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Abstract

In this paper, we generalize the classical F. and M. Riesz theorem to compact groups and compact
commutative hypergroups. The group SU(2) of unitary matrices is also studied.

1991 Mathematics subject classification (Amer. Math. Soc): 22 C 05.

1. Introduction

F. and M. Riesz proved the following result ([21], p. 335).

(CLASSICAL) F. AND M. RIESZ THEOREM. Let n be a measure on the unit
circle T = {el , 0 < 8 < 2n} whose Fourier coefficients

= (
Jo

dn{6)

with negative index are equals to zero. Then n is absolutely continuous with
respect to Lebesgue measure.

J. H. Shapiro gave a new proof of this theorem based on a study of duals
of subspaces of LP(T) for 0 < p < 1 [22]. His ideas were used by G.
Godefroy for the study of Riesz subsets of commutative discrete groups [10].
In another direction R. G. M. Brummelhuis generalized Shapiro's methods
to compact metrizable groups whose center contains a circle group [3].
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In this paper, we give extensions of the classical F. and M. Riesz theorem to
compact groups and compact commutative hypergroups. See [15, 23, 24] for
the definition and the fundamental properties of hypergroups. A hypergroup
is a locally compact space which has enough structure so that a convolution
on the space of finite regular Borel measures can be defined. Classical exam-
ples are the space of conjugacy classes of a compact group, spaces of orbits
in a locally compact group of automorphisms and double-cosets of certain
non-normal closed subgroups of a compact group. The class of hypergroups
includes the class of locally compact topological groups.

We briefly describe the contents of this paper. In Section 2 we recall some
basic properties of hypergroups. In Section 3 we construct approximate units
of the space Ll(K) for K a compact hypergroup. In Section 4, we study
lacunary sets in the dual of a compact hypergroup. We first extend a result of
R. E. Dressier and L. Pigno [7]: the union of a Riesz set and a Rosenthal set
is a Riesz set. We also investigate the class of Riesz sets, nicely placed sets
and Shapiro sets in the dual object of a compact commutative hypergroup.
Shapiro sets are Riesz sets (Theorem 4.6), for which the Mooney-Havin the-
orem extends. Following [10, 17], we use the localization technique to con-
struct nicely placed sets. The stability by union is studied and extensions to
the Mooney-Havin theorem are given. Section 5 is devoted to some exam-
ples, we consider in particular the hypergroup K of the conjugacy classes
of the compact group SU(2) and construct nicely placed sets in the dual
K. In Section 6, we use techniques of infinite dimensional Banach space
theory to study A(l)-sets in the dual object of compact hypergroups and give
non-commutative extensions of G. F. Bachelis and S. E. Ebenstein's result
[1] and of F. Lust-Piquard's result [16]. We also answer a question of R. G.
M. Brummelhuis [5]. In Section 7, we generalize a result of G. Godefroy
[10] to compact groups whose center contains a copy of the circle group; we
improve a result of R. G. M. Brummelhuis [4, 5]. We also give some applica-
tions to the unit sphere of Cn(n > 2) and to the Bergman-Shilov boundary
of a bounded symmetric domain.

NOTATION. Let K be a compact group or a compact hypergroup. We
denote by 'S'(K) the space of continuous functions on K and by Jf(K)
the dual of ^{K), the space of finite Borel measures on K. We denote by
s#+(K) the subset of positive measures in J?(K) and D(K) the algebra
generated by the discrete measures. We denote by Sx the Dirac measure at
the point x. We denote by fta (resp. jis) the absolute continuous (resp.
singular) part of a measure fi in J^(K) with respect to the Haar measure.
The L{\, oo) ("weak Z,1") quasi-norm is defined by
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[3] Lacunary sets for groups and hypergroups 41

We denote by B(X) the closed unit ball of a Banach space X and by IE

the characteristic function of the set E.

2. Basic properties of hypergroups

Our main reference for hypergroups is [15]. Let us recall the definition of
a hypergroup.

DEFINITION 2.1. Let K be a locally compact Hausdorff space. The space
AT is a hypergroup if there exists a binary mapping (x, y) -* 8*8,, of K x K
into J[+(K) satisfying the following conditions.

(1) The mapping (8X * 8 ) —• 8X • 8 extends to a bilinear associative
operator • from J?(K) x Jt(K) into Jf(K) such that

f fd(/i*v)= [ f i fd{Sx*8)dn{x)dv{y)
JK JK JK JK

for all continuous functions / on K vanishing at infinity.
(2) For each x, y e K, the measure 8e * 8y is a probability measure

with compact support.
(3) The mapping (/*, v) —»fi • v is continuous from Jf+(K) x ^+

into ^+(K); the topology on Jf+(K) being the cone topology.
(4) There exists e £ K such that 8e * 8 = 8X = 8X * 8e for all x e K .
(5) There exists a homeomorphism involution x —• x~ of Â  onto K

such that, for all x , y e AT, we have

(8X*8 )~ = 8 - *8X- , where 8~ is defined by

f(k)dSx-(k)= I f(k~)d8x(k),
JK

and also,

e G supp((5 * 8,,) if and only if y = x~
x y

where supp(<L • 8) is the support of the measure 8r * 8V .
•* y ^ y

(6) The mapping (x, >>) —> supp^**? ) is continuous from KxK into
the space ^(AT) of compact subsets of AT, where W{K) is given the
topology whose subbasis is given by all

: A n U / 0 and A C K}

where [/, F are open subsets of K.

