 2010), which needs developing
tailored numerical schemes to deal with ill-posed problems in solving a linear system. The other is to
solve (2.5) with an artificial derivative term with respect to a pseudo-time 𝜏 as (Yang & Pullin, 2011a)

𝜕𝜙v

𝜕𝜏
+ 𝝎 · ∇𝜙v = 0. (2.6)

This advection equation is transported by a frozen vorticity at a particular physical time. The local error
of a numerical VSF solution is quantified by

𝜆𝜔 ≡
𝝎 · ∇𝜙v

|𝝎 | |∇𝜙v |
, (2.7)

and the volume-averaged VSF error 𝜖𝜙 ≡ 〈|𝜆𝜔 |〉 → 0 has been demonstrated with 𝜏 → ∞ (Yang
& Pullin, 2011a). Namely, 𝜖𝜙 converges below a threshold, e.g. 5 %, at a large 𝜏 in solving (2.6).

The isosurface of a numerical VSF solution with small 𝜖𝜙 outperforms other vortex identification
methods in identifying vortex surfaces. Figure 3 compares visualizations of vortex tubes using the
conventional |𝝎 | and the VSF in homogeneous isotropic turbulence (HIT). In figure 3(a), the isosurface
of |𝝎 | significantly misaligns with the vortex lines, so the tube-like structures do not accurately capture
the vortex tubes with large 𝜖𝜙 ≈ 30 %. In figure 3(b), the isosurface of 𝜙v displays real vortex tubes with
small 𝜖𝜙 ≈ 5 %.

On the other hand, the gradient of 𝜙v can be very steep due to the advection nature of (2.6), causing the
numerical VSF to be unresolved with finite grid resolution. Thus, the numerical regulation is required to
smooth the VSF solution using the weighted essentially non-oscillatory (WENO) (Jiang & Shu, 1996)
and targeted essentially non-oscillatory (Fu, Hu, & Adams, 2017) schemes, which can keep the high-
order accuracy at the smooth region and meanwhile add an artificial diffusivity at the region with large
∇𝜙v.
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Flow

(a) (b)

Figure 4. Isosurfaces of the numerical VSF obtained from (a) tomo-PIV data for the flow past a vortex
generator and (b) simulation data for the flow past a wing–body configuration. Some vortex lines are
integrated from points on the isosurfaces. The surfaces are colour coded by the wall distance in (a) and
the vorticity magnitude in (b).

There are some additional techniques to keep the smoothness of the VSF solution and accelerate the
VSF calculation. The local optimization (Xiong & Yang, 2019b) balances the accuracy and smoothness
of numerical VSF solutions by minimizing a hybrid constraint of the VSF error and gradient in the
pseudo-evolution. For shear or highly symmetric flows in which vortex lines have a dominant direction
passing through a particular plane, such as the streamwise–wall-normal plane in channel/boundary-
layer flows and the symmetric plane in TG flows, the VSF constraint (2.5) can be added on the planes
to accelerate the convergence in solving VSF solutions (Xiong & Yang, 2017). The combination of the
numerical methods above can construct the VSF for any complex flow field.

Moreover, the VSF construction has been applied to experimental data of the tomographic particle
image velocimetry (tomo-PIV) (Scarano, 2012). As shown in figure 4(a), Liu and Yang (2023) used
the boundary-constraint method to construct the VSF from the instantaneous tomo-PIV velocity data
in the wake flow of a ramp vortex generator (Ye, Schrĳer, & Scarano, 2016) at moderate Re. Despite
finite experimental noise and the under-resolved velocity, the VSF construction can have a small error
𝜖v ≈ 5 %.

Since the pseudo-initial condition 𝜙v0 for solving (2.6) is arbitrary, the uniqueness is an issue of VSF
solutions. For simple flows, the most smooth, time-invariant solution in the velocity field, e.g. the wall
distance in the Poiseuille laminar flow (Zhao, Yang, & Chen, 2016a) was used, so that the VSF evolution
effectively illustrates the structural evolution in a simple flow under small perturbations. For chaotic
flows, the statistics of scalar structures of 𝜙v appear to be insensitive to the choice of 𝜙v0, perhaps due to
the strange attractor of the characteristic equation of 𝝎 (Xiong & Yang, 2017). To avoid the arbitrariness
in choosing 𝜙v0, a spatially delta-correlated noisy function was used for 𝜙v0 in the VSF construction for
HIT (Xiong & Yang, 2019b).

2.4. Evolution of the VSF

The VSF constructed for an instantaneous flow field can be used as an initial VSF to compute the VSF
evolution. The two-time method, combining the physical and pseudo-time evolutions, is effective in
calculating the VSF evolution in 3-D non-ideal flows (Hao et al., 2019; Peng & Yang, 2018; Yang
& Pullin, 2011a). Hence, the VSF can serve as a general post-processing tool for analysing a temporally
resolved data series of flow fields.

As sketched in figure 5, each time step is divided into two substeps. The prediction–correction
approach is similar to the projection method (Kim & Moin, 1985) and the level-set method
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VSF solution

Corrector (projection)

Predictor with error from the

violation of Helmholtz theorem

Figure 5. Sketch of the two-time method for calculating VSF evolution.

(a) (b) (c) (d)

x y

z

x y

z

x y

z

x y

z

Figure 6. Evolution of the VSF isosurface in the TG flow (Yang & Pullin, 2011a) with Re = 400 at
(a) t = 0, (b) t = 3, (c) t = 5 and (d) t = 7, from initial large-scale vortex blobs to small-scale highly
twisted vortex tubes. Attached vortex lines are integrated from the surfaces and colour coded by |𝝎 |.

(Osher & Fedkiw, 2001). In the prediction substep, the temporary VSF 𝜙∗
v is driven by the physical

velocity u as
𝜕𝜙∗

v (x, t)
𝜕t

+ u(x, t) · ∇𝜙∗
v (x, t) = 0, t > 0. (2.8)

In the correction substep, 𝜙∗
v is driven by the frozen vorticity at a fixed physical time t and evolved in

pseudo-time 𝜏 as
𝜕𝜙∗

v (x, t; 𝜏)
𝜕𝜏

+ 𝝎(x, t) · ∇𝜙∗
v (x, t; 𝜏) = 0, 0 < 𝜏 ≤ T𝜏 , (2.9)

where the initial condition is 𝜙v(x, t; 𝜏 = 0) = 𝜙∗
v (x, t). It is a crucial step to dynamically keep the

VSF constraint (2.5) satisfied in the VSF evolution. At the end of the correction sub step, 𝜙v(x, t) =
𝜙∗

v (x, t; 𝜏 = T𝜏) is updated, where T𝜏 is the maximum pseudo-time and is typically less than 100 times
Δt.

