ON MAXIMAL SUBSYSTEMS OF ROOT SYSTEMS

NOLAN R. WALLACH

1. Introduction. Let g be a semisimple Lie algebra over an algebraically
closed field K of characteristic 0. Let 2 be a Cartan subalgebra of g and let
A be the root system of g with respect to k.

Definition 1.1. A subset A; of A is called a subsystem of A if A; satisfies the
following two conditions:

(1) if @ € Ay, then —a € A;.

(ii)if ¢, B € Aj,andif « + B € A, then @ + 8 € A;

A subsystem A; is called maximal if A, is a proper subset of A and A; is not
properly contained in any proper subsystem of A.

The purpose of this paper is to give a detailed study of the maximal sub-
systems of A. We study maximal subsystems A; of A from the point of view of
how A extends A;. Some of the results of this paper overlap those of Borel and
de Siebenthal (1). Our techniques, however, are different.

In §3 we introduce the concept of the characteristic of a maximal subsystem
A; of A. It turns out to be a prime or 0 depending only on A and A;. In §4 we
give another characterization of the characteristic of a maximal subsystem
of A. (We apologize to the reader for overworking the word characteristic,
but we feel that the word is apt in this case.) Theorem 3.1 is our main theorem
on maximal subsystems of connected root systems.

In §5 we sketch a proof of the statement: If A; and A, are two maximal
subsystems of a connected root system A and if A; and A, have the same
structure and characteristic, then there is a rotation ¢ of A such that ¢A; = A,.
The proof of this result depends, to some extent, on case-by-case considerations.

In §6 we give a sketch of how the results of this paper may be used to classify
the real forms of a complex semi-simple Lie algebra. The techniques of §6 are
similar to those of S. Murakami (5), and were discovered simultaneously in (7).

2. ! — 1 maximal subsystems of A. Let g, %, and A be as in §1. Let M be
a module over a ring S, and let A be a subset of M. In this paper we shall use
the notation {4} s for the submodule of M generated by 4 over .S.

For each X € g, let adX be the linear map of g into g given by adX-Y =
[X, Y1(...,...]is the product in g). Let (X, V) = trace (adX adY). Then
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it is well known that (..., ...) is a non-degenerate bilinear form on g X g
andon® X h.Leth* bethedualof #. If N € h* wedefine H, € hby (H,, H) =
M(H) for each H € k. On h* we define the bilinear form (. .., ...) by setting
N\ u) = (Hr, Hy), \, u € B* It is known that {...,...) takes on rational
values and is positive definite on {A}, (where Q is the field of rational numbers).

Set | = dim {A}, (=dim gh).

Definition 2.1. A subsystem A; of A is called / maximal if A; is maximal and
dlm {Al}Q = [.

A subsystem A; of A is called / — 1 maximal if dim {A;}, =7 — 1 and if
whenever A, is properly contained in a subsystem A, of A, then dim{A.}, = I

The following lemma can be found in either (1) or (2); we include a proof
for the sake of completeness.

LemMa 2.1. Let By, ..., Bs be elements of A and let v =31+ ...+ Bs.
Ify #0andy € A, theny — B8; € A for somej, 1 <j<s.
Proof. Assume thaty — 8,¢ Afor< =1,...,.S. Since

2<7v Bl>/<ﬁlv ﬂl> = pz — ¥y

where p, is the largest non-negative integer such that y — p, 8;is a root and 7,
is the largest non-negative integer such that v + r; 8; is a root, we see that

But this implies that

<7! 7> = ;il <71 Bz> < O

Since (v, v) > 0, we have a contradiction.
Using Lemma 2.1 we prove

LEMMA 2.2. Let Ay be a subsystem of A. If

S

B = Z m; B,
where B; € Ay and m; € Z, 1 =1,...,S (Z is the ring of integers) and if
B € A, then B € A,
Proof. We may assume that m; > 0,72 =1,...,S (if m; < 0 replace 8; by

—B; € A;). We prove the lemma by induction on m = Y m,. If m = 1, then
B = B1 € Ay Assume that the result is true for m = k. If m = kE + 1, then
we apply Lemma 2.1 to see that 8 — 8; € A for some §8; such that m; > 1. But

B — B =Z {mi — 64418,

(6;; is the Kronecker delta). Since > {m; — 8} =k, 8 — B; € A, by the
inductive hypothesis. By the definition of a subsystem we know that

B=(B—8)+8 €A
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Definition 2.2. Let A, be asubsystem of A (not necessarily a proper subsystem).
A subset 7; of A; is called a fundamental system for A; if

(i) the elements of =, are linearly independent,

(i) if a € Ay, thena = >y ¢ry My vy where m, € Z forally € ; and the m,
are all either non-negative or non-positive (i.e., @ = == > yer | 74| 7).

Dynkin’s method of constructing fundamental systems for A is as follows:

Let > be a linear order on {A;} 4. Let 7, be the set of positive roots in A; that
cannot be written as a sum of two positive roots in A;. Such roots are called
simple with respect to >. m; is a fundamental system for A;. (For details
see, for example, Jacobson (4).)

The following result gives a relationship between fundamental systems of
! — 1 maximal subsystems of A and fundamental systems of A.

LEmMMA 2.3. Let Ay be an I — 1 maximal subsystem of A. If my is a fundamental
system for Ay, then there is a fundamental system = for A such that my C .

Proof. Let w1 = {B1,...,B:—1}. Let u € {A}o be such that u is linearly
independent of 7;. Order {A}, lexicographically with respect to the ordered
basis {u, B1,...,8:-1}. We show that with respect to this order on {A},,
Bi1, ..., Bi_1 are simple in A.

IfB8;,=v-+4,v,86 € A, and v, § are positive, then

-1

-1
’y———ry,-l-zlfjﬁj, 8=S#+2;Sjﬁf’
i= i=

where 7, s > 0. v+ 6§ = 8; implies that » +s =0 and thus »r =s = 0.
Let A be the subsystem of A generated by {v, §, A;} (i.e., {v, 8, A1} oM A).
Dim{A}o = dim{A;}o = I — 1 implies that A = A; by definition of I — 1
maximality. Thus v, § € A;. But the elements of 7, are simple in A; with
respect to the above order restricted to A;. This is a contradiction.

Thus if = is the set of simple roots in A with respect to the above order,

1I'1C‘Il'.

Let 7 be a fundamental system for A and let m; be any subset of = containing
! — 1 elements. Let A; be the root system in A generated by m;. Clearly A,
is / — 1 maximal. Furthermore, Lemma 2.3 asserts that every / — 1 maximal
subsystem is obtained in this manner. Since the Weyl group acts simply
transitively on the fundamental systems of A, we obtain the immediate

COROLLARY TO LEMMA 2.3. Let 7 be a fixed fundamental system for A. Let Ay
be an |l — 1 maximal subsystem in A. There is an element o of the Weyl group of A
such that eAy M\ 7 is a fundamental system for oA;.