Note that in general 8x * <5 is not necessarily a discrete measure. A hyper-
group K is commutative if <S * 8 = 8 * 8 for all x , y in K. Let us first
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recall some properties of compact commutative hypergroups. Such a hyper-
group K carries a Haar measure m such that m(K) = 1 and Sx* m - m
for all x in K. If / is a Borel function on K and x, y e K then x*y is
denned by f(x*y) — fKfd(Sx*Sy). A complex-valued function x on K is
said to be multiplicative if x{x*y) = x(x)x(y) f° r aH •* a n d y m ^ • The
dual T̂ of Â  is the space of characters; that is the space of multiplicative
continuous functions x o n K s u c n that x(x~) = X(x) for all x in K.
The space K is an orthogonal basis for L2{K). If K is compact then £ is
discrete. Let us note that K is not necessarily a hypergroup. For JJ, e J?(K),
the Fourier-Stieltjes transform p. of ji is denned on ^ by

= /
JK

* ^ , for all x&K.
K

The mapping [i —> ft is a norm-decreasing *-algebra isomorphism from
JT{K) into the space of bounded functions on K. We are also concerned
with compact, not necessarily commutative, hypergroups K. Such hyper-
groups also carry a Haar measure and are unimodular. The dual object X is
then the set of equivalence classes of continuous irreducible representations
of K. If K is commutative, then X is to be identified with K, the space
of characters. In the non-commutative case complications arise because not
all continuous irreducible representations of K have representation space of
dimension 1. However all the representation spaces have finite dimension
when K is compact [24]. Let us recall a few definitions and properties [24].
The Fourier-Stieltjes transform of a measure fi in J?(K) is then defined by

/2(T) = /
JK
/ ffor each x e l .

JK

It is an operator-valued function on Z. The spectrum of a measure fi in
Jt(K) is defined by

spec // = { Q € I , /i(a) ^ 0} = supp/i.

For any subset A of E, we let

JtA(K) = {ne Jt(K), spec n c A}.
Let £?~{K.) denote the space of trigonometric polynomials on K : &~(K) =
{/ € L\K) : spec / is a finite set}. If A c Z, let ^A(K) = {/ e ST{K) :
spec / c A} .

3. Approximate units in LX{K)

In this section, we construct approximate units in L (K) for K a compact
hypergroup. We get a generalization of a result of J. Bocle [2, Theorem II,
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page 17], see also [22, Lemma 1.1]. In the following K will denote a compact
not necessarily commutative hypergroup, m its Haar measure. We assume
m{K) = 1. The main result of this section is the following

THEOREM 3.1. Let K be a compact hypergroup. There exists a net of
functions {ha} in L (K) such that for all a:

(1) ha

(2) HAJI, is bounded.
(3) If fi € J?S{K) then the net {ft * ha} converges in Haar measure to

zero.
(4) IffeLl(K) then the net {f*ha} converges in Lx-norm to f.

PROOF. Consider % a basis of neighborhoods at e consisting of symmet-
ric sets. We direct the net in the usual way: U > V if U c V. For V e %,
let fv — m(V)~xIv . We now prove that the net {/J. * f v } V e ^ converges in
Haar measure to 0 when fi belongs to Jts{K) • Since \n*fv\ < \fi\*fv [15,
6.1.B] we may without loss of generality suppose n to be a positive measure.
Let e > 0 and a > 0. Since ft is a regular and singular measure on K
there exist a compact set H and an open set U such that H c U C K and
fi(U) = n{K) - \\p\\, n{U \H) < ea/2, m(U) < e/2. Define A in Jt(K)
as follows:

X(B) = n(B n H) for B a Borel subset of K .

Then ii = X + d where 6{K) < ea/2. By [15, 3.2.D], there is a neighborhood
W in % such that W * H C U. By definition, one has:

(A* lw){t) = / Iwiy- * t)dX(y) = f (Iw * <S,)O0dA(y)

and,

{X*Iw){t)= [ (Iw*8t){y)dviy).
J(w*t)nH

By [15, 4.1.B],theset (W*t)nH is empty if and only if the set {t}n(W~*H)
is empty; that is t does not belong to the set W~ * H and by the symmetry
of W, t does not belong to W * i / . It follows that if £ does not belong to
U then the set (V*t)nH is empty for any V c W. Now we proceed as in
the group case [22]. For V cW ,v/e have M*fv = d*fv off U. Hence,

/ (ji*fv)(t)dm(t)= [
K\U JK\U

By Chebyshev's inequality:

m{{n* fv > a} n (K \U)} < e/2
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and

m{M*fv >«} < e/2 + m(U) < e.

By [15, 5.1.B], we also get that if g e Ll(K), {g* f v } V e % converges in
L'-norm to g. Since each fv is an element of L2(K) and &~{K) is dense
in L2(K) [24], we get the theorem.