The numerical schemes for solving (2.8) and (2.9) are described in detail in Yang and Pullin (2011a).
Temporal integrations are marched by the second-order total-variation-diminishing Runge–Kutta
scheme (Gottlieb & Shu, 1998). The time steps Δt and Δ𝜏 were chosen to ensure the correspond-
ing Courant–Friedrichs–Lewy conditions based on u and 𝝎, respectively. The convection terms were
typically treated by the fifth-order WENO scheme (Jiang & Shu, 1996) and the numerical diffusion in
the WENO scheme serves as a numerical dissipative regularization to remove small-scale, nearly sin-
gular scalar structures. The first VSF evolution was reported in TG flows (Yang & Pullin, 2011a), which
reveals a continuous timewise deformation and topological change of vortex surfaces in figure 6. More
VSF evolutions will be detailed in § 3.

Additionally, the criteria of tracking vortex surfaces (Han & Yang, 2022) contain not only the
deviation 𝜖𝜙 of the numerical VSF solution, characterizing the accuracy for the VSF constraint, but also
a Lagrangian conservation metric based on numerical dissipation, characterizing the time coherence for
the one-to-one flow map of VSF isosurfaces. The criteria provide a time range when the vortex-surface
tracking is satisfactory.

The computational cost of the VSF evolution grows with increasing complexity of the flow field.
For turbulent flows, it can be comparable to or larger than that for the flow solver, which is demanding.
To further accelerate the VSF calculation, CPU/GPU heterogeneous computing techniques have been
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employed. The hybrid method assigns the iteration operations with high computational cost to GPU,
and achieves significant improvements on computational efficiency, with acceleration ratios up to 50, in
tests on channel flows.

The VSF calculation has also been implemented in complex computational domains on unstructured
grids based on the finite volume method with the OpenFOAM open-source software (Weller, Tabor,
Jasak, & Fureby, 1998). Since OpenFOAM lacks high-order, discontinuity-resolving schemes due to
the challenges on stencil collection and memory management (Gärtner, Kronenburg, & Martin, 2020),
explicit artificial diffusivities in the order of viscosity were introduced in the right-hand sides of (2.8)
and (2.9) (Gu, 2022). Thus, the VSF calculation is applicable to general CFD softwares as a flow
postprocessing module, which is illustrated in figure 4(b).

3. The VSF in flow visualization

Based on 3-D numerical/experimental data, the VSF visualization facilitates elucidating mechanisms in
the flows with essential vortex dynamics, such as turbulence and transition. The universal framework
of VSF evolution illustrates an ordered transformation of coherence structures in transitional flows, in
which there is no need to change ad hoc the structure-identification method and isocontour threshold.
Moreover, the quantitative VSF study sheds light on the interacting mechanisms between the vortex
surface and the shock wave, flame or electromagnetic field in multi-physics coupled flows.

3.1. Homogeneous isotropic turbulence

Many past studies believed that the interaction of vortical structures in turbulence leads to the energy
transport among different scales (Bermejo-Moreno, Pullin, & Horiuti, 2009; Cardesa, Vela-Martin,
& Jimenez, 2017; Davidson, 2004). However, there lacks an effective method to identify complete
vortex tubes and then to illustrate an intuitive picture of the energy cascade. The phenomenological
models of Richardson (1922) and Kolmogorov (1941) speculated that the energy cascade from large to
small scales is through a process of vortex breakup (Frisch, 1995) such as cell division. By contrast, the
VSF visualizations in figures 3 and 7 depict complex networks of tangled vortex tubes.

The different vortex identification methods can lead to very different routes of scale cascade. The
close-up view of the VSF isosurface with vortex lines integrated on the isosurface in figure 7(b)
displays stretched spiral vortex tubes with local vorticity intensification, which is hypothesized as an
elementary vortical structure in turbulence (Lundgren, 1982; Pullin & Saffman, 1998). For comparison,
the conventional method, the isosurface of |𝝎 |, in figure 7(c) only displays short, disconnected tube-
like structures. This visual breakup fails to display complete vortex surfaces due to the intermittent
distribution of |𝝎 | on the twisting vortex tubes. Therefore, the VSF isosurface can elucidate vortex
dynamics such as vortex twisting at small scales (She et al., 1990) and rolling-up of vortex sheets
(Lindsay & Krasny, 2001).

Consistent with the vorticity dynamics, the morphology of VSF isosurfaces at different times in
decaying TG and HIT flows (Han & Yang, 2022; Xiong & Yang, 2019b; Yang & Pullin, 2011a)
illustrates how a large-scale blob-like vortex surface gradually evolves into smaller tube- and sheet-like
ones. In figure 6, a possible scenario of scale cascade includes the collapse of vortex surfaces, vortex
reconnection, the formation and roll-up of vortex tubes, vorticity intensification between anti-parallel
vortex tubes and vortex stretching and twisting.

3.2. Transition of wall-bounded flows

The generation of turbulent structures in the transition of wall-bounded flows was described as ‘abrupt
and mysterious’ (Mullin, 2011). Existing phenomenological models (Barkley, 2016; Barkley et al.,
2015) treated this process as a bifurcation of a nonlinear system, whereas the VSF uncovers the detailed
vorticity dynamics on the generating mechanism of coherent structures.
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Visual vortex breakup
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Figure 7. Comparison of vortex identifications in HIT. (a) The VSF isosurface in HIT. Close-up views
of (b) the isosurface of the VSF and (c) the isosurface of |𝝎 | in the subdomain enclosed by the dashed
rectangle in (a). The isosurface is colour coded by |𝝎 | and some vortex lines are integrated from points
on the surface.

