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Abstract
Doctrines are categorical structures very apt to study logics of different nature within a unified environ-
ment: the 2-categoryDtn of doctrines. Modal interior operators are characterised as particular adjoints in
the 2-categoryDtn. We show that they can be constructed from comonads inDtn as well as from adjunc-
tions in it, and we compare the two constructions. Finally we show the amount of information lost in the
passage from a comonad, or from an adjunction, to the modal interior operator.
The basis for the present work is provided by some seminal work of John Power.
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1. Introduction
The approach to logic proposed by F.W. Lawvere via hyperdoctrines has proved very fruitful as
it provides an extremely suitable environment where to analyse both syntacic aspects of logic and
semantic aspects as well as compare one with the other, see Lawvere (1969, 1970). The sugges-
tion is to see a logic as a functor P: C op → Pos from the opposite of a category to the category of
posets and monotone functions where the category C collects the ‘types’ of the logic and terms in
context, a poset P(c) presents the ‘properties’ of the type c with the order relation describing their
‘entailments’. The reader is referred to Section 2 for the precise details, but may just keep in mind,
for the present discussion, that the contravariant powerset functor P: Set op → Pos is an instance
of a doctrine.

One of the main points of Lawvere’s structural approach to logic is that all the logical oper-
ators are obtained from adjunctions. That view in itself is very powerful and contributes to
unifying many different aspects in logic. In the present paper, we show that also a wide class of
modal operators, namely, those satisfying axioms T and 4 as in Definition 2.1, is obtained from
adjunctions.

Typically, modalities are unary logical operators, which are quite well understood in the context
of propositional logic. However, their meaning is less clear in a typed logical formalism. In this
setting, there are various semantics which are interrelated, and we show that many of these are
instances of the general situation of an adjunction between two homomorphisms of doctrines.

Since they are structured categories, doctrines get swiftly organised in a 2-category. And, as we
learned also from the works of John Power, in a 2-category one can develop a very productive
theory of monads and comonads, extending the elementary case of the 2-category Cat of small
categories, functors and natural transfomations.
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Doctrines are a rather simple categorical framework for logic, but still capable to cover a large
range of examples. We could have considered more general settings such as indexed preorders
(equivalently, faithful fibrations) or even arbitrary fibrations, but we preferred to keep things at a
very simple level as already there one finds many interesting examples. Yet, after this first step our
plan is to extend results to general fibrations in future work.

We show that an adjunction in the 2-category of doctrines gives rise to a doctrine with a modal
operator. An adjunction between doctrines is very much like an adjunction between categories:
roughly, it consists of two doctrines P: C op → Pos and Q: Dop → Pos and two homomorphisms
of doctrines connecting them, which should be thought of as an interpretation of P in Q (the left
adjoint) and an interpretation ofQ in P (the right adjoint). Such a situation can be summarised by
a modal logic which uses the logic Q to describe properties of types in C (the base category of P)
and the modal operator to recover (an image of) properties described by P. In a sense, we extend
the logic P through the adjunction to a richer logic and use a modal operator to keep memory
of the original logic. As we said, many standard approaches to the semantics of modal logic are
instances of such construction.

Taking a slightly different perspective, we show that also a comonad in the 2-category of doc-
trines determines a doctrine with a modal operator, this time on the category of coalgebras for the
comonad. Intuitively, we get a logic where types have a dynamics, given by the coalgebra structure,
and the modal operator specifies when a property is invariant for such dynamics.

These two constructions are tightly related. Relying on results in Blackwell et al. (1989), we
show that every comonad in the 2-category of doctrines determines an adjunction, hence, also a
modal operator. In fact, the construction starting from comonads is defined in this way. On the
other hand, every adjunction determins a comonad, hence a modal operator. However, the two
construction starting from an adjunction do not coincide, but we show they can be canonically
compared by a homomorphism of doctrines preserving the modal operator.

We further our analysis measuring in a categorical form how the passage to a modal operator
hides part of the structure that generated it.