Let us note that R. C. Vrem constructed in LX(K), with K a compact
hypergroup, approximate units satisfying the assertions (1), (2) and (4) of
the Theorem 3.1. See [24].

4. Lacunary sets for compact hypergroups

Following [10, 16], we now define Riesz, nicely placed, Shapiro and Rosen-
thai sets. In the sequel, K will be a compact hypergroup, X its dual and m
the Haar measure on K.

DEFINITION 4.1. A subset A of X is a Riesz set if every measure [i in
J?A(K) is absolutely continuous with respect to the Haar measure of K.

DEFINITION 4.2. Let X be a closed subspace of L 1 . The space X is
nicely placed if B(X) is closed in L{\, oo). A subset A of Z is nicely
placed if LX

K(K) is nicely placed in Ll(K).
We denote by [A] the smallest nicely placed subset of X containing A.
DEFINITION 4.3. A subset A of X is a Shapiro set if every subset of A is

nicely placed.
DEFINITION 4.4. A subset A of X is a Rosenthal set if LA(K) = &A{K).
It is known that every Rosenthal subset of a commutative discrete group is

a Riesz set [16]. More generally, R. E. Dressier and L. Pigno have shown that
the union of a Riesz set and of a Rosenthal set is a Riesz set [7]. G. Gode-
froy extended this result [11]; we generalize Godefroy's result to compact
hypergroups.

PROPOSITION 4.5. If K is compact hypergroup and X its dual, if A c X is
such that Jf^ = Ll

K © ( ^ ) A and if AQ is a Rosenthal set, then

Let us remark that if A is a Riesz set then (Jfs)A = {0} and A U AQ is a
Riesz set.

PROOF. Let n be in / A u , ( ^ ) and consider gn =kn*fi (where (kn) is
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[7] Lacunary sets for groups and hypergroups 45

an approximation of the identity in Ll{K)). We have,

[(kn*/i)fdm = ffkn{x*y-)f{x)dn{y)dm{x)

= / / k (x)f (y *x)dn(y)dm{x)
J JK

= I k~(n*Ddm.

We let A = {5, a e A} and A' e I \ A. If / e L~ then f~ e L™
and pi* f~ G L^° = W. . Therefore lim/1_>+oo(/^/I/rfm) exists for every

And now the proof proceeds exactly as in the commutative compact group
case, see [11].

In the sequel, K will be a commutative compact hypergroup and K its
dual. The second part of this section is devoted to the proof of the following
result.

THEOREM 4.6. Let K be a commutative compact hypergroup. Then every
Shapiro subset of K is a Riesz set.

Let g7 c 3°(K) be a family of subsets of K. We consider the class

& = {A e &>{K): for all B c A, B e ^ } . We have the following lemmas.

LEMMA 4.7. Le? K be a commutative compact hypergroup and W be a
family of subsets of K. If every A e f satisfies:

ft e J#K(K) implies ns € K

o

then every A e f is a Riesz set.

PROOF. The proof here is similar to the group case [10, Lemma 1.1].

LEMMA 4.8. Let K be a commutative compact hypergroup, A be a subset
of K and fie J?K{K). Then ns e Jtm(K).

PROOF. The proof proceeds as in the group case [10, Lemma 1.5]. Note
that this proof does require Theorem 3.1.

Theorem 4.6 follows from these lemmas.
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REMARK. With the same arguments it can be shown that if G is a compact
group and Z its dual then every Shapiro subset of Z is a Riesz set.

A way to construct Riesz, nicely placed and Shapiro sets is the localization
technique [10, 17]. Let us introduce the following topology on K. For
a e K, we say that Va is a r-neighborhood of a if there exists a measure
va e D(K) such that

(1) i>Q(a)^0, F Dspeci/a.

This defines a topology. Let us just mention that if Ua and Va are two
t-neighborhoods of a in AT then there exist two measures va and fia in
D(K) such that

a 6 Ua D spec va, a e F D spec /ZQ .

We have "Q*/*a € D(K) and a 6 C/Q n Va D spec(f a * / i j . Therefore Uan Va

is a r-neighborhood of a . This topology corresponds to the Bohr topology
in the commutative group case.

THEOREM 4.9. If A is a subset of K and if for every a 6 K there exists a
r-neighborhood Va of a such that

(2) n e ^ A n F a (K) implies ns e J?AnVa (K)

then we also have
tieJ?A(K) implies fis€J?A(K).

PROOF. Let A c K, a $ A and Va be a r-neighborhood of a satisfying
(1) and (2). Let fi £ MA(K). T h e n \ * / i € ^A n s p e c K(K) and va*n €

. Then (is * n)s eJfAnV(K). Since a £ A° a g A n FQ and

^ i ( a ) = 0. Since I-1 (AT) and ^S(K) are closed and invariant under
convolutions by the elements of D(K) [15], we have (va*n)s = u

a*f*s [17].
Thus fls(a) = 0 and ns & -^A(K).

Let us notice that if A is a subset of K and if for every a e K there
exists a T-neighborhood Va of a such that A n F is a Riesz set then A is
also a Riesz set.