The VSF has been applied to the transition of three canonical wall flows with different symme-
tries of boundary conditions sketched in figure 8. First, the VSF evolution was calculated in the
Klebanoff-type (K-type) natural transition in channel flows using the two-time method. It demon-
strates the continuous deformation and topological transformation from simple to convoluted shapes
during the transition (Zhao et al., 2016a). In the Lagrangian view, figure 9 shows that an initial near-
wall planar vortex surface in the laminar state evolves into a triangular bulge, and then the edges of
the bulge roll up into the signature hairpin-like structure. Subsequently, the interaction of hairpins in
the late transition involves the reconnection of vortex lines originating from opposite walls and the
self-reconnection of a single 𝛺-shaped vortex line at its neck. These reconnections lead to scale cas-
cade as a critical step in the transition (Zhao, Yang, & Chen, 2016b). The reconnection location and
time were accurately quantified using the minimum distance and the vorticity flux between two VSF
isosurfaces.

Second, the reconnection between vortex bulges grown from opposite walls does not occur in the
transition of a flat-plate boundary layer without the symmetry in the wall-normal direction. The hairpins
regenerate and then evolve into a complex composite structure, i.e. the turbulent spot (Wu et al., 2017),
consisting of multiple hairpins. The VSF was calculated from the direct numerical simulation (DNS) data
(Sayadi, Hamman, & Moin, 2013) of a K-type boundary-layer transition using the boundary-constraint
method (Xiong & Yang, 2017). Zhao, Xiong, Yang, and Chen (2018) found a critical mechanism in lateral
growth of the turbulent spot. A train of hairpin-like bulges induce sinuous distortion on neighbouring
lower wavy vortex surfaces, and then the spanwise propagation of the distortion generates numerous
skewed hairpin structures.

Third, under the axisymmetry of boundary conditions, the VSF was applied to the pipe transition
with a radial wave-like velocity disturbance in the inlet region (Ruan, Xiong, You, & Yang, 2022).
The VSF visualization showed that vortex surfaces are first corrugated with streamwise elongated
bulges. The resultant highly coiled and stretched vortex loops reconnect with each other, and it then
triggers successive vortex reconnections via a ‘greedy snake’ mechanism. The streamwise vortex loops
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Figure 8. Schematic (front view) of the vortex surfaces in the transition in three canonical wall-bounded
flows: (a) boundary layer, (b) channel and (c) pipe. Directions of the vorticity tangent to the vortex
surfaces are labelled by arrows.
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Figure 9. Evolution of the VSF isosurface in the late K-type transition in channel flow (Zhao et al.,
2016b). Attached vortex lines are integrated from the surfaces, and colour coded by |𝝎 |. The evolution
can be divided into four stages: (a) formation of the triangular bulge at t = 100, (b) vorticity intensi-
fication at t = 106, (c) generation of hairpin-like structure at t = 110 and (d) vortex reconnection at
t = 114. The important events are highlighted by red circles.

2015

0 0.2 0.4 0.6 0.8 1.0
r/R

Figure 10. The side view of the VSF isosurface constructed from the DNS of pipe transition
(Wu et al., 2015b; Xiong et al., 2019). The inner VSF isosurface near the core region is colour coded
by the normalized radial coordinate r/R, and the outer VSF isosurface near the wall is translucent and
coloured in grey.

consecutively capture the secondary vortex rings pinched off with self-reconnection, forming long
helical vortex loops spanning over 10 pipe radii in the streamwise direction.

Moreover, in the pipe transition with the radial initial perturbation, the transition region has forward
and reversed hairpins (Wu, Moin, Adrian, & Baltzer, 2015b). The VSF visualization in figure 10
shows that the forward and reversed hairpins are generated from the wall and core regions, respectively
(Xiong, You, Ruan, & Yang, 2019). In contrast to the viscous cancellation of vortex reconnection (Kida
& Takaoka, 1994) in transitional channel flows, the vorticity directions of approaching forward and
reversed hairpin-like vortex lines tend to align (see figure 8). This difference causes stronger vortex
interactions, so the pipe transition can be more abrupt than that in transitions of boundary layers and
channel flows.

In sum, different symmetries in boundary conditions of the canonical wall flows have an impact on
the coherent structures generated in the transition. The VSF studies uncover the emergence of ordered
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Figure 11. The VSF isosurface during the vortex bursting of a vortex ring (Shen et al., 2023). The
isosurface is colour coded by h and some vortex lines are integrated from points on the surface.

structures and their dynamical evolution in a universal framework, which does not need to objectively
switch identification methods and adjust contouring thresholds in different transitional stages.

3.3. Vortex bursting

The VSF is effective in identifying the abrupt deformation of vortex surfaces, e.g. vortex bursting (Ji
& van Rees, 2022; Melander & Hussain, 1994), which was found in aircraft trailing vortices (Tombach,
1973) and could be overlooked by Eulerian vortex criteria. Based on the VSF, Shen et al. (2023)
developed a framework to construct the differential twist that establishes the theoretical relation between
the total twisting number and the local twist rate of each vortex surface. This framework characterizes
coiling vortex lines and internal structures within a vortex tube.

As a typical example, the dynamics of a vortex ring with differential twist was explored via DNS.
Two twist waves with opposite chiralities propagate towards each other along the centreline of the
closed vortex tube and then collide when the local twist rate surges. In figure 11, local vortex surfaces
are squeezed into a disk-like structure containing coiled vortex lines, leading to vortex bursting. Note
that the visualization of Eulerian vortex criteria, e.g. the visual breakup of isosurfaces of |𝝎 | similar to
figure 7(c), cannot identify the complete vortex tube as visualized by the VSF during bursting.

3.4. Flows past a plate

A solid object moving in a fluid flow can generate strong vorticity within coherent structures near the
boundary in biological locomotion (Dabiri, 2005; Shyy et al., 2010; Zhang, Huang, Pan, Yang, & Huang,
2022) and aerial/underwater vehicles (Jiménez, Hultmark, & Smits, 2010; Park, Chang, Huang, & Sung,
2014). The morphology of the coherent structures largely depends on the flow direction and the trajectory
of the moving body. The VSF was used to investigate the vortex dynamics in flows past a plate (Tong,
Yang, & Wang, 2021) simulated by the immersed boundary method (Wang & Zhang, 2011). In the
flow past a stationary finite plate at low Re, the VSF isosurface displays that near-plate vortex surfaces
first roll up from the plate edges and then evolve into hairpin-like structures near the leading edge and
semi-ring structures near the plate tips and in the wake. Two typical vortical structures, the leading edge
vortex (LEV) and the tip vortex (TIV), are quantitatively distinguished by the vanishing streamwise
vorticity on VSF isosurfaces. Based on circulations through cross-sections of vortex surfaces, the lift
generated from the LEV was found to be suppressed by the finite growth of TIVs.