3. I maximal subsystems of A. Let A; be a maximal subsystem of A. We

wish to determine a relationship between a fundamental system of A; and one
of A. If dim {A:}¢ = I — 1, then Lemma 2.3 (and its proof) gives a method of
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constructing a fundamental system for A that extends a fundamental system
for A;. If dim {A;}¢ = [, then the situation is more complicated.

Let us assume for the remainder of this section that A;is an / maximal
subsystem of A and that vy = {84, ..., 8;} is a fundamental system for A,.

LeEmMMA 3.1. Let > be the lexicographic order on {A}, with respect to the

ordered basis {Bi, ..., B:}. Let v be the smallest positive root in A — Ay. Then
(1) v is simple in A with respect to > ;
(2) o
1
Y= ; m; By

with m, > 0, then for each u € A — A,

4

M= Z 7y By

i=1

with n, # 0;
3) Brity . - ., By are simple in A with respect to > .

Proof. If v were not simple in A with respect to >, then v = § 4 p,
8,p>0,0,p € A. Sincey € A — Ay, one of § or p must be in A — A, (since
A; is a subsystem of A). This implies that, say, § € A — A;. But then 6§ > 0
and § < v. This is a contradiction and thus v is simple with respect to >.

Assume that B, is not simple in A with respect to > for some j > r. Then,
as above, 8, = 6 +p,08,p > 0,0,p € A. If § and p were in Ay, then 8; would
not be simple in A; with respect to >. Thus at least one of 8, p isin A — A;.
Assume that § € A — Ay. Since 6 > 0,p > 0,8 + p = B;,andj > 7, we must
have 6§ = > s, m; By p = D i>r 1y Bi. In particular, this implies that § > 0
and 8 < v, which is impossible. Thus B, is simple in A with respect to > for
ji>r.

Let V = {v,8r41,...,08:}¢ and let A=ANYV. Then A is a subsystem
of A and {v, Br41, ..., B} is the set of simple roots of A with respect to >
restricted to V. Since 8, € A and 8, > 0, we deduce that

B: = ty +Zi>r t; By

t>0andt; >0,4,¢t € Z,2=r+1,...,L By maximality of A; in A we see
that {A, v} z D A. By the above expression for 3, in terms of {v, 8:41, . - ., 8},
we see that

{'Yy ﬁl: e eey ﬁr—lr :Br+1y c ooy BI}Z D A.

If « €A — Ay then a =sy 4+ X inrsiBiy Sy s €Z, 1=1,...,7r — 1,
r+1,...,0 1If s =0, then by Lemma 1.2 & € A;. Thus s # 0. Using the
above expression for 3, we see that

T = (l/t)ﬁr - Zi>r (ti/t)ﬁt-
a = (s/t)B, +Zi?£r 75 By

Hence
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(for some r; € Q) with s/t # 0. We have thus completed the proof of Lemma
3.1.

Definition 3.1. Let A; be an / maximal subsystem of A. Let 7, = {84, .. ., 8}
be a fundamental system for A;. An element 8, € m; is called deletable if
foreacha € A — Ay, « = > m;B; and m, % 0.

If B, is deletable in =y, then let > be the lexicographic order on {A}, given

by the ordered basis {8, 81, ..., Br—1, Br+1, - . ., B:}. Lemma 3.1 tells us that
with respect to this order By, . .., 8,1, Br+1, . . . , 81 are simple and if v is the
smallest positive element in A — A; with respect to >, then {v, 81, ..., 8,1,
Br+1y ..., 0} is a fundamental system for A. In the course of the proof of

Lemma 3.1 we saw that
v = 1/0Br — 2 iwer (t:/DB:

where t > 0, £; > 0, and ¢, ¢; are integers ¢ = 1,...,r — 1, +1,...,.L In
the following proposition, we shall show that ¢ is actually a prime that depends
only on A; and A.

PRroPOSITION 3.1. Let Ay be an I maximal subsystem of A. Let my = {B41,.. ., B:}
be a fundamental system for Ay If B, is deletable and if {v, m1 — {B,}} is the
Sfundamental system of A constructed above, then there is a prime p such that

A= {a € Ala = sy +Zi7£rsiﬁi7 pls}.

Furthermore, the prime p is the same for each deletable element of w1 and every

fundamental system of A.

Proof. In the remarks above we see that
v = (1/)8; — 2 ier (t:i/1)Bs

where ¢ is a positive integer and {; is a non-negative integer for 7 = 7.

By Lemma 2.2, Ay = {a € Ala = my + > e, m; 8, and t|m}. Thus in
order to prove the first part of the proposition we need only show that ¢ is a
prime. Assume the contrary; then ¢ = ¢-s, where ¢ and s are integers >1.

Let A? = {a € Ala = my 4+ > i, m; B; and g|m}. Then A?is a subsystem
of A and A? D A;. Thus (by maximality of A;) either A? = A; or A? = A,
If A?= A and if @« € A, then

a = kqy +Zi#r m; B

with k an integer. Since ¥ € A, we must have ¢ = 1, a contradiction. Assume
that A? = A;. Since ¢ < ¢, there is an element @ € A such that

a = gy +Zi?£r q: B

In fact, if we relabel v,81,...,8:,~1,B8r4+1,...,8; as a1,..., oy, then every
element u € A is of the form

k s
Z a;;, where Z a; € Afor1 < s <k
=1 =1
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Butsince 8 € Ay, 8 =ty + X i>r£; B; and also

k s
ﬂzzlaij wheref_:laijEA,l<s<k;
= =
hence there is an element @ € A such that @ = ¢y + > xr ¢;: ;. But since
A? = A;, this implies t|q. Since we know g|¢, this implies that ¢ = ¢. This
contradicts the definition of ¢ and s and thus ¢ is a prime. Set { = p.

In the course of the proof we have actually shown that if @ € A — A,
then @ = Y (m;/p)B; where the m,; are integers. We use this fact to prove the
unicity of p. Assume that g, is a deletable element of 7, and that {p, 71 — {B,}}
is the simple system constructed as above. Then by the proof of the first part
of the proposition

p = (1/9)8; — Zi#s (5:/9)B:

with s; non-negative integers and ¢ a prime. Since we also know that
p =2 (myp)B: m; € Z, we must have (m,/p) = (1/q) and thus m,q = p.
Since p and ¢ are primes, this implies thatm,; = 1 and ¢ = . Thus p depends
only on 7; and not the particular deletable element of ;.

Let 7, and 74 be fundamental systems of A; and let p; and p» be the corres-
ponding primes as above. Let ¢ be the element of the Weyl group of A; such
that omw; = s o is a linear isometry of {A}, and ¢A = A implies that ¢ is in
the Weyl group of A. In particular, (A — A;) = A — Ay, Let o € A — Ay
Then « = 3 (mi/p)Bs oo =2 (mi/p1) (oB:) where m1 = {By,..., B}
Setting w2 = {v1,...,v:} andnoting thatif 6 € A — A, thend = Y (¢.;/P2)7:
g: an integer ¢ = 1,...,L If § = oa, then we see easily that p; = p.. Thus
p depends only on A,.