In Section 2 we introduce interior operators on doctrines, which are the class of modal oper-
ators we are interested in. In Section 3 we recall basic notions about comonads and adjunctions
in a general 2-category. In Section 4 we define the 2-categories of doctrines and doctrines with
interior operators that are at the core of our analysis. In Section 5 we show how to construct an
interior operator starting from an adjunction between doctrines, while in Section 6 we describe the
analogous construction starting from a comonad on a doctrine. Finally, in Section 7 we compare
the two constructions showing they are part of local adjunctions, in the sense of Betti and Power
(1988), between the 2-category of doctrines with modal operator and, respectively, the 2-category
of adjunctions and that of comonads in the 2-category of doctrines. In Appendix A we sketch an
example on how to use our construction to obtain models of the bang modality of linear logic.

2. Interior Operators and Doctrines
A simple semantic approach to propositional standard modal logic (satisfying axioms T and 4)
would consider an interior operator on a poset (H,≤), i.e. a monotone function j:H →H such
that, for all x ∈H, j(x)≤ x and j(x)≤ j(j(x)), see e.g. Esakia (2004). The intuition is that the ele-
ments of the poset are an interpretation of (some kind of) formulas, the order relation realises the
entailment between them, and the interior operator j:H →H acts as a modality on formulas.

From a similar semantic point of view, one could consider a many-sorted logic to be a doctrine
P: C op → Pos , i.e. a (contra)variant functor from a category C to the category Pos of posets and
monotone functions. Such a functor is often called an indexed poset in consonancy with the more
general notion of indexed category.

The intuition for a doctrine is that the objects of the category provide the interpretations of the
sorts in the logic and the arrows interpret terms between sorts. For an object X in C , the poset PX
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gives the interpretations for the formulas expressing the properties of ‘arbitrary elements’ of X –
although no set-theoretic determination of X may have been provided, see Lawvere (1969, 1970),
but also Jacobs (1999); Maietti and Rosolini (2013a).

Conjoining these two semantic approaches it is quite natural to consider interior operators on
a doctrine as an extension to many-sorted logic, of the propositional modal logic satisfying axioms
T and 4, like the�-modality, a.k.a. necessitymodality, of S4 modal logic.

Definition 2.1. Let P: C op → Pos be a doctrine. An interior modal operator on P is a natural
transformation�: P .→ P such that, for each object X in C , the following inequalities hold:

(i) �X ≤X idPX
(ii) �X ≤X �X ◦�X

Note that standard axioms of the S4 modal operator, see e.g. Awodey et al. (2014), require
further structure. But here we consider the very simple structure of a poset on the fibres because
we want to focus mainly on the comonadic structure of the modality.

In the following, an element α ∈ PX of the form α =�Xβ for some β ∈ PX will be called �-
stable. An immediate consequence of Definition 2.1, obtained combining the two requirements
on �, is that �X =�X ◦�X . Hence �-stable elements are the fixed points of �X , that is, those
elements α ∈ PX such that�Xα = α.

Examples 2.2. Let j:H →H be an interior operator on the poset (H,≤), i.e. a monotone function
such that, for all x ∈H, j(x)≤ x and j(x)≤ j(j(x)). Given this, we can consider two examples of
doctrines with an interior operator:

(1) Let Ĥ: 1op → Pos be the functor defined on the category with a single object � and a single
arrow id� as Ĥ( � )=H. Then j is an interior operator on Ĥ.

(2) The functor H(–): Set op → Pos , which maps a set X to HX with the pointwise order and
a function t: X → Y to the monotone function – ◦ t:HY →HX , is a doctrine. The natural
transformation j ◦ –:H(–) .→H(–) given by postcomposition with j is an an interior operator
on H(–).

Note that the example in (a) is obtained from that in (b) by precomposing the doctrine
H(–): Set op → Pos with the (opposite of the) functor � �→ {0}: 1→ Set which maps the one object
� to a(ny) singleton set.