The vortex dynamics of flows past a flapping plate was elucidated using the VSF evolution (Tong
et al., 2021). The VSF visualization in figure 12 reveals that the spoon-like vortex surface dominated
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Figure 12. The VSF isosurface in the flow past a flapping plate (Tong et al., 2021). The isosurface is
colour coded by |𝝎 | and some vortex lines are integrated from points on the surface.

by tip vortex lines is formed and periodically shed into the wake due to the alternating upstroke and
downstroke of the flapping plate. The simplification of the finite-domain impulse theory (Kang, Liu,
Su, & Wu, 2018; Wu et al., 2015a) demonstrates that the force on the plate can be modelled by the sum
of the vortical impulse and Lamb-vector integral of the vortex surface enclosing the plate.

For the moving body with complex geometries, the VSF was employed to study the flow around the
NASA Common Research Model (Vassberg, Dehaan, Rivers, & Wahls, 2008) in a wing–body config-
uration (Gu, 2022). From the simulation data with the Spalart–Allmaras model (Spalart & Allmaras,
1994), the VSF with 𝜖𝜙 < 10 % was calculated using the two-time method. The VSF isosurface around
the wing–body configuration in figure 4(b) shows that most vortices develop along the streamwise direc-
tion, forming bulges similar to those in canonical wall flows (see figure 9a). They gradually evolve into
small-scale structures and eventually shed off from the wing.

3.5. Compressible flows

Besides the constant-density incompressible flows in fundamental studies, the VSF was also used to
analyse various multi-physics coupled flows in practical flows. Due to the characteristic structure aris-
ing from additional physical or chemical processes in such flows, the coupling mechanism of these
structures and vortices is challenging in the modelling of engineering turbulence. Based on the VSF
study in incompressible TG flows (Yang & Pullin, 2011a), evolutions of vortex surfaces have been
compared in compressible, reacting or MHD TG flows to elucidate the interaction mechanisms between
the vortex surface and the shock wave, flame or electromagnetic field.

In compressible hydrodynamic instability (Brouillette, 2002) and turbulence (Samtaney, Pullin,
& Kosovic, 2001; Wang et al., 2012), the effects of the Mach number (Ma) on the vortex dynamics are
important. For the strong compressibility at large Ma, the VSF study found that the vortex dynamics
in high-Ma TG flows has three phases (Peng & Yang, 2018). In the early stage, the velocity jump near
shocklets generates sinks to shrink vortex volume and distort vortex surfaces. The subsequent vortex
reconnection occurs earlier and has a higher reconnection degree for larger Ma. In the late stage, the
positive dissipation rate and negative pressure work accelerate the loss of kinetic energy and suppress
vortex twisting with increasing Ma.

The VSF was then applied to the Richtmyer–Meshkov instability (RMI) accelerated by a weak
incident shock. The RMI is important in the supernova explosion (Almgren, Bell, Rendleman, & Zingale,
2006) and ignition in inertial confinement fusion (ICF) (Aglitskiy et al., 2010). Peng, Yang, Wu,
and Xiao (2021a) elucidated the effect of the secondary baroclinic vorticity (SBV) in the RMI. Two
major mechanisms of the single-mode RMI, the primary baroclinic vorticity (PBV) and the pressure
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Figure 13. The VSF isosurfaces in multi-physics coupled flows: (a) multi-mode RMI after a shock
accelerating an interface (Peng et al., 2021b) and (b) premixed flame (location marked by the red
arrow) propagating in HIT (You et al., 2020). The isosurface is colour coded by |𝝎 | and some vortex
lines are integrated from points on the surface.

perturbation, are distinguished by VSF-based models. They found that the interfacial growth is first
driven by the PBV. Subsequently, the SBV is generated by the misalignment between the density
gradient across the interface and the pressure gradient produced by the PBV-induced velocity. Driven
by the induced velocities of the PBV and SBV, the acceleration of the trough and deceleration of the
crest of the vortex surface lead to spike- and bubble-like structures.

Furthermore, Peng, Yang, and Xiao (2021b) investigated the SBV effect on the energy cascade in the
mixing induced by the multi-mode RMI (see figure 13a). With the VSF-based models, they found that
the effect of the SBV peaks at a critical time when the vortex reconnection widely occurs in the mixing
zone. Before the critical time, spikes and bubbles evolve almost independently, and the variation of the
kinetic energy spectrum induced by the SBV has the −1 scaling law at intermediate wavenumbers. This
SBV effect causes the slope of the total energy spectrum at intermediate wavenumbers to evolve towards
−3/2 at the critical time. Subsequently, the SBV effect diminishes and the energy spectrum decays to
the −5/3 law.

3.6. Combustion

For combustion, the flame–vortex interaction is important in various combustion applications (Renard,
Thévenin, Rolon, & Candel, 2000), but its study was restricted to 2-D configurations (Poinsot, Veynante,
& Candel, 1991). The VSF study illustrated the influence of a propagating premixed flame on 3-D TG
vortices (Zhou et al., 2019). The vortex surfaces merge into a bulky structure in the burnt region, whereas
they roll up into stretched and twisted small-scale vortex tubes in the unburnt region, as in non-reacting
flows. This finding suggests that the heat release near a turbulent premixed flame significantly alters the
fluid density and viscosity, leading to anisotropic velocity statistics.

As shown in figure 13(b) for turbulent premixed combustion, You, Lu, and Yang (2020) found that
a tangle of twisted vortex tubes on the unburnt side is stretched along the streamwise direction near the
flame front due to the thermal expansion, and the small-scale vortex tubes gradually merge into large-
scale bulky structures on the burnt side. By analysing the enstrophy transport equation and the Lumley
triangle of Reynolds stresses, they concluded that the anisotropy of velocity fields increases from the
unburnt to the burnt side. The variation of the geometry of vortex surfaces near the flame front is highly
correlated to the anisotropic statistics of the fluctuating velocity.