THEOREM 4.10. If A w a subset of K and if for every a e K there exists
a z-neighborhood Va of a such that A n F is a nicely placed set then A is
a nicely placed set.

PROOF. We need two lemmas.

https://doi.org/10.1017/S144678870003696X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003696X


[9] Lacunary sets for groups and hypergroups 47

LEMMA 4.11. Let v e D(K) and (/„)„>) be a bounded sequence in LX(K)
which converges to 0 in L{\, oo). Then v * fn belongs to Ll(K) and there
exists a subsequence (fk)k>1 of (fn) such that the sequence

\ k=l /

converges to 0 in L( 1, oo).

PROOF. By [15, 6.2.B], we have v * fn e LX{K) and

By [10, Lemma 1.2], there exists a subsequence (fk) of (fn) such that the
sequence

\ k=\ / „>{

converges in L( 1, oo). It is easy to see that the assumption that the sequence
(fn) converges to 0 in L(\, oo) implies that the sequence (i/* £ £/t=i /fc)B>i
also converges to 0 in 1,(1, oo).

LEMMA 4.12. Let A be a subset of K and a ^ A. If there exists a
x-neighborhood Va of a such that a $. [VaV\V"\ then a $ [A].

PROOF. Let va e D(K) which satisfies (1). Let / e Lx
h{K). By Lemma

4.11, va*f e L\K). In fact, va* f € 4 n AW • T h u s V
O*LA(K) C

Lv nA{K). Lemma 4.11 proves that if X is nicely placed then C = {/ :
va* f € X} is also nicely placed: consider a sequence (/^) in C which
converges to / in 1,(1, oo), then va * fn belongs to X and £i/a * 5Z^=1 ^
also belongs to X . It follows by Lemma 4.11 that / belongs to C. Then
we have:

(3) va

Since va • a = £a(a).a and i>a(a) # 0 , ( 3 ) shows that a £ [A].

Let us now prove Theorem 4.10. Let a £ A and F^ a r-neighborhood
satisfying (1), then a £ A n F = [ A n F J . And by Lemma 4.11, a £ [A].

COROLLARY 4.13. If A is a subset of K and if for every a e K there exists
a x-neighborhood Va of a such that A n F is a Shapiro set then A is a
Shapiro set.
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COROLLARY 4.14. Let A, be a nicely placed subset of K and A2 a x-
closed subset of K. Then the union A, U A2 is nicely placed. In particular,
every x-closed subset is nicely placed.

This extends a result of Y. Meyer [17]. We also get an extension of the
Mooney-Havin theorem [13, 18].

COROLLARY 4.15. Let A, be a nicely placed subset of K and A2 be a
x-closed subset of K. Then the space Ll / L | UA (K) is weakly sequentially
complete.

PROOF. The result follows from Corollary 4.14 and from the fact that
A is a nicely placed sul

sequentially complete [10].
if A is a nicely placed subset of K then the space Lx

 /L\{K) is weakly

5. Examples

Conjugacy classes of compact non-commutative groups.
Let G be a compact non-commutative group, with normalized Haar mea-

sure a and Z be its dual object. We say that a subset A of Z is central Riesz
if every central measure fi in JfK{G) is absolutely continuous with respect
to the Haar measure of G. Central nicely placed and central Shapiro subsets
of Z are denned in the same way. For x e G, let xG = {t~xxt, t e G} the
conjugacy class of x. Let K — {xG, x e G} have the quotient topology.
The space K, with the operation

6xo*So= I S{ri fda{t)
JG

is a compact commutative hypergroup [15]. Each x e Z has a representation
space of finite dimension d% and trace #T. The functions xx

 a re called
characters but the hypergroup characters are normalized by dividing xx by
dx. More precisely, if n : G —<• K is the natural mapping then yz on K is
defined by: y/ron = dT xT and K = {i//r, x e Z} . The Haar measure m on
K is induced from the Haar measure on G. K is a commutative discrete
hypergroup. The functions defined on K (respectively the measures of K)
correspond to the central functions defined on G (respectively the central
measures of G). It follows that Riesz (respectively nicely placed) subsets of
K correspond to central Riesz (respectively central nicely placed) subsets of
Z. Let us now consider two examples:
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a) The special unitary group 517(2) consists of all 2 x 2 matrices ( "j i)

where a J e C and \a\2 + |/?|2 = 1. Following [14] we now recall the
construction of the dual Z of SU(2). Let / be a number in the set {0, \ , 1,
\, ...}. We construct a representation of SU(2) of dimension 2/ + 1 as
follows.

Let Ht be the linear space of all complex one variable polynomials of
degree not exceeding 2/ . Let u = ( "j t). For all / e Hl, we define:

The mapping T(/) : u —» 7^' is a (21 + 1 )-dimensional representation of

SU(2) and the set {T{0), T{?], T{1), ...} is a complete set of continu-
ous unitary irreducible representations of SU(2). That is, for each n =
1, 2, 3, . . . , X contains exactly one element of dimension n . We write its
character by xn • We now describe the hypergroup K of conjugacy classes
of SU{2), see [15] for more details. We identify K with [0, n] where 6
in [0, n] corresponds to the conjugacy class containing the matrix

(eie 0

The hypergroup character y/n on K corresponding to xn is equal to

The Haar measure m on K is given by

/ fdm = - f f{6) sin2 Odd.
JK n Jo

We now give some examples of T-closed subsets of K. A subset F of K is
T-closed if there exists a measure v in D(K) such that

F — {w , n G N*, v(w ) = 0}.