Example 2.3. Consider the categoryOpn of topological spaces and open continuousmaps. Define
P: Opn op → Pos as P(X, τ )=P(X), the powerset of the set X, and Pt = t−1, the inverse image
along the open continuous function t: (X, τ )→ (Y , σ ) Let (X, τ ) be a topological space, then τ is
the set of fixed points of the interior operator intτ :P(X)→P(X), which maps a subset A⊆ X to
its topological interior. Since intτ (A)⊆A and intτ (A)⊆ intτ (intτ (A)), for each A⊆ X, to get an
an interior operator on P we need to prove that intτ is natural. Indeed, consider an open contin-
uous map t: (X, τ )→ (Y , σ ), and a subset B⊆ Y . So t−1(intσ (B))⊆ intτ (t−1(B)) by continuity of
t. But also t(intτ (t−1(B)))⊆ intσ (B) since the set t(intτ (t−1(B)))⊆ B is open by openness of t. So
t−1(intσ (B))= intτ (t−1(B)) which proves that int: P .→ P.

Example 2.4. A Kripke frame is a pair K = (W, R) where W is the set of possible worlds and
R⊆W ×W is the accesibility relation. On the poset P(W) ordered by set inclusion, consider the
monotone function jR:P(W)→P(W) defined as

jR(A)=
{
w ∈W

∣∣ R(w)⊆A
}
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where R(w)= {
v ∈W

∣∣ (w, v) ∈ R
}
. When R is reflexive and transitive (i.e. a preorder on W), for

any w ∈W, we have w ∈ R(w)= R(R(w)). Hence jR is an interior operator.

(a) As a particular instance of Example 2.2(b), postcomposition with the interior operator
jR ◦ –:P(W)(–)

.→P(W)(–) endows the doctrine P(W)(–): Set op → Pos with an an interior
operator. Intuitively, given a ‘formula’ α ∈P(W)D, for an element x of D, the set α(x)⊆W
consists of those worlds where x satisfies α. Indeed, one can see the data consisting of
the Kripke frame K and the set D as a constant domain skeleton as in Definition 1 in
Braüner and Ghilardi (2007), where the fibres P(W)D

n
enlist all possible interpretations

for predicates as n varies.
(b) Another doctrine with an interior operator built from a Kripke frame K with a reflexive

and transitive accessibility relation can be obtained via W-indexed families. Consider the
categoryW-Fam whose

objects are W-indexed families of sets, that is, pairs X = (X, (Xw)w∈W), where Xw ⊆ X, for all
w ∈W, and where

an arrow t: X → Y is a function t: X → Y such that, for each w ∈W, Xw ⊆ t−1(Yw).

Consider the subobject functor SubW-Fam :W-Fam op → Pos mapping aW-indexed family
to the poset SubW-Fam (X) of its subfamilies, i.e. a family A such that A⊆ X and Aw ⊆ Xw
for each w ∈W, ordered by pointwise inclusion. The action on arrows is defined point-
wise by inverse image. For each W-indexed family X the function �X : SubW-Fam (X)→
SubW-Fam (X)

(�XA)w =
⋂

v∈R(w)
Av

is clearly monotone; and it satisfies conditions (i) and (ii) in Definition 2.1 for the same
reason as in the previous example. Moreover, it is natural in X since, for each function
t: Y → X, we have

t−1( (�XA)w
) = t−1

( ⋂
v∈R(w)

Av

)
=

⋂
v∈R(w)

t−1(Av)= (�Yt−1(A))w

for any w ∈W. Though surprising, we shall see in Example 4.2 that this example is a
universal completion of the previous one in (a).
Intuitively, given a W-indexed family D, for each w ∈W, the subset Dw consists of those
elements of D which are present at the world w, and, given a ‘formula’ α ∈ SubW-Fam (D),
for each world w ∈W, the set αw consist of those elements x which are present and
satisfy α at w. Indeed, one can see the data consisting of the Kripke frame K and the
w-indexed family D as a varying domain skeleton as in Definition 7 in Braüner and
Ghilardi (2007), with few additional requirements, where the fibres SubW-Fam (Dn) enlist
all possible interpretations for predicates as n varies.

(c) Yet another possibility is to consider a doctrine over the category of presheaves on the
preorder K; we shall discuss this in Example 5.12, as a particular case of a more general
construction.