3.7. Magnetohydtodynamic flows

The transport equations for the vorticity in neutral fluid flows and the magnetic induction in MHD flows
have the same form (Davidson, 2001). Due to the analogy between vorticity and magnetic dynamics,
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the VSF can be naturally extended to analyse the magnetic surface as the magnetic-surface field (MSF)
(Hao & Yang, 2021). The MSF is rooted in the Alfvén theorem – an analogue of the Helmholtz
vorticity theorem to illustrate the frozen-in nature of magnetic fields. The MSF study characterized
the evolution of a pair of orthogonal helical flux tubes (Linton, Dahlburg, & Antiochos, 2001) with
opposite chirality. In particular, the MSF can pinpoint the region of the magnetic reconnection (Priest
& Forbes, 2000), where a knot cascade of magnetic field lines through stepwise reconnections was
identified.

Additionally, the Lorentz force in MHD flows behaves as a strong non-ideal force in (2.3). Its
magnitude can be comparable to that of the convection term in practical MHD flows. Hao et al. (2019)
found the spurious deformation due to the Lorentz force can be eliminated using an approximate virtual
velocity. The vortex surfaces driven by the virtual velocity accelerates the vortex reconnection and
significantly increases the dissipation of kinetic energy.

3.8. Remarks on the VSF visualization

Besides the time coherence issue discussed in § 2.2, the geometric features identified in turbulence and
transition strongly depend on the identification method and the isocontour threshold. These selections
have obvious subjectivity and cause many debates on coherent structures in past decades (Epps, 2017;
Wu, 2018). In boundary-layer transition (Sayadi et al., 2013; Wu et al., 2017), the isosurface of the
streamwise velocity or passive scalar can only show streaky structures, and the isosurface of the Eulerian
vortex criterion can only show vortex cores. As compared among the isosurfaces of the streamwise
velocity, the Q criterion and VSF in a boundary-layer transition in figure 13 in Zhao et al. (2018),
isocontour thresholds of the streamwise velocity and Q have to be carefully adjusted to capture complete
vortex surfaces. Therefore, the whole picture of the vortex dynamics in transition, e.g. interactions of
streaks and hairpin vortices (Wu et al., 2017), may not be fully represented using a single classical
method.

In the VSF framework, the very different coherent structures can be considered as different geometries
of the same vortex surfaces at different times and locations. For example, the laminar shear flow
corresponds to wall-parallel planar surfaces, the 𝛬-like structure corresponds to the triangular bulge
from the wall-normal disturbed vortex surface, the hairpin corresponds to the hairpin bulge from rolling
up and stretching of the triangular bulge and the streak corresponds to the wavy surface downstream of
the hairpin ‘legs’.

Additionally, the fixed VSF isocontour threshold, in principle, identifies a particular vortex surface
in the evolution in an ideal flow. This guides that the VSF should be normalized to ensure the fixed VSF
isocontour threshold for the isosurface which encloses the same mass in the evolution of the VSF in
viscous flows (Peng & Yang, 2018), which mitigates the numerical dissipation in the regularization in
solving (2.8) and (2.9).

Note that the VSF is space filling. The selection of the VSF threshold follows several criteria.
For the flows without a dominant direction of 𝝎, e.g. TG flow and HIT, the median value of 𝜙v can
be used to show the vortex surface with both large volume and distinguished geometry. For tran-
sitional wall flows, the morphology of vortex surfaces varies with the initial wall distance, and the
VSF threshold is proportional to the wall distance in the laminar stage (Zhao et al., 2016a). The VSF
isosurface near to or remote from the wall with a very small or large threshold has minor deforma-
tion, while the VSF isosurface with the threshold O(0.1) ∼ O(1) of the boundary-layer thickness
have significant deformation to characterize the evolution of coherent structures (Zhao et al., 2018,
2016b).

4. The VSF in flow modelling

The idea of the VSF-based or VSF-inspired modelling is to extract the essential information of the
velocity/vorticity field using the VSF or a characteristic scalar, and then explore robust statistics by
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Figure 14. Predictive model of the skin-friction coefficient based on the multi-scale decomposition
of experimental images in supersonic boundary-layer transition (Zheng et al., 2019): (a) inclination
angle of small-scale structures after multi-scale decomposition and (b) friction estimation based on the
inclination angle. Here, ls denotes the characteristic scale in terms of the boundary-layer thickness 𝛿;
cfL and cfT denote empirical models of Cf in laminar and fully developed turbulent states (White, 2006),
respectively.

characterizing scalar features. From the quantified flow mechanism, we model the statistical correla-
tion between the statistical features and the critical physical quantity to be predicted in engineering
applications.

4.1. Friction drag

The prediction of the skin-friction coefficient Cf in boundary layers is crucial for the design of high-
speed vehicles and propulsion systems. The VSF study found that Cf grows with the deformation and
reconnection of vortex surfaces in transitional wall flows (Zhao et al., 2018, 2016b). This correlation
supports the development of structure-based models of Cf . For practical interest, the VSF deviation of
a passive scalar/tracers used in experimental visualization, e.g. dye, smoke and hydrogen bubbles (Lee
& Wu, 2008), can be calculated by (2.7). If 𝜖𝜙 is small, the VSF study can be extended to experimental
visualization, and has a potential to improve the vorticity reconstruction from the scalar field (Liu
& Shen, 2007; Su & Dahm, 1996).

The multi-scale geometric analysis was applied to tracking a passive scalar (Candes, Demanet,
Donoho, & Ying, 2006; Yang, Pullin, & Bermejo-Moreno, 2010). From the band-pass filtering, the
geometric features of the scalar were quantified at different scales. Yang and Pullin (2011b) found the
similarity of inclination and sweeping angles of coherent structures in wall turbulence, and statistical
correlation between the growths of the inclination angle and Cf (Zheng, Yang, & Chen, 2016). As shown
in figure 14, a model for predicting Cf (Zheng, Ruan, Yang, He, & Chen, 2019) was proposed from
multi-scale structural geometry in 2-D images in supersonic boundary-layer transition (He, Yi, Zhao,
Tian, & Chen, 2011). In this model, the averaged inclination angle is a typical geometric feature of
vortical structures. This feature is robust in a range of Re and Ma and is correlated to the intermittency
factor (Dhawan & Narasimha, 1958) in turbulence modelling (Suzen & Huang, 2000), so it blends the
empirical models of Cf in laminar and fully developed turbulent states (White, 2006) to estimate Cf in
the transitional stage.