In the course of the proof of Proposition 2.1 we have shown that if
w1 = {B1,...,0;} is a fundamental system of A; and if « € A — A;, then
a = (1/p) > m;B;withm,; € Z and p a prime independent of the particular ;.
That is, if we consider the lattice {A;}z, then (1/p) {A1}z D A. And p is
the only prime such that this inclusion holds. We shall call  the characteristics
of A;in A. If Ay is an I — 1 maximal, maximal subsystem we say that it has
characteristic 0 in A. In the next section we shall study this concept.

We conclude this section by giving a complete characterization of maximal
subsystems of A in the case when A is connected (i.e. g is simple).

TueEOREM 3.1. Let # = {ay, . . ., a;} be a fundamental system for A, and let
B = > m; a; be the largest root in A with respect to w. Let p be a prime, and set
A= {a € Ala =2 n,a;n=0(mod p)}. Then:

(1) Ay is I-maximal of and only if my > p.

(2) Let A, be an arbitrary l-maximal subsystem of A with characteristic p;
then there is an element o of the Weyl group of A such that oAs = Ay (with a
possible relabelling of {ay, . .., a;}).
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(3) A maximal subsystem Ay is I — 1 maximal if and only if there is a o in
the Weyl group of A such that cAs = Ay and my = 1 (after a possible relabelling of

{al, “e ey Oll}).

Proof. (1) If p > my, then dim {A1}g =7 — 1 and thus A; cannot be
l-maximal. If m,; > p, then thereis @« € Ay, @ = 2 #; a; and n; = p. Let v be
the smallest of such o's in A; (with respect to the given order of 7). Then
{v, ™ — {a1}} is a fundamental system for A;. In fact, we show that with
respect to the lexicographic order {ai, ..., a;} on {Ai}g, v, @s, ..., a; are
simple in Ay. Clearly ay, . . ., a; are simple. Suppose vy = 6 + u, 8 > 0, u > 0,
8, u € Ay. Then 6 < v and u < #, contradicting the definition of . Thus 7 is
simple and {v, as, ..., a;} is a fundamental system for A;. We can now show
that A; is maximal in A.

Suppose p € A — Ay, p =2 s;04 5 €Z,and s;1 £ 0 (mod p). It § € Ais
arbitrary, then 8§ = X {; a4, t; € Z. Since 51 # 0 (mod p), there are integers
u and v such that ¢ = us; + vp. Thus up + vy = Y ¢; a; with ¢, = 4.
Hence

l
6= up+uvy+ }_:2 (ts — gi)as

Thus we have shown that {p, A1}z D A. Suppose that A DA DA, If
If A — A, # 0, then thereis a p € A — A;. By the above arguments {p, A} 5
D A, and thus by Lemma 2.2 we have A = A. We have thus concluded a
proof of (1).

(2) By Proposition 3.1 we know that there is a fundamental system

T = {’Yl, .. ,’Yl} OfASuCh thatAz = {a S Al a = ZH’W: Yy = 0 (mOdP)}‘
Let ¢ be the element of the Weyl group of A such that ¢7# = 7. Relabel
{ai, ..., a;} such that a; = oy, for ¢ = 1,...,1 Then dA, = A4, as above.

Thus concludes the proof of (2).

(3) Suppose A, is an I — 1 maximal, maximal subsystem of A. By the
corollary to Lemma 2.3 there is an element ¢ of the Weyl group of A such that
oAy, M 7 is a fundamental system for ¢As. Relabel {ay, ..., «;} (il necessary)
so that ¢As N 7 = {as, ..., a;}. Suppose that m; > 1. Then, if we consider
the subsystem A; = {a@ € Ala = > k; e, By = 0 (mod m1)}, As; # A since
a1 € As. And Az D ¢As. Thus ¢7'A3 D A, and hence A, is not maximal. This
contradiction implies that m; = 1.

The proof of the Theorem 3.1 is now complete.

4. The characteristic of an / maximal subsystem of A. Let A; be an /
maximal subsystem of A with characteristic p. g has a root space decomposition

=h+ 2acafa Set g1 =h 4+ 2 aca, o Since A; is I maximal, g, is a
semisimple Lie algebra over K.Set P; =3 o ca—a, £ar & = g1 ® P (vector space
direct sum).

If « € Ay and 8 € A — Ay and if a + 8 € A, then by the definition of
subsystem, « + 8 € A — A;. Thus [X, V] € P, it X € g, ¥V € P,. Thus we
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can define a representation (p, P1) of g; as follows:
p(X)- Y =ad(X)7Y, X €g,Y € P,

Recall that if X, ¥V € g, then ad(X) Y = [X, Y].
We shall show that the number of irreducible components of this representa-

tion is exactly p — 1. To thisend fix 71 = {8y, .. ., 8;} a fundamental system
for A;. We assume that 3, is deletable (see Definition 3.1). Order {A}, lexico-
graphically with respect to the ordered basis {81, . . . , 8:} of {A} 4. Lety be the

smallest positive root in A — A; with respect to this order. Proposition 2.1
asserts that

A = {a € A[a = §v +Zz>13iﬂi,5 = 0 mod (P)}
Let
M = {a EA|a=s'y+zi>1siﬁi,szr(modp)}, r=1,...,p — 1.

Then M™# @ and A, U MU ... U M?P~1 = A. If we set VP =3 ,cniga
then [g;, VY] C V% If we denote by (p;, V?) the subrepresentation of g; obtained
from (p, P;) by restricting p to V% then we clearly have P, = V1 ® ...
@ V?~1 (directsum) and p = p1 @ ... @ pp_1.

Using the above order, we denote by v* the largest element of M*. (v%, 3;) > 0
forj =1,...,. Thus v*is a dominant integral element of {A;}, with respect
to w1 Let (p;¥, W% be the irreducible subrepresentation of (p;, V%) corres-
ponding to the highest weight v% We shall show that (p;t, W) = (p;, V7).

Let M .7 be the set of weights of (p,*, W7) (clearly M C A).

LemmMa 4.1. Ifa € M"andif o« = " — 3 m; By, wherem; € Z,1 =1,...,1,
then o € M,".

Proof. Let F; be anon-zero root vector in g corresponding to —8;,7 = 1, ..., 1.
Let X, be non-zero in g,

We prove Lemma 4.1 by induction on > |my = m. If m = 1, then
a=v"—8; (v +B; ¢ A). Since a« € A, we have [F;, X,] # 0 and [F;, X,]
€ go. But p,7(F))X, = [F;, X,) and thus g, C W". And hence « € M.". Thus
the result is true for m = 1.