(1) Let r e N* \ {1}. Then the set {y/kr,k eN*} is T-closed. Indeed,
take v = Sn/r. Then v(vn) = (smnn/r)/(nsinn/r) = 0 if and only
if n is a multiple of r in Z.

(2) Let r e N*. Then the set {v^+i),.* ^ G N} is T-closed. Consider

the discrete measure i /^sinflj^ -sin02^e , with #j = n/r-n/y/2

and-02 = n/y/2.
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Then,

v{y/n) = i(sin«(7t/r - n/V2) - sinnn/V2)

— \ sinn(n/2r - n/V2)cosnn/2r

and

« only if (cosnn/2r = 0)
if and only if (n e {(2k + l ) r , fce

b) C. F. Dunkl and D. E. Ramirez constructed in [8] an interesting family
of compact countable hypergroups Ha , for 0 < a < \ . Ha has the topolog-
ical structure of the one-point compactification of the nonnegative integers.
The case Hx. , p prime, is the set of equivalence classes of the p-adic inte-
gers modulo the group of units (under multiplication). The hypergroup Ha

is identified with {0, 1 , 2 , . . . oo} . The invariant measure m is given by

a A : ( l - a ) fo rA:<oo , w({oo}) = 0.

Ha = {Wo' V\ > ^2 > • • •} w h e r e ^o = l a n d

{ 1 for k > n

a/{a- 1) forfc = « - 1, n> 1

0 for k < n - 1.
The following sets are r-clopen:

(1) {Vp, Vp+i, ¥p+2, • • • } for all p > 2.
(Take v = dp_2)

(2) {y/p} for all p e N. (Take v = ((a + l ) / a^_ , - Sp)+

£ ~ o y2j(Sp+2j+l-Sp+2j+2) for p > 1 and v =
(3) {Wo,¥i,---,¥p} f o r a l l p e

6. A( 1 )-sets in compact hypergroups

It is known that if G is a compact commutative group and A a subset of
its dual then we have the following equivalences.

(1) A is a A(l)-set if and only if L[(G) is reflexive [1]
(2) A is a Riesz set if and only if Ll

A(G) has Radon-Nikodym property
[16].
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Let us recall that a Banach space X has the Radon-Nikodym property (RNP)
if and only if every linear continuous operator

T:Ll(Q,J*,ii)->X

(where fi is a probability measure) is representable by a X-valued strongly
^-measurable and bounded function F that is for all <f> e Ll(Q, stf , fi),

T{<p) = J<p(co)F((o)dji(a)).

If X is a reflexive Banach space then X has RNP [6]. If follows that a
A(l)-set is a Riesz set. Our aim is to extend the results (1) and (2) to com-
pact hypergroups. In the following K will denote a compact not necessarily
commutative hypergroup, m its Haar measure and I its dual.

DEFINITION 6.1. Let 0 < p < oo. A subset A of Z is called A(/?)-set if
for some 0 < q < p there exists a constant C such that

(4) \\f\\p<C\\f\\q, forall/e^tf).

A is called central A(p) if (4) holds for all / in ̂ (K) which are central.

PROPOSITION 6.2. Let A be a subset of"Z. Then A is K{\)-set if and only
if Ll

A(K) is reflexive.

PROOF. Suppose that A is a A(l)-set of X. Then for some 0 < q < 1
there exists a constant C such that

Let (Fa) be an approximate unit satisfying Theorem 3.1. Let / e Ll
A(K)

then Fa* f €-^{K) and, for 0 < q < 1, we have

ll^*/ll,<C||ftt*/||,.

Let e > 0 and a be such that

PW-/lli<e-
Then,

\\f\\x<\\Fa* f\\x + \\f - Fa* f\\x<C\\Fa* f\\q + e

< C[\\Fa *f- / | |; + Il/H 9fq + e < C[\\Fa *f- / | |«

We have proved that there exists a constant C depending only on q such
that for all / 6 LK(K), we have

\x<C\\f\\q\
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that is, the Ll and Lq topologies coincide on L\(K) and LA{K) is reflexive.
For the converse, see [1].

PROPOSITION 6.3. Let A be a subset of L. Then A is Riesz if and only if
LlJK) hasRNP.