4.2. Aerodynamic forces

Shedding vortices in the far wake, e.g. in the wake of a flying bird (Hubel, Riskin, Swartz, & Breuer, 2010)
or swimming fish (Lauder, 2015), can imply the forces exerted on the moving body (Li & Lu, 2012).
Based on the VSF study and the vortex impulse theory (Wu, Liu, & Liu, 2018), Tong et al. (2021)
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Figure 15. Schematic for the modelling of spikes and bubbles in the multi-mode RMI (Peng et al.,
2021b). (a) Close-up view of spikes and bubbles; (b) spikes and bubbles moving by the induced velocities
of vortex rings; (c) vortex-ring modelling.

developed a time-averaged thrust model from near-wake discrete vortex surfaces. In this model, a
particular vortex surface is chosen as the integral domain in the finite-domain impulse theory, so that the
force on the moving body is only determined by the vortical impulse and Lamb-vector integral of the
vortex surface enclosing the body. Furthermore, the mean thrust based on two arbitrary vortex surfaces
in the far wake is estimated from the linear impulse decay of periodically shedding vortex surfaces.

The VSF study suggested that the state of a moving body in experimental investigation and practical
applications can be inferred from wake structures. Tong, Wang, and Yang (2022) reported a comparative
study of theoretical and data-driven models for estimating forces from velocity data in the wake of a
plate with a range of angles of attack. The theoretical model estimates forces on a flat plate from cross-
sectional velocity data in the far wake. This algebraic model incorporates the local momentum deficit
and pressure variation. The data-driven model estimates forces from the convolutional neural network
(CNN) (He, Zhang, Ren, & Sun, 2016) by regarding the velocity field on a series of cross-sections
as images. The model performance indicated that the optimized CNN with the integration of physical
information can identify important flow regions and learn empirical physical laws.

4.3. Turbulent mixing

The mixing of the interface induced by the RMI (Zhou, 2017a, 2017b), quantified by the peak-to-valley
amplitude of the mixing zone, is particularly important in the ICF. Inspired by the SBV mechanism from
the VSF study on the RMI, Peng et al. (2021a) developed a predictive model of spike and bubble growth
rates using the motion of viscous vortex rings. The circulation of the vortex ring is modelled with the
SBV effect. The modelling process is sketched in figure 15. The feature of almost independently evolving
spikes and bubbles is characterized by the vortex rings with opposite vorticity-induced velocities. The
motion of each vortex ring is modelled by the dual polar coordinates moving with the vortex ring. This
model was validated by several DNS and experimental data sets of the single-mode RMI with various
initial conditions.

This model was then extended to multi-mode RMI to estimate the mixing width (Peng et al., 2021b),
and was validated using numerical simulations of the RMI with different modes of initial perturbations.
It captures the nonlinear growth of the mixing width before the self-similar growth stage.

5. The VSF in flow simulation

The VSF evolution captures essential Lagrangian-based dynamics and geometry of vortical flows. This
advantage can be used as an important ingredient to develop novel numerical frameworks and methods in

https://doi.org/10.1017/flo.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2023.27


E33-18 Y. Yang, S. Xiong and Z. Lu

CFD. The velocity and multiple VSFs are linked by the Clebsch representation (Clebsch, 1859). Several
fast algorithms based on the Clebsch representation instead of the conventional velocity or vorticity
have been developed for cutting-edge hardware platforms, e.g. graphic and quantum processors.

5.1. Spherical Clebsch representation

The Clebsch representation encodes the velocity and vorticity into multiple scalar potentials (𝜑1, 𝜑2, 𝜑3)

as

u = 𝜑1∇𝜑2 − ∇𝜑3, 𝝎 = ∇𝜑1 × ∇𝜑2, (5.1a,b)

where 𝜑1 and 𝜑2 satisfy the VSF constraint (2.5), so this Clebsch map contains the flow geometry.
However, the classical Clebsch map in (5.1a,b) is unable to describe a flow field with non-zero helicity,
restricting its application in general 3-D flows.

Kuznetsov and Mikhailov (1980) proposed the spherical Clebsch map (Chern et al., 2017, 2016) to
express the flow field with non-zero helicity, i.e. the velocity

u = ℏRe(∇�̄�i𝝍) = ℏ(a∇b − b∇a + c∇d − d∇c) (5.2)

is expressed by a quaternion 𝝍 = a + bi + cj + dk with a normalization constraint �̄�𝝍 = 1, where a, b,
c and d are real-valued functions, i, j and k are imaginary units, ℏ is a parameter for quantization of u
and Re(𝝍) and �̄� are the real part and the complex conjugate of 𝝍, respectively. The vorticity Clebsch
map, also known as the Bloch or spin vector (Bloch, 1946), is expressed as s = s1i + s2j + s3k and linked
with 𝝍 by the Hopf fibration s = �̄�i𝝍 (Hopf, 1931). Thus, the vorticity is re-written as

𝝎 =
ℏ
2
(s1∇s2 × ∇s3 + s2∇s3 × ∇s1 + s3∇s1 × ∇s2), (5.3)

in terms of s, where the Clebsch potentials si, i = 1, 2, 3 are VSFs.
Figure 16 summarizes the transformations among four representations of 𝝍, u, 𝝎 and s for the same

vortex-ring field in different spaces. The two-component or quaternion wave function (upper left) in S3

is represented by a complex structure that cannot be directly visualized in R3. The spin vector (upper
right) in S2 can be obtained via the Hopf fibration from 𝝍. The velocity (lower left) in R3 can be
calculated from a given wave function by (5.2), which describes a vortex ring (green tube) with circular
stream lines (brown lines). The vorticity (lower right) can be obtained from u by its definition or the
spin vector by (5.3).

Similar to the VSF construction, the construction of Clebsch potentials for a given flow field is
challenging (Chern et al., 2016; Xiong, Wang, Wang, & Zhu, 2022; Yang et al., 2021). Tao, Ren, Tong,
and Xiong (2021) developed an analytical method to construct 𝝍 that can be transformed into a knotted
velocity field. Taking the flow field of a trefoil vortex for example, 𝝍 is constructed by two polynomials
P = 𝛼k and Q = 𝛼3 + 𝛽2 representing the geometry of the vortex tube (Kedia, Foster, Dennis, & Irvine,
2016) with 𝛼 = 2(x + iy)f (R)/(1+R2) and 𝛽 = i+ 2(z− i)f (R)/(1+R2), where R =

√
x2 + y2 + z2 is the

distance from the knot centre and the function f (R) = exp[−(R/3)8] has f (0) = 1 and limR→∞f (R) = 0.
Then, 𝝍 is obtained from the normalization and pressure projection of P + Qj. Figure 17 plots the
isosurfaces of s1 of two trefoil vortex tubes with different contour and helicity values.