Assume that the result is true for m = k. Assume that m = k + 1. By
Lemma 2.1, either « — v™ € A or a + ¢;8; € A for some j, where |m;| > 1
and ¢ = m;/|my|. If @ — " € A, then 3 m,;B; € A and thus by Lemma 2.2
we have > m;B8; € A;. Let § = X m; 8; and let X be a non-zero root vector
in g corresponding to —é. Then, as above, p,7(X)X, ## 0; thus « € M, .
If @ + ¢;8; € A, then

a—+ B =" _Z €; (lmz[ — 8:;)B.

Since a + € B8; € M and X (|m; — 6,;) = k, we see by the inductive
hypothesis that a 4+ ¢ 8; € M,". Now, as above, p,*(Y)Z is non-zero in
e (Y € g_cjpjy Y #0,and Z € goyejpj, Z7# 0); thus o € M,".
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LeEmMMA 4.2. Let o, B € M™. If o = Y (m;/p)B; and B = Y (ny/p)B; with
myn, € Z,1=1,...,L thenm; =mn;(mod p),2=1,...,1L

Proof. M™ = {a € Ala@ = sy + X i>15:8:, s = r (mod p)} (notice that s, s,
in the above are all integers of the same sign).
Assume that v = Y (g;/p)B: (notice that ¢; = 1).

a = §vY +Zi>1 Si By S8, €Z,s=vr (mod ?),

and
B =ty + 2148, t,t; € Z,t =r (mod p).
Hence
a = s/pB1 + 2 (sq¢: + ps)/pB: and B = t/pBy + D (tg: + pts)/pB..
my =S, m; = SQi+pSiyn1 = tyn‘l = tgi+Pti,'1:+2,...,l. C]earlyml = n,

(mod p) (by definition of M7), m; = sq; (mod p), and n; = fg; (mod p), and
hence m; = rq; (mod p) and n; = rqg, (mod p). Thus m; = n; (mod p).

Using Lemmas 4.1 and 4.2, we can now prove the main result of this section:

THEOREM 4.1. Let p, g1, P1, p be as defined in the beginning of this section.
Then the number of irreducible components of the represemtation (p, Py) is
exactly p — 1.

Proof. Using the above notation we need only to show that M™ = M,".
Now Lemma 4.2 says that if o, 8 € M’, then « — 8 = > r;8; with », € Z.
In particular, this says that for each @« € M7, ¥ — a = Y r;8; with r, € Z,
2 =1,...,L And this says that « = " — > 7; B, withr; € Z,2=1,...,1
Lemma 4.1 implies that « € M,". Thus M" C M,". Since M." C M,, we
have shown that M " = M". And the theorem is proved.

Restricting Theorem 4.1 to the case p = 2, we have

CoroLLARY TO THEOREM 4.1. If g4, p, Py are as above and p = 2, then (p, P;)
15 an 1rreducible representation of gi.

5. Conjugacy theorems. Let g, &, A, and / be as in the preceding sections.
Let W(A) be the group of all rotations of A. Let W(A) be the (normal) subgroup
generated by the Weyl reflections of A.

Definition 5.1. If A; and A, are two subsets of A, then they are said to be
conjugate if there is a ¢ € W(A) such that ¢A; = As.

The main purpose of this section is to sketch a proof of

THEOREM 5.1. Let Ay and Aq be maximal subsystems of A and assume that they
have the same structure. Assume that A is connected (i.e., g is simple). Then

(1) if A1, Ae are I maximal with the same characteristic, they are conjugate;

(2) 1f Ay, Az are I — 1 maximal, they are conjugate.
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We know of no proof of this theorem that is completely independent of the
classification of simple Lie algebras over an algebraically closed field of
characteristic 0.

A proof of Theorem 5.1 (1) for the case p = 2 and Theorem 5.1 (2) can be
found in (7). The proof is essentially a case-by-case check using weak forms of
the results of this paper.

The following lemma can be proved using the techniques of Dynkin's
classification of complex simple Lie algebras (that is, the use of 1, 2, 3, 4, and
6, pp. 130-131 in Jacobson (4)).

LeMMA 5.1. Assume g is simple and g is not Bo, Ga, or Fy. Let w be a fundamental
system for A. If w1 and mo are subsets of = that contain I — 1 elements and if m
and 2 have the same diagram, then there is a v € W(A) such that 7w = = and
Ty = To.

Using Lemma 5.1 we can prove

ProposITION 5.1. Let Ay and A be | — 1 maximal subsystems of A. If A 5% B,
G, or Fyand if Ay and As have the same structure, then Ay and A, are conjugate.

Proof. Let m be a fixed fundamental system for A. By Lemma 2.3 we know
that there are fundamental systems 7; and s of A such that

lAlnﬂjI:lAnggI:l—l

(|A4| means the cardinality of 4).

Let o1, 05 € W(A) be such that o;7; = 7, 7 = 1, 2. Then ¢;(A; M 7,) and
a9(As M m,) are subsets of 7 containing / — 1 elements and having the same
Dynkin diagram. Thus there is a + € W(A) such that

ro1(m1 M A1) = ao(me M Ay).
Thus
o 7o (m M Ay = 73 M As.
This implies that o3~ !701A; = A,. And the proposition is proved.

Lemma 5.1 and Proposition 5.1 do not extend to the case g = B, G3, or Fy.
Consider, for example,

BQ=O=>O.

aq (%]

If Ay = {ai, —ai}, A2 = {as, —as}. Then if there were a 7 € W(A) such
that 7A; = A, then 7a; = 4as, and we would have (ray, ra;) # (a1, a1).
Thus 7 would not be an isometry, which is impossible.

Using Proposition 5.1 we can prove (2) of Theorem 5.1.
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Proof of Theorem 5.1 (2). If g = G, or Fy, then if A; is maximal, it is/
maximal. If g = B,, then a fundamental system of A is

T™T= 0 = 0.
23] %]

The subset {a1} of 7 corresponds to a 1-maximal subsystem in A that is also
maximal in A. The subset {a;} does not. Thus every 1-maximal, maximal
subsystem of A is conjugate to {@1, —ai}. All other cases of Theorem 5.1 (2)
are taken care of by Proposition 5.1.

To prove Part (1) of Theorem 5.1 we shall need

LeMMA 5.2. Let Ay and Az be two | maximal subsysiems of A of characteristic
D such that A, and A, contain respectively Ay and As, I — 1 maximal subsystems of
A. If Ay and A, are conjugate, then A, and A, are conjugate.

Proof.Let ¢ € W(A) besuch that ¢A; = A,. Then cA; M Ay D As. Let wbe a
fundamental system of A such that [r N Ay =1 — 1. Let 7 = {ay,..., a;}
and 7 M Ay = {a, ..., a;}. By the definition of characteristic,

cAr = {a € Al a =Zs,-oz,~, s1 =0 (mod p)},
Ay = {a € Ala =2 s;a; 51 =0 (mod p)}.
Thus A; = A, which was to be proved.