PROOF. Suppose first that A is Riesz. The space LA{K) has RNP if
and only if its separable subspaces have RNP [6]. Let S be a separable
subspace of LA{K), then -S c LA>(K) with A' c A and A' countable.
Since LA(K) = JfA{K), LA>(K) is a separable dual. On the other hand,
suppose that LA(K) has RNP. Let /i e JtA(K), f e Ll(K), 6 e
then

(f*H,6)= I (f*n)8dm= f f(6*n )dm [15, 6.2D]
JK JK

= f f{g) I d(g*y-)dn~(y)dnt(g)
JK JK

= I ( I f(g)e(s)d(Sg*6y-)(s)dfi-(y)dm(g).
J K. J K. v K

Also,

/ f(g)(Sg*fi, d)dm(g) = f f(g) f 0{x)d{8g*n){x)

= I I f{g)eg(y)dn{y) [15, 3.1.F]
JK JK *

= 11 f f(g)d(s)d(8 *8 )(s)dfi(y)dm(g)
JK JKJK g y

and
{f*t*,O)= [ f(g){8• *n, d)dm(g).

JK S

Let 7^ be the operator from Ll(K) into LA(K) defined by Tft(f) = f*/i.

Ll
A(K) has RNP then the function g —> 8 */i is almost everywhere LA(K)-

valued. Thus n is in LA(K).

Let G be a compact group, Z its dual and A a subset of £ . Let us denote
by LA

C(G) the subspace of central functions of LA(G). RNP and reflexivity
are isomorphic properties therefore by Proposition 6.2 and Proposition 6.3,
we get

COROLLARY 6.4. (1) A is a central A(l)-s^ if and only if Ll
A

c(G) is
reflexive.
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(2) A is a central Riesz set if and only if L1^ (G) has RNP.

COROLLARY 6.5. If A is a central A(l)-set then A is a central Riesz set.

This answers a question of R. G. M. Brummelhuis [5].
REMARK. In the non-commutative group case, central A(/?)-sets are more

abundant than A(p)-sets, see [5]. For example for all n > 2, the dual object
of SU(n) does not contain an infinite A(/?)-set for any p > 0 ([19, 20]).

7. Shapiro sets for compact groups whose center contains the circle

G. Godefroy proved the following result [10]. Let F be a totally ordered
discrete group and A be a subset of F such that

An {a < a} is a A(l)-set for every a e F .

Then A is a Shapiro set of F .
We generalize this result to compact groups whose center contains a circle

group and precise a result of R. G. M. Brummelhuis [5]. Examples of such
groups are the unitary group U(n), isotropy groups of bounded symmetric
domains. In this section G will denote a compact metrizable group whose
center contains a circle group. We denote by Z its dual and by m its Haar
measure. For T in S, let H{x) denote the representation space of x and dx

the dimension of H(x). If %x denotes the character of x then for F e ^{G)
and g € G

F(g) = £ dr{Xt*F)(g) = £ dxtr{F(x)x(g)}

where tr means trace.
Fix an injective homomorphism T = {e'e, 6 e ] - n, n]} <-• Z(G), the

center of G; e'e will denote an element of T as well as an element of Z(G).
By Schur's lemma there exists for each i in I a unique n(x) e Z such that

(5) x(eW) = ein{T)eIdH(x), f o r a h V e T .

If / is a function on G and g in G, the "slice" function f on T is
defined by:

fg(e
id) = f{eieg).

For / in F{G), fg G •T'(T) and

imB

m€Z
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where the projections nm are denned by

**/(*)= E drtT[f(T)T(g)].
res

«(r)=m

Define the projection PN on fT{G) by

(6) PNif) = E «»/•

The following lemma follows from [5].

LEMMA 7.1. For all p, 0 < p < 1, ?/?ere exirts a constant C such that for
all f in

We need the following lemma

LEMMA 7.2. Let A c I , / € L*(G) am/ «(A) = {/I(T), T e A}. / / /

belongs to L L A ) (belongs to Ll
K(G) then for a l m o s t every g e G , f belongs to L L A ) ( T ) .

PROOF. There exists a sequence ( / W ) n > 1 of trigonometric polynomials

in ^K{G) such that (| | / (") | | I)n>1 is bounded and ( / n ) ) n > 1 converges to /

in L'-norm.
Up to a subsequence, we may assume that M=JG ^2n\f

<'n\g)-f(g)\dm(g)
iff

is finite; by invariance we get that, for all e in T,
M = IE l/" V ) - f{gei6)\dm{g).

So

11E I/" V ) - /(^")|rfm(*)^ is finite.

Hence, for almost every g in G, fT'Za\f
{n\8eie)-f(geie)\d9/2n is finite.

So that, for almost every g in (7, (yl"))w>1 converges to f in L*(T). Since

€ Li(A)(T), it follows that fg G Li(

f

Let us remark that if, for almost every g e G , the slice function fg

belongs to Ll.AJT) then the function / belongs to L~^(G) where A = { i e

X, W(T) = n(fi), for some /? e A } . We are now ready to prove the main

result of this section.
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THEOREM 7.3. Let G be a compact group whose center contains a copy of
the circle group. Let A be a subset of X such that

(7) {T € A, n{x) < N} is a A(l)-setfor every N e Z.

Then A is a Shapiro subset of X.