5.2. Computer graphics of fluid motion

In the Clebsch method, the evolution of u is transformed into the evolution of 𝝍 using (5.2). For an
incompressible, constant-density inviscid flow with F = 0 in (2.2), the momentum conservation (2.2)
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R3 R3

S2S3

u
ω = ∇ × u

ω = ħ/2 (s1∇s2 × ∇s3 +
       s2∇s3 × ∇s1 + s3∇s1 × ∇s2)

ω

u = ħRe (∇ψiψ)

ψ = a + bi + cj +dk s = s1i + s2 j + s3ks = ψiψ

Figure 16. Transformations among the wave function 𝝍, velocity u, vorticity 𝝎 and spin vector s for a
vortex ring in different spaces.
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Figure 17. Isosurfaces of s1 of initial knotted vortex tubes with (a) P = 𝛼1, Q = 𝛼3 + 𝛽2, s1 = 0.92 and
(b) P = 𝛼5, Q = 𝛼3 + 𝛽2, s1 = 0.25. Some vortex lines colour coded by h are plotted on the surfaces.

becomes (Xiong et al., 2022)
𝜕𝝍

𝜕t
+ u · ∇𝝍 =

i
ℏ

(
𝛱 +

|u|2

2

)
𝝍, (5.4)

and the incompressible condition is equivalent to

Re(∇2�̄�i𝝍) = 0. (5.5)

Yang et al. (2021) developed a fast algorithm to solve (5.4) and (5.5) with notable numerical
viscosity, which is suitable for fluid animation in computer graphics. Similar to the stable fluid method
(Stam, 1999), a staggered grid was adopted to discretize fluid variables and solve the equations using the
advection–projection splitting method (Kim & Moin, 1985). The grid stores 𝝍 and the gauge variable
𝛱 at the centre of each cell, and u at the centre of each cell face. As illustrated in figure 16, the wave
function extracts vortex lines and surfaces analytically, so the Clebsch method can preserve the vortical
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Figure 18. Visualizations of flow simulations based on the Clebsch method (Yang et al., 2021).
(a) Smoke passing multiple obstacles with the grid size 192 × 192 × 384; (b) evolution of oblique
ring collision with the grid size 128 × 128 × 128.

structure at long times in the flow simulation with lower grid resolution and computational cost than
conventional CFD methods.

The advection of 𝝍 inherits the chaotic behaviour as evolving a Lagrangian-based VSF (Yang
& Pullin, 2011b; Yang et al., 2010). To maintain the stability of the advection, Yang et al. (2021) used
a blending method to add the numerical viscosity for u into the evolution of 𝝍. After the advection, the
divergence-free conditions on u and 𝝍 are both enforced by solving the Poisson equation

Δt∇2𝛱 = −∇ · u, (5.6)

for 𝛱 in (5.4) and projecting u +Δt∇𝛱 → u and 𝝍 exp(i𝛱Δt/ℏ) → 𝝍, respectively. The blending and
projection introduce the numerical viscosity generated in the semi-Lagrangian scheme (Stam, 1999)
into the advection of 𝝍, and the real viscosity is expected to be incorporated in future work.

Yang et al. (2021) demonstrated that the Clebsch method can resolve the fluid motion with complex
vortical structures and boundary conditions on coarse grids. In smoke simulations, figure 18(a) shows
that arrays of coherent vortices are generated after a high-speed smoke plume passes an obstacle, and
figure 18(b) shows the reconnection of two vortex rings in an oblique collision. These examples with
fine vortex-filament dynamics were difficult to simulate using a standard grid-based solver with the
same grid resolution.

The Clebsch method has been extended to simulate free-surface vortical flows (Xiong et al., 2022;
Yang et al., 2021). Assuming the fluid is subject to gravity and surface tension and according to the
Young–Laplace equation (Batchelor, 1967), 𝛱 in (5.4) satisfies a jump condition on 𝛤. The interface
is tracked by a level-set function (Fedkiw & Osher, 2002; Osher & Sethian, 1988), and (5.6) with the
jump condition is solved by the ghost fluid method (Fedkiw, Aslam, Merriman, & Osher, 1999).

In addition, the Clebsch method is efficient in simulating a broad range of free-surface flows with
strong vortices, such as bubble rings, horseshoe vortices, sink swirls and free-surface wake vortices.
Figure 19(a) shows the vortex shedding from a moving paddle on a coarse grid, and figure 19(b) shows
the reconnection of two bubble rings. By contrast, the vortices may rapidly dissipate with the regular
finite difference methods, followed by the fragmentation of the interfacial vortices and the bubble ring.

5.3. Quantum computing of fluid dynamics

Quantum computing has emerged to be the next disruptive technology, which can have much less com-
putational cost than the traditional computing (Nielsen & Chuang, 2010). To date, quantum computing
has been demonstrated to be effective in handling some linear problems (Clader, Jacobs, & Sprouse,
2013; Harrow, Hassidim, & Lloyd, 2009), but it remains challenging to efficiently solve the highly
nonlinear NS equations (Liu et al., 2021; Lloyd et al., 2020).
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Figure 19. Visualizations of flow simulations based on the Clebsch method (Xiong et al., 2022).
(a) Vortex shedding from a moving paddle with the grid size 128 × 32 × 64; (b) reconnection of bubble
rings with the grid size 256 × 256 × 256.

The fluid dynamics of a potential flow was related to a hydrodynamic representation of quantum
mechanics via the Madelung transform (Madelung, 1927). By generalizing the Madelung transform
(Chern et al., 2016; Meng & Yang, 2023), the compressible/incompressible flow with finite vorticity
and dissipation can be described by the hydrodynamic Schrödinger equation (HSE)

iℏ
𝜕𝝍

𝜕t
=

(
−
ℏ2

2
∇2 + 𝛱 +

ℏ2

8𝜌2 |s|
2
)
𝝍. (5.7)

This equation is equivalent to (2.1) and (2.2) with an external force F = −(ℏ2/4𝜌)∇s · [∇ · (∇s/𝜌)].
The corresponding flow satisfies the virtual Helmholtz theorem (Hao et al., 2019) and has helicity
conservation (Meng, Shen, & Yang, 2023).