COROLLARY TO LEMMA 5.2. If g # Bs, Gs, 0r Fyand if Ay and Ay are l maximal
subsystems of characteristic p in A such that Ay D Ay, Ay D Ay where Ay and A,
are | — 1 maximal subsystems of A with the same structure, then Ay and A, are
conjugate.

In order to prove Theorem 5.1 (1) we must still study Bs, Gs, and F,
individually. The proofs for B, and G are simple (using the same technique as
the proof of Theorem 5.1 (2) for Bs). For F, the proof is slightly more difficult.

In the general case for g # B, Gs, or F, the proof goes as follows.

Let m; and 72 be fundamental systems for A; and A,. (We assume that A;
and A, have the same structure and characteristic.) Write out the diagrams of
w1 and ws. If there is a deletable element (see §2) 8; € m;, ¢ = 1, 2, such that
{m1 — B1} and {ws — B2} have the same structure, then by the corollary to
Lemma 6.2 A; and A, are conjugate. (This condition is in fact necessary and
sufficient.) We are now left with a case-by-case determination which is a
rather straightforward computation.

The case p = 2 of Theorem 5.1 has interesting applications (see §6) and in
this case the proof is much simpler. We can use the corollary to Theorem 4.1
and study the irreducible representations as in §4 to give a proof.

LeMMA 5.2. Suppose Ay and Aq are | maximal subsystems of A of characteristic 2
with the same structure. Suppose that my and m» are fundamental systems of A, and
A respectively and that 8 and v are the respective highest weights of the representa-
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tions defined in §4 corresponding to Ay and Aq with respect to w1 and 2. Finally
suppose that there is an ordering of w1 (of m2) in a Dynkin diagram such that
= {By ..., B} (2= {vi,...m}) and B =2 (k/2)Bs, v = 2 (ki/2)v.

Then Ay and As are conjugate. (The diagrams above differ only in labels.)

Proof. Let o be the linear mapof {A}oto {A}gsuch thateB; =v,¢=1,...,L
Clearly ¢ is an isometry with respect to {(...,...).

If we can show that ¢A = A, then A; and A, will be conjugate. Every element
of A — A; can be written in the form

0l=.3—,31', —.31'2 _-~~_‘ﬁir
where 8 — 8;;, — ... — By € A — Ayforl < k<randB; € m,j=1,...,7.
Let us say a is in the rth level. We shall show that ¢(A — A;) C A by induction

on 7.

If @ is in the first level, then @« = 8 — B;,. Thus (B, 85,) > 0 (8 + B;, € A)
and hence oo = v — v;. But (v, vy) = (8,8,) > 0. Hence v — v, € A.
And hence ca € A. Suppose true for all a with level less than 7. We shall
show that the result is true for r. Let « be on the rth level. Then « + 8;
€ A+ Ay forsome 1l <j<land a+B;is on the (r — 1)th level. Consider
the @; string containing o + 8;. That is

(a-+B) —kBj..oya+ By (a+B8) +85..., (a+ By + 5B,

Then 2{a + B;, B,)/{Bs, B;) = k — s. But ¢ is an isometry and o¢((a« + B;)
+1B8;) € Afort =0,1,...,s by the inductive hypothesis. Thus

cla+B;) —aBy,...,0(a+ B;) — kaB; € A
and in particular ca € A. Thus the lemma is proved.

We complete the proof of Theorem 5.1 in the special case of characteristic 2
by including a table of the possible conjugacy classes of I maximal subsystems
of the root system of each simple Lie algebra, and the corresponding highest
weight. In Table I, the column g corresponds to the class of the simple Lie
algebra g under consideration. The column = corresponds to a fundamental
system for the root system under consideration. The next columns refer to
the subsystem

Ay = {a € Ala =Y, m; a; where m;, = 0 (mod 2)}.

If in the column B, there is a * — |’ then we know that A, is not / maximal.
If there is an expression that corresponds to a root in A in the column 8, then
this means that {8, * — {ax}} is a fundamental system for A;. The column
gives a Dynkin diagram =, = {B;, 7 — {a;}}. The column g; corresponds to
the subalgebra of g that corresponds to A; as defined at the beginning of §4.
The column v; is a list of the highest weights of the representations correspond-
ing to g; in g defined in §4. We only include an expression for v; in the case
when A; is I maximal.
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TABLE 1
14 ™ B Tk Y &k
; 0—0-:-——0 0o—0:+*—0 0—0-:+—0 Aiy
oy az o o1 Oy k-1 Qpyl Qgg2 O
k=1 0—0-+-0&0 B
ay ay o1 o
3, 0—0-:-0¢0 E>1 OB 36 F T T Limngmras D, X By,
Q@ Q@ Aoy 1 /
1+ 2% 0—0"++0—0 O——=::0&0
t=k Q1 Q201041 oy
k=1 0—o0-+:0 A
o1 oy 01
21 0—0---0%0 k<1 0—0--:0%0 O0—--:020 3Bt a) F X as Cy X Cr—1
a; o o1 Qp -1 ar @y ap1f; @yl o1 o
2 arta;
i=k
k=1 0—0—"++—0 Ay
oy a2 o1
o, k=1 O—0—" + *—O0—0a_1 D,
a2 ag (e 3]
7, 0—0:::0—0 Oay
o1 Q2 090y
1<kLI=2 /Oﬁk Qg
-2
a1+2Y a;+a1+a; 00000 0—0:+:—0—0 5B+ o+ ar+ @) + Xarp-1,10-10; D X Doy
4 Qp o Qg 01 0t—1 Qg0
a
k=1 D;’
a» a3 oy As
k=2
Oag a1+ 20 + 3a3 + @y + as 0—0—0—0—0 © 382+ a5 + oy + ag + s + S As X Ay
| Bz as as a3 a5 o
oaz k=3
Zs /N @+ 205 + a5+ as 0—0—0—0—0 © sas + a1+ 385 + a5 + Jas + Jas As X Ay
Oaz @yQ ay a1 By a5 a4 as
k=6
Oay oas a1+ 2as + 3as + 2a4 0—0—0—0—0 O Jou +ar + s + s + s + 386 As X Ay
+as+ 205 a1 as a3 ay a; B
oay
k=1
201 4 3as + 4oz + 3ay 0—0—0—0—0 O 3o+ as + o+ 25 + oo + a7 + 461 D¢ X Ay
+ 205+ a5+ 207 @5 a5 ay a3z az Bi
oag
E=2 /
a1+ 20y + 205+ a4+ a7 0—0—0—Q o Sar + s + oy + 205 + 362+ as + 3ax D X 4,
ar a; aja; ay
o
B2
Catg
k=3
Oaz as + 205 + as + az 0—0—0—0Q o 3as + a1+ 385 + 205 + oz + s + Jaz Dg X Ay
| ar a1 B3 as\ ag
30 o
N o
Oway  Quy k=4 o 305 + as + 361 + 201 + a2 + as + o7 Az
R / art2a+2aitastar a5 as fion ay a3 e
‘1 o Oas [
ai \ k=35
o s 2(as + as + as) 0—0—0—0 o 385 4+ oy + Fan + 205 4+ Jor + as 4 Fae D¢ XAy
as astar Bs ar aras\ ag
[e]
@7
ag
k=6 0—0—0—0—0 Es
a; as g as
o
ag
k=1
a1+ 2as + 3a; + 2a4 o—0—0—0—0—0—0 3oy + as + 3az + 205 + Jos + as + 387 A
+tast 20 @ ar @z ay as as By
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TABLE I (Continued)