PROOF. Since (7) is hereditary, it is enough to prove that A is nicely
placed. Let (fn)n>l be a sequence in B(Ll

A) which converges to / in

L( l , oo), and let T be in X \ A; we have to prove that / ( T ) = 0.
Let Q 6 I be such that n{a) > n(i). Consider the projection P . ,

defined by (6). We let Yn(a) = {d e X, n{5) > n(a)}. If supp / c A then

/>n, . / G L ^ r . Since A \ r n ( . is a A(l)-set, there exists K > 0 such that

for every / in Ll
A ,

Also by Lemma 7.1, \\Pn{a)f\\l/2 < C| |/ | | , . Thus PB(a) is || • ||,-continuous
from L,\ into L.\xr and L!. = L i , r © L l n r . Let (/) be a subse-
quence of (fn) which converges almost everywhere. Let g'n = Pn,a){fn) and
^n = -^ ~ •?« • T n e sequences (g^) and (Â ,) are || • ||j-bounded and thus
by Lemma 1.2 [10] there exist subsequences (g1^) and (h'^), indexed by the
same set, which converge in Cesaro mean almost everywhere and in L{ 1, oo)
to g and h , respectively. We have f = g + h .

Since A \ T , . is a A(l)-set, the space L ^ r is L(l, oo) closed and

thus g G L l v r and g(r) = 0. It remains to show that h(x) = 0. The

sequence /cn = ^ 5Z"=i ^" converges to h in L ( l , oo) and is bounded in

L^n r . In particular kn is in L,\. . Thus we have to show that LX
T is

n{a) n(a) n(a)

nicely placed.
In fact, it suffices to prove that Lr+ is nicely placed where F+ = {a € X,

«(Q) > 0}. Let (Z^) be a sequence in B(Lp+) which converges to / in
L{\, oo). We have to show that / ( a ) = 0 for a $ F+ .

Up to a subsequence we may suppose that (Z*"') converges to / a.e. And
for almost every g£G, ew e T, ff\eie) tends to fg{eW). By Lemma 7.2,
we have that ^ " ' € L^(r+) and (H^H,) is bounded. Since n(Y+) is nicely
placed, f e Lx.^ for almost every g and by the remark after Lemma 7.2

/ € L̂ + . This proves the theorem.

Our result improves Theorem 2.1 of [5].
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We now give some applications of this theorem.
First, we give a non commutative extension of the Mooney-Havin theorem

([13, 18]).

COROLLARY 7.4. Let G be a compact group whose center contains a copy of
circle group. Let A be a subset of 'Z satisfying (7) then the space LX/LA(G)
is weakly sequentially complete.

PROOF. The result follows from Theorem 7.3 and Lemma 1.8 of [10].
We are now interested in the "central version" of Theorem 7.3. Let us

note that if (fn) is a bounded sequence in Ll
A

c(G) which converges to / in
L( 1, oo) then / is also a central function. And if / is a central trigono-
metric polynomial then the projection PNf is also a central function.

THEOREM 7.5. Let G be a compact group whose center contains a copy of
the circle group. Let A be a subset of Z such that

{T € A, H(T) <N is a central A(l)-setfor every N e Z.

Then A is a central Shapiro subset of Z.

Let us note that under these assumptions A is central Riesz. Another easy
consequence of the theorem is the following corollary.

COROLLARY 7.6. Let G be a compact group whose center contains a copy
of the circle group. Let A. be a subset of Z such that

(1) For each m € Z the set {T e A : «(T) = m} is a A(l)-set.
(2) The set {n( t ) : T e A} is bounded from below.

Then A is a Shapiro subset of Z.

Let us mention that under these assumptions R. G. M. Brummelhuis
proved that A is a Riesz subset of Z [3].

REMARK. Let G be a compact group and A be a subset of its dual. We
denote by A the set of a's in A such that the restriction of Fa : f —> / ( a )
to B(l

A
c(G)) is //-continuous (0 < p < 1). Then we can show that for every

central Shapiro set A, one has A — A. We can also give another "central"
extension of Theorem 3.2 of [3].

PROPOSITION 7.7. Let G be a compact group whose center contains a copy
of the circle group. Let A be a subset of Z such that

(1) For each m e Z the set {x € A, n(r) = m} is central Shapiro.
(2) The set {AZ(T) , T e A} is bounded from below.

Then A is a central Riesz subset of Z.
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PROOF. Let n be in dfA{G) and (Fn) be a sequence of central trigono-
metric polynomials satisfying Theorem 3.1. Then Fn*n belongs to !TK (G)
and na belongs to the set C which is the closure of the set ||^||.B(J^C) in

a

|| -||p (0 < p < 1). Then for all F e B{FC(G)), F * na also belongs to C .
Following [3] we consider for m e Z the projection nm : &~{G)
denned by

(nmf)(k)= f f(eiek)e-imed6/2n= £ dT(xx*f)(k).