The quantum computing of fluid dynamics based on the HSE can be promising in simulating 3-D
turbulent flows. Since the HSE is expressed as a unitary operator on 𝝍, it is more suitable than the
NS equations for quantum computing. The flow governed by the HSE can resemble a turbulent flow
consisting of tangled vortex tubes with the −5/3 scaling of energy spectrum. A prediction–correction
quantum algorithm for solving the HSE was implemented for a simple one-dimensional flow on the
quantum simulator Qiskit (Koch, Wessing, & Alsing, 2019).

In particular, the incompressible HSE with unity density governs the incompressible Schrödinger
flow (ISF) (Chern et al., 2016). Although the HSE without a viscous term and with an external force is
different from the NS equations, the ISF resembles the viscous flow in terms of the similar flow statistics
and structures. The evolution of the vortex knot, TG vortex, decaying HIT showed the similarities
between the ISF and the viscous flow (Meng & Yang, 2023; Tao et al., 2021).

The effect of the parameter ℏ in (5.7) is similar to the kinematic viscosity. In general, the length scale
of vortices is proportional to ℏ via the vorticity Clebsch mapping (Chern et al., 2017, 2016; Tao et al.,
2021), and the flow stability depends on the value of ℏ. The vortex surface in the TG ISF is visualized in
figure 20 using the isosurface of a component of s. The entangled vortex tubes can be mapped to a patch
on the unit sphere S2 (or the Bloch sphere) via the vorticity Clebsch mapping. The geometry of vortex
surfaces in the ISF is in between the vortex filaments in quantum turbulence (Madeira, Caracanhas, dos
Santos, & Bagnato, 2020; Müller, Polanco, & Krstulovic, 2021) and the tangle of spiral vortex tubes and
sheets in classical turbulence (Cardesa et al., 2017; She et al., 1990; Xiong & Yang, 2019b). Therefore,
the turbulent ISF manifests the features of both quantum and classical turbulent flows.

6. Summary and outlook

In the Lagrangian viewpoint, the VSF study paves an avenue to investigate the mechanism of energy
cascade and evolution of coherent structures by characterizing vortex surfaces. Being different from
the Eulerian vortex criteria based on the instantaneous local flow field, the VSF evolution contains the
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(a) (b) (c)

Figure 20. Mapping between the spin vector and the vortex tube in the TG ISF. (a) A patch (blue) on
S

2 of the spin vector, where each dot corresponds to a vortex line in R3; (b) isosurface of a component
of the spin vector in R3, where the surface is colour coded by h; (c) close-up view of the vortex tubes
with attached vortex lines.

evolutionary history of vortex stretching and twisting, overcoming the weakness of lacking causality
and time coherence of identified flow structures. As a general flow diagnostic tool, the numerical VSF
solution can be constructed in any given flow field by solving a pseudo-transport equation driven by the
instantaneous frozen vorticity. Then the evolution of VSFs is calculated by the two-time method.

In high-Re flows, the VSF study reveals how a large-scale vortex surface evolves into small-scale
structures through dynamic processes of stretching, rolling-up, twisting and reconnection. The large-
scale structures have simple, ordered geometry, whereas the small-scale structures have a convoluted
geometry manifesting the random nature. The evolution of VSF elucidates that the transition from the
ordered to random structures is not an abrupt process but a timewise evolution that can be quantified.
Thus, the VSF study embraces the two approaches for studying turbulence from statistical and structural
perspectives.

The statistical features in VSF evolution are correlated to the key physical quantities in engineering
applications. This link facilitates the development of VSF-based or VSF-inspired models, e.g. the models
of the skin friction in supersonic boundary-layer transition based on the inclination angle of small-scale
flow structures, the thrust of a flapping plate based on shedding vortex surfaces in the far wake and the
mixing rate based on vortex rings with different vorticity-induced velocities in the RMI. In this way, the
VSF provides a systematic approach to develop simple algebraic models for complex flows.

The velocity can be represented by VSFs via Clebsch maps. This Lagrangian-based representation
involving the flow history inspires several fast algorithms on new-generation graphic and quantum
computing hardware. Since vortical structures are well preserved using VSFs, the Clebsch method is
capable of simulating a wide range of fluid flows that were impractical for previous methods in computer
graphics, including complex vortex filaments, bubble rings and vortex–solid interactions. Furthermore,
the HSE provides a possible way of simulating fluid dynamics on quantum computers (Succi, Itani,
Sreenivasan, & Steĳl, 2023). These progresses enlighten the development of revolutionary CFD methods
based on VSFs.

Some future issues of the VSF study are listed below.

(i) Application of the VSF in flow diagnostics and simulation. The VSF is expected to combine with
the high-resolution large-scale DNS database (Wu et al., 2015b, 2017), 3-D time-resolved
near-wall PIV techniques (He et al., 2011; Wang, Gao, Wang, Wang, & Pan, 2019; Zhu et al.,
2013), data-driven methods (Duraisamy, Iaccarino, & Xiao, 2019) and advanced GPU and
quantum computing hardware. These interdisciplinary studies can extend the VSF to solving
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more critical problems in engineering sciences, such as the transition on high-speed vehicles,
turbulent combustion in aero-engine and swimming/flying of bio-inspired robotics.

(ii) Geometric description of flows based on vortex surfaces. A universal Clebsch representation is to
be developed to transform a 3-D velocity field into a two-component wave function. The exact
expressions in spherical or other non-Euclidian spaces can be used to represent complex vortex
surfaces. The constructed wave function serves as the initial condition of the generalized
Schrödinger equation. Its evolution characterizes fluid motion and tracks vortex surfaces in
turbulence and transition. In such simulations, the regularization method needs to be developed to
treat viscous effects. In addition, reduced-order models and subgrid-scale models could be
developed based on the relation between vortex geometry/topology and turbulence statistics.

(iii) Numerical issues in the VSF method. Although the VSF has been successfully applied to various
problems, its computational cost and ease of use are still important issues. The additional cost of
the VSF calculation in solving (2.6), a simple advection equation, needs multiple pseudo-time
steps and appropriate boundary conditions for 𝜙v. Thus, it is desired to improve the efficiency in
the VSF calculation using GPU and to adapt the VSF solver to various complex boundary
conditions and unstructured grids in open-source software.
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