T Vi
Oag
=1
201 + 3as + 4oz + Say 0—0—0—0—0—0 O Jas + 203 4 Fay + a5 + 206 + a7 + Jas E;: X 4,
+ 6as + das + 207 @2 a3 ay a5 as a7 B + %‘51
k=2 T o B
a+2>a;+ast+ag o0o—0—0—0—0—0 O 382+ 207 + Jas + 3o + 200 4 a3 + Fas Er X A,
‘=2 B2 ar a5 as oy az o o
Oay k=3 Oary
| 5
a0 a+2¥a;+astag 0—0—0—0—0—0—0 Yas + a1 + 385 + 207 + Fas + a5 + 20 Ds
t=3 az a1 By a1 a5 as as + fas
Eg a40 e 70} - Oy
/ AN k=4
;0 o a3+ 2a4 + 2a5 + ag + a3, 0—0—0—0—0—0—0 Sas + a5 + Jas + 207 + §84 4 3 + 204 Dy
az ag as ag ar By as ay + fes
@0 Oay
/ k=5
o ay+ 205 + as + as 0—0—0—0—0—0 O 3ae + 2a7 4+ $85 + 3as + 200 + a1 + Jou E; X Ay
aL as ar Bs a3 ar on ag Jay
oBs
k=6
ar + 206 + 2a5 + a4 + a3 0-—0—0—0—0—0 O Jas + 205 + Jas + 3az + 202 + a1 + §B8s E; X Ay
ag a5 a4 a3 ax o1 a7 + ';CU
a0
k=7
ar + 2(a3 + a7 + as) 0—0—0—0—0—0—0 387 + a1 + Jas + s + 3as + 3as + das Dy
4+ 3as+as) +4as B7 a1 ay a3 as a5 ag
B350
k=8
ar + 2(as + as + as) 0—0—0—0—0—0—0 Sar + a5 + $as + 200 + fas + 200 + 201 Dy
4 3o +as a7 as as ay az a» ay 2Bs
k=1 0—0—0&0 381 + as + oy + 20 B
20 + 202 + a3 51}1,4 az ay
=32 T 0—0—0¢0 a3 + ag + 382 + 2ay B
20y + a3 az o By oy
F; o—o=0—0 k=3 0—020 O az + 2a; + 3B + Jas G X Ay
ap ax oy oy 2ay + 203 + ay ar a1 By ay
k= O—0=0 O 011+2012+T§ﬂ:(+%3| Cs X A1
20y + 4oy + 3z + 20y a1 @z By
k=1 ©o o fas + 381 Ay X 4,
G, o&=o 20 + 3ay a B
ay as k=2 o o 38y + T Ay X Ay
ar + 2a, B2 ax

In the case 4, there are no / maximal subsystems. In the case B; all of the
classes [ maximal subsystems with characteristic 2 as shown in Table I are
distinct. Thus Theorem 3.1 (2) contains Theorem 5.1 (b) in the case B;. In
case C;, Ay has the same structureas A, if and only if » + % = [. And in this case
Lemma 5.3 proves Theorem 5.1 (b). In the case D; we have the same situation
asin C. In the case Fy we see that A; and A, are conjugate and A; and Ay are
conjugate by Lemma 5.3. In case G, we have A; conjugate to A,. The tables and
Lemma 5.3 complete the proof for E;, I = 6,7, 8. We have thus proved Theorem
5.1 completely for / — 1 maximal, maximal systems and / maximal systems

of characteristic 2.

6. On the classification of real simple Lie algebras. The results stated
without proof in this section can be found in (7) and for the most part in (5).
Let g be a complex simple Lie algebra, & a Cartan algebra with dim 2 = [,
u a compact form of g such that # M & is maximal abelian in #, A the root

system of g with respect to %, and = a fundamental system of A.

https://doi.org/10.4153/CJM-1968-056-4 Published online by Cambridge University Press



https://doi.org/10.4153/CJM-1968-056-4

ROOT SYSTEMS 569

A fundamental result of E. Cartan states that up to isomorphism every real
form gy of g can be found as follows:

Let A be an involutive automorphism of # (i.e. 42 = 1). Let u,t =
{(X €ulAX = X} andu,~ = {X € u|] AX = —X}. Then

g4 = uat + V(=1 = go.

Furthermore, if A4 and B are involutive automorphisms of u, then g, and
gp are isomorphic if and only if there is an automorphism C of # such that
C'AC = B.

An algebraic proof of this result can be found in (7).

Definition 6.1. Let 4 and B be involutive automorphisms of #. 4 and B are
said to be equivalent (written A = B) if there is an automorphism C of # such
that CAC—! = B.

Thus, to classify all real forms of g up to isomorphism we need only classify
all involutive automorphisms of # up to equivalence.

Let I(m) be the set of rotations ¢ of A such that ¢2 = 1 and or = 7. Let
7 = {a1,...,a;} and let X; be a non-zero element of the root space with
respect to & for a;, Y; be a non-zero element of the root space for —a;. For
each 7 € I(wr) let 2+ — ¢’ denote the corresponding permutation of {1,...,1}.
Define TX;, =X, TY;, = Yy,2=1,...,L Since Xy,..., X, V1,..., ¥,
generate g, T defines an involutive automorphism of g and of . We call T
the canonical automorphism of # associated with 7. For simplicity we use the
same notation for I(r) and the canonical automorphisms associated with
I(m).

TuaEeOREM 6.1 (Gantmacher). Every involutive automorphism of u is equivalent
to an automorphism of the form T exp(~/(—1).w ad(H)) where T € I(w),
H ¢ (-1).(hN\u)and TH = H.

For a proof of Theorem 6.1, see (7).

If Texp(+/(—1).rad(H)) is involutive and TH = H, T € I(r), then
since 72 = 1, we must have exp(+/(—1).7rad(H)) is involutive. Since
H € ~/(—1).(h N\ u), this implies that «(H) is an integer for each a € A.
Set

Agt = {a € Al a(H) = 0 (mod 2)}
and
Ag= = A — Agt = {a € Al a(H) = 1 (mod 2)}.
Since TH = H, we have 7Azt = Azt.

ProrosiTioN 6.1. Let T, H, and Ax™ be as above. Then Ayt is a maximal
subsystem of A. If Ag™ is | maximal, then it has characteristic 2. Conversely, every
I maximal, subsystem of characteristic 2 or I — 1 maximal subsystem A, of A

such that tA; = A, corresponds to an involutive automorphism T exp(A/(—1).7
ad(H)), where T € I(w), TH = H,and H € /(—1).(h N u).
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To prove Proposition 6.1 we use the following lemma of Hano and Matsu-
shima (3).