Since the set {«(T) , T G A} is bounded from below, nm is Lp-continuous

on FA(G){0 <p < 1) [3]. Let (/„) be a sequence in FA
C(G) with (U/J,)

jbounded and let / be in £f(G) such that (fn) converges to / i n || | jp

(0 < p < 1) then {nm{fn)) converges to nm(f) in || • || . Moreover we
have that spec nm{f) c { i e A , n(x) — m} since the s e t { i e A , M(T) = m}
is central Shapiro. Therefore / belongs to ^ (G). It follows that for all
F e^rC(<7), F*na belongs to ^A

C{G) and,

(8) f o r a U F e ^ c ( G ) , ^ ^

For each a £ A and each k e G, consider the linear functional:

(9) f^da(Xa

Let us denote by Y the space 7^TgA n(T)=n((T)i • Let (/n) and / be in Y such

f /
^ )

that (H/^ll,) is bounded and (fn) converges to / in || • ||p (0 < p < 1).
We have that (^,(T)) converges to / ( T ) for T e {T e A, «(T) = «(a)} since
this set is central Shapiro. And ((xa * fn)(k) — Xr{fn{a)a(k)) converges to
(Xa * f)(k). Hence the functionals (9) are L"-continuous on the bounded
sets of Y. From the //-continuity of the projection nn(a) it follows that

(10) functionals (9) are Lp-continuous on bounded subsets of ^ (G).

(8) and (10) imply that ns = 0 (see [3] for more details).

We give some applications to the unit sphere in C" , homogeneous spaces
and bounded symmetric domains.

Let S = S2n_{ = {z e C" , \z\ = 1} be the unit sphere in C" . 5, is just
the unit circle T. S3 can be identified with 5(7(2) and we can then apply
the results of Section 5. For n > 2, 52n_, does not have the structure of a
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compact group. We will extend the results of Section 7 to S2n_l and more
generally to homogeneous spaces.

Let us recall some basic facts about S2n_{ [3]. For non-negative integers p
and q , we denote by H{p, q) the vector space of all harmonic homogeneous
polynomials on C" that have degree p in z and degree q in ~z . We let a be
the rotation-invariant positive Borel measure on 5 for which a{S) = 1. The
space L2(S, a) is the direct sum of the pairwise orthogonal spaces H(p, q).
Let n be the orthogonal projection of L (S, a) onto H(p, q). Fix p and
q . To every z e 5 corresponds a unique Kz in H(p, q) that satisfies

We can define n u when fi e JP(S). Consider now

spec /i = {(p,q)efixN, npqn ± 0} .

Let xpq be the restriction of the left regular representation of U(n) on

L2(S, a) to H(p, q), that is

(Tw(t/) /)(0 = / ( ! / " ' / ) ; feH(P,q), UeU(n), leS.
The xpq are pairwise non-equivalent and they represent all irreducible rep-
resentations of U{n) which occur in L2(S, a), and n(xpq) = q - p , where
n{ipq) is defined by the relation (5).

From Theorem 7.3 we then get,

COROLLARY 7.8. L r t A c N x N be such that for all N e Z

{(p, q)eA,q-p< N} is a A(l)-set.

Then A is a Shapiro set.

We can improve Theorem 1.1 of [3]:

COROLLARY 7.9. Let A c N x N be such that

(1) For each NeZ, {(p, q) e A, q -p = N} is finite,
(2) {q - p , (p, q) € A) is bounded from below {or above).

Then A is a Shapiro set.

Let K be a compact group whose center contains a copy of the unit circle.
Let H be a closed subgroup of K. We will extend Corollary 7.8 to the homo-
geneous space K/H. Functions (resp. measures) on K/H can be identified
with functions (resp. measures) on K which are right //-invariant. Let a be
the ^-invariant measure on K/H for which a(K/H) = 1. If n € J?{K/H)
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is a right //-invariant measure on K then nxfi = drxr * H (T e X the dual
of K) is again //-invariant. The map nt : / —> dxxx * / ( T £ X) is an or-
thogonal projection of L2(K/H, a) which is different from 0 if and only
if T occurs in the left regular representation of K on L (K/H, a). For
feL\K/H,a), consider

s p e c / = { T € l , nxf?0}.
The " homogeneous version" of Theorem 7.3 (see also Theorem 3.7 [3]) is

COROLLARY 7.10. Let A c I fe such that for all N e Z,

{T e A, «(T) < iV} w a A(l)-ser.

Then for every T c A, B(Ll
r{K/H), a) is L"-closed (0 < p < 1).

Note that for K = U(n), H=U(n-l) then K/H = S2n_i .
Following [3] we can apply these results to bounded symmetric domains.

Let Q € C" be a bounded symmetric domain, we may assume £2 to be
convex and circular. Let K be the stabilizer of 0 in the component of the
identity of the group of holomorphic automorphisms of ft. The center of K
contains a copy of the circle. We can apply Corollary 7.10 to the Bergman-
Shilov boundary S of Q. Let H2{S) be the closure in L2(S, a) of the
holomorphic polynomials restricted to S . H (S) is A^-invariant under the
left regular representation of K in L (S, a). Let KHol be the set of irre-
ducible representations of K which occur in H2(S). Let H(p) be the space
of holomorphic polynomials which are homogeneous of degree p (p € N)
restricted to S. H(p) is A^-invariant and decomposes as a finite sum of
representations in Khol. If T e KHol then «(T) < 0 and n(r) = -p if x
occurs in H(p) (see (5) for the definition of «(T)) . Therefore KHol satisfies
conditions (1) and (2) of Corollary 7.9 and KHol is a Shapiro set.
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