LEMMA. Suppose Ay and As are subsystems of A and suppose that Ay \J Ay = A,
Then one of Ay or Ag is A,

Proof of Proposition 6.1. We first show that Ayt is maximal in A. Let
B € A — AxgT. Set A= {AgT, B}z M A. Clearly Aisa subsystem of A. Further-
more, if we show that A = A for arbitrary 8, Lemma 2.2 tells us that Ag* is
maximal in A.

To this end we consider A — A = A’. Notice that A’ C Ag~. Furthermore,
we note that if v, € Ay~ and « + v € A, then o + v € Agt. We shall
show that A’ U Azt is a subsystem of A. If a € A/, clearly —a € A’. If
o« € A and v € Ag™, suppose that @ + v € A. Then

at+y =2 mBi+mp, m€Z mclZ

But then a« = —y + 3 m;B8; + mB, which would then say that a € A,
contrary to the definition of A’. Thus o« + v € A’. Hence Azt \U A’ is a
subsystem of A. But A = (Ag* U A’) U A. And since 8 ¢ Azt U A/,
Lemma 6.1 implies that A = A,

We now show that if Ayt is [ maximal, it has characteristic 2 in A.

By Theorem 3.1 (2) there is a fundamental system for A, {v1, ..., v;} such
that va,...,v: € AgT. @ € Agt if and only if a(H) =0 (mod 2). « € A
implies that « = ) m;vy;, where the m,’s are all integers of the same sign.
a(H) = > m;v:(H). Since v;(H) =0 (mod2) for 7 =2,...,/, we have
a(H) = myvi(H) (mod 2). v1 € A — Agt; hence v1(H) = 1 (mod 2). Thus
a € Agtif and only if m; = 0 (mod 2). Thus

Agt ={a € Ala =3 m;v; m = 0 (mod 2)}.

But this says that Aiz* has characteristic 2 or 0 in A.
Let A; be a maximal subsystem of A with characteristic 2 or 0 such that
TA; = A1, Let 71 = (A — A1) N 7. Clearly m # @, since if 7, = @, then

A; = A. Let us suppose that 71 = {a1. ..., as}. Let
/3={a EAla= 2 mia; D, miEO(mod2)}.
=1
Let Hy, . .., H,; be the elements of % such that a,(H;) = 6;; (§;; the Kronecker

delta). Since 7A; = Ay, 7(A — Ay) = A — Ay, and 77 = =, this implies that
771 = w1 Hence if we set H = H, + ...+ H,, we have TH = H. Further-
more, A = Agzt+. And AT = Agt. If we show that A = A; we shall have
completed the proof of Proposition 6.1. Let {v1,...,v:;} be a fundamental
system for A such that

A= {a €Al =Zmi'y,~,m1 = 0 (mod 2)}.

{Y1,...,7:) exists by Theorem 3.1 (2). Let H,, ..., H, in h be defined by
’yl(ﬁ]) = 6ij' Then
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Al = {0{ E Al a(ﬁl) = 0 (mod 2)}
Now a(H;) =1(mod2),i=1,...,s. Hence if « € Ay, then o = ¥ m; a;
and
$ S
a(Hy) = Z mia;(Hy) = ;1 miai(ﬁl) = 21 m; (mod 2).
Since a(H;) = 0 (mod 2), this implies that A; C A since A £ A. This says
that Al = AH+.
We next give a more root-theoretic criterion for congruence.

ProrosiTioN 6.2. Let A = exp(/(—1).7 ad(H)) and B = exp(+/(—1).x
ad(H")) be two imvolutive automorphisms of u, with /(—1).H, +/(—1).H'
€ hN\u. A = Bif and only if Ayt and Ay ™+ are conjugate.

Proof. Suppose that ¢ € W(A) is such that ¢Ag* = Ag*. There is an
automorphism S of # such that Sk = h and eca(H) = o(S~1H) foreach H € h.
Consider

ST14S

Il

St exp(v/(—1).7 ad(H))S = exp(S—! V/(—1).7 ad(H)S)
exp(v/(—1).7 ad(S1H)) = exp(+/(—1).7 ad(H)).

But
A}.I+ = {Ol € Al OC(S'—IH) =0 (mOd 2)}

= {a € ¢| ca(H) = 0 (mod 2)} = Ag ™.

Thus S—14S = B. Hence 4 = B.

Let us suppose that A = Bj; then there is an .S in the automorphism group
of # such that S7'4.S = B. Now let U denote the connected component of
the identity in the group G of automorphisms of #; then

G= U 1,0,
=1

the components of G with respect to U, and we may assume that T; & = h.
ThusS=T,;R,R € U. Now then S7'4AS = R—'T, 7'AT; R. Hence T;,7'AT; =
RBR. But T;7'AT; and B are contained in the maximal torus exp(ad(k M u))
in U and thus there is an element of the normalizer of this torus, V, such that
T,7'AT; = VBV~! (see Séminaire ‘“‘Sophus Lie"’ (6), Exposé¢ 23). Thus
VT, YAT,;V = B. And T;Vh = h. Let S = T,V. Let & be the element of
W(A) defined by ¢a(X) = a(S—1X) for all X € h. Then 6Ag+ = Ag+.

Combining Propositions 6.1 and 6.2 and Table I we have thus given a
complete classification of all equivalence classes of inner involutive auto-
morphisms.

LEmMmA 6.1. Let A = T exp(+/(—1).w ad(H)) be an involutive automorphism
of u, where T € I(zm) and TH =H, /(—1).H ¢ uMNh. Then A =
T exp(+/(—1).7 ad(H)), where TH = H and if a; € © — Mg+, then ra; = ay.

https://doi.org/10.4153/CJM-1968-056-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-056-4

572 NOLAN R. WALLACH

Proof. Let Hy, ..., H;in h be defined by a;(H;) = ;. Let m = 7 — Ag™.
Assume that 7; = {ai, ..., a;}. In the course of the proof of Proposition 6.1
weshowed that Azt = Aget,where H' = Hy + H, + ...+ Hiand TH' = H'.
Hence 4 = T exp(+/(—1).7 ad(H’)). Suppose ta; # «; for some j between
1 and s. Let ra; = a; (note that 1 < j' < s). Set H = (H;, — H;)). Then
TH = —H. Since T? = 1, this implies that H = (I' — 1)H”, where
H"” ¢ v/(—1).h M u. Now

H +H=2H,+ > H.

i#h,h’

Thus exp(+/(—1).7 ad(H" + H)) = exp(+/(—1).7 ad(H)), where

H = Z Hi'
=i, g
Now

exp(rv/(—1).ad(H"))T exp(r+/(—1).ad(H"))exp(—7+/(—1).ad(H"))
T exp(r+/(=1).ad(H' + (T — 1)H")) = T exp(r+/(—1).ad(H' + H))
T exp(r+/(—1).ad(H)).
Setting S = exp(7+/(—1).ad(H")), we have thus shown that

SAS—! = T exp(r+/(—1).ad(H))

i

with 7 — Agt = 7 — Ayt — {ay, 7a;}. Lemma 6.1 now follows by induction.

LemMa 6.2, If 7 € I(m) and # = {a € w| ra = a}, then # is connected.

Proof. If «, B € I(w) and «, By, ..., B8, B is a chain connecting « and 8
in T (i.e., <(1, Bl> # 0, <;81, ﬁi+1> # 0, 7 = 1, B 1, <B,,,3> # 0), then
ra, 781, . . . , T8, 78 is a chain connecting « and 8 in 7 (7@ = «, 78 = B). If

then for some 1 < & < r we have 70;, # %, then we would have a ‘‘cycle” in =,
and this is impossible (see Jacobson (4, p- 130) for the pertinent definitions
and theorems). Thus 78, = B, k = 1, ..., r. Hence # is connected.

Let A be the subsystem of A generated by #. We now prove

LEmMA 6.3. Let T exp(+/(—1).w ad(H)) be an involutive automorphism of

u such that T € I(x), ~/(—1).H € u M\ h,and TH = H. Let Hy, ..., H, be
the elements in h defined by «,(H;) = 6y, where m = {a1, ..., a;}. Then if
H =0,

T exp(v/(—1).m ad(H)) = T exp(+/(—1).7 ad(H})),
where Ta, = oy,

Proof. Let {asy, ..., a;,} = 7 — AgT. By Lemma 6.2 we may assume that
a; € 7,j=1,...,r. Furthermore,

ANAgt = {a € Al a(H) = 0 (mod 2)}
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and thus by Proposition 6.1, A N Ag*is a maximal subsystem of A of character-
istic 0 or 2. Theorem 3.1 (2) says that there is an a;, € # and a ¢ € W(A)
such that

O'(A N AH+) = {a € AI a =Zmij Qi My, = 0 (mOd 2)}.

Since ¢ is a product of Weyl reflections, ¢ can be considered an element of the
Weyl group of A. Now # M 7 — (¢Axgt) = ay. For simplicity, set 7, = k.
And thus by Lemma 6.1 we have

T exp(+/(—1).mad(H)) = T exp(+/(—1).w ad(H,)).

ProposiTioN 6.2. T exp(v/(—1).7 ad(Hy)) = T exp(v/(—1).7 ad(H,))
(where oy, ap €1 and Hy, H, are as in Lemma 6.1) if Ay, (M A is conjugate to

AH'+ N A in A.
TABLE 1I
g T T A Ta gat
A, 0—0+*+0—0 TO = Qy1-t T 0—0+++0& 0O B,
1=2p araz @1 o a1 Gy Gy Gp
A, 0—0**+0—0 T = Qrp1—q r 0—0"**0=0 Cot1
l = 2p +1 ay oy a1 oy ay G2 Gy Gpy1
o)
/Gy
TetdntHp+1 0—0-+-0 @p1 D,
@ @y
o
Gy + dpis
o T 0—0++:0& 0 Bi_1
o a1 @y g @1
Ta—1 = oy 1]
D, 0—0-+:0—0 Br =2 &
1> 4 ay az ag . *
Terdnity 0—0+++0 €0 0—:+-+0 <0 By X Bi_41
Q1 @ @p-1 PBrQry1 Q2 &
ay Tiap = ay 15 j=1,2 o—o«o i=12 By
o Gyp0 @2 @)
TrQp = Ty o—o¢«o Bs
Dy O—0—0 Q1 @2 as
oy ap oy Tiay = ay 1 erdntil oo o j=12 By X 4,
j=1,2 @&y Gtar &
Ty e2driH2 oo o© By X A4,
a; astasaz
T = Qp T O0—0=>0—0 N
ag Qy @y a3 as
o Ty = ay TedntHs o= 0——0—0 Cy
@p Gatdas @1 @
Eg 0—0—0—0—0
ay ay a3 a4 A Terdnidls 0———0—0=0 Cy

agtaztas a @ ay

Note. In the above table &; = ainy+, where hyt = {\H € h| AH = H}; g4t =
{X € hl AX = X}; and 74 is a fundamental system for A, the set of roots of g4+ with
respect to hat.
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Proof. 1f Ag,* M A is conjugate to Ag,* M A in A, then the techniques of
the proof of Lemma 6.3 will show that T exp(+/(—1).7 ad(H;)) =
T exp(v/(—1).w ad(H,)).

Using Table II, we can now complete the classification of real forms of g.
We first note that I(w) # {1} only for 4;, D,, Es.

For 4, we notice that if [ is even and if 7 € I(x) — {1}, then 7oy ¥ oy for
any o;, € w. Thus Lemma 6.1 implies that up to equivalence the only involutive
outer automorphismis 7. If lis odd, ! = 2p + 1, then the only fixed point of 7
is ap+1; thus up to equivalence we need only consider 7" and T exp(+/(—1).7
ad(Hp4+1)) and these two automorphisms cannot be equivalent because
Table II shows that they have non-isomorphic fixed point sets.

In the case of D, forl > 4,7 € I(m) — {1}, then

7 = {a Eﬂ']ra=a} = {al,...,a;_z};

thus Lemma 6.4 and the classification of inner involutive automorphisms say
that T exp(+v/(—1).ad(H,)) = T exp(v/(—1).ad(H;_1-;)) for 1 <2< 1 — 1.
Table II shows that every outer involutive automorphism is then conjugate
to T or one of the T exp(+/(—1).ad(H;)), where< =1,...,sand s =p +1
fl=2p+s,s=pifl=2p+ 2.

Eg and D, are handled similarly.

For the techniques of calculation of the tables the reader may consult the
appendix to (7) or (5).

REFERENCES

1. A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie
clos, Comment. Math. Helv., 23 (1949), 200-221.

2. E. B. Dynkin, Semi-simple subalgebras of semi-simple Lie algebras, Mat. Sb. 30 (1952);
Amer. Math. Soc. Transl., Ser. 2, 6 (1957), 111-244.

3. J. Hano and Y. Matsushima, Some studies on Kdihlerian homogeneous spaces, Nagoya Math.
J., 11 (1957), 78-92.

4. N. Jacobson, Lie algebras (New York, N.Y., 1962).

5. S. Murakami, Sur la classification des algébres de Lie réelles et simples, Osaka Math. J., 2
(1965), 291-307.

. Séminaire ‘“‘Sophus Lie” (mimeographed notes, Ecole Normale Supérieure, Paris, 1955).

. N. Wallach, 4 classification of real simple Lie algebras (Thesis, Washington University,
St. Louis, 1966).

N o

Washington University,
St. Louis, Mo.;
University of California,
Berkeley, Calif.

https://doi.org/10.4153/CJM-1968-056-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-056-4