3. Adjunctions and Comonads in a 2-Category
In this section, we recall basic notions which can be introduced in an arbitrary 2-category with the
purpose to use them in the particular case of the 2-category of doctrines.
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Given a (strict) 2-category K , we denote 0-cells as A, B, C, . . ., which we shall refer to also as
objects of K ; a 1-cell, also referred to as 1-arrow, from A to B will be written as a:A→ B while
a 2-cell, or 2-arrow, from the 1-cell a to the 1-cell b will be written as α: a⇒ b. Composition of
1-cells and horizontal composition of 2-cells is denoted as ◦, and often omitted – we shall use it
mainly to emphasise the composition of functions and functors. The identity 1-cell on the objectA
is denoted by eA and the identity 2-cell on the 1-cell a is denoted by 1a. A horizontal composition
with a 2-identity cell 1a will be written simply as αa. Vertical composition of 2-cells is denoted as
·. So, for instance, the defining property of vertical composition of natural transformations would
be written as something like (ψ · φ)C =ψC ◦ φC.

Many well-known concepts from standard category theory can be transferred to an arbitrary
2-category K ; a basic reference is Street (1972).

Definition 3.1. Let K be a 2-category.

(i) An adjunction A in K consists of the following data: two objects C and D, two 1-arrows
l: C →D and r:D→ C, and two 2-arrows η: eC ⇒ rl and ε: lr ⇒ eD, such that the following
triangles of 2-arrows commute

l
lη ��

1l ��
��

��
��

��
�

��
��

��
��

� lrl
εl
��
l

r
ηr ��

1r ���
��

��
��

�

��
��

��
�� rlr

rε
��
r.

(1)

(ii) A comonad c in K consists of an object A, a 1-arrow c:A→A, and two 2-arrows ν: c⇒ eA
and μ: c⇒ cc, such that the following diagrams of 2-arrows commute

c
1c

�� ��
��
��
��

��
��
��
�� 1c

���
��

��
��

�

��
��

��
��
μ
��

c cccν
��

νc
�� c

c
μ ��

μ
��

cc
cμ
��

cc
μc �� ccc.

(2)

(iii) In line with Power and Watanabe (2002); Street (1972), one says that K admits the
Eilenberg–Moore construction for the comonad (A, c,μ, ν) if there is a universal rep-
resentation of the following 2-problem: given an object B in K , objects are pairs (x, ξ )
with

A
c
��

B
x 		���������

x 

���
����

�� ξ 	�������
A

(3)

and such that the diagrams of 2-arrows

x
ξ ��

ξ
��

cx
μx
��

cx
cξ

�� ccx

x
ξ ��

1x ��
		

		
		

	

		
		

		
	 cx

νx
��
x

(4)
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commute; an arrow γ : (x, ξ )→ (y, ζ ) is a 2-arrow γ : x⇒ y such that the following diagram
commutes

x
γ

��

ξ �� cx
cγ
��

y
ζ �� cy.

(5)

Spelling out the data for an Eilenberg–Moore construction for the comonad c= (A, c,μ, ν), it
requires that there is an object Ac in K together with a 1-arrow and a 2-arrow as in

A
c
��

Ac
uc 		���������

uc 

���
����

�� ωc 	�






A

which satisfy the commutative diagrams in (4). Moreover, for any object B in K , every pair (x, ξ )
as in (3) satisfying (4) can be obtained by precomposition

A
c
��

B
x 		���������

x 

���
����

�� ξ 	�������
A

=
A
c
��

B x′
�
 Ac

uc 		��������

uc 

���
����

� ωc 
�����
A

for a unique 1-arrow x′: B→Ac, and similarly for arrows γ : (x, ξ )→ (y, ζ ) between pairs:

B
x





y
		 Aγ

�� = B
x′





y′
		 A
cγ ′

��
uc �
 A

for a unique 2-arrow γ ′: x′ ⇒ y′ in K .
In case the universality condition is verified for each comonad in K , it can be restated in terms

of a 2-adjunction after introducing the appropriate1 2-category Adj(K ) of adjunctions in K and
the 2-category Cmd(K ) of comonads in K . Since we can safely refer the reader to Power and
Watanabe (2002) for a very clear presentation of the general setup, we limit ouselves to recapping
the main diagram of 2-adjunctions:

K
Inc ��
⊥ Cmd(K )
EM

��

EMA
��⊥ Adj(K )

Cmd
��

(6)

where the 2-functor Inc sends an objectA in K to the identity comonad (A, eA, 1eA , 1eA) onA, and
the 2-functor EM sends a comonad c= (A, c,μ, ν) to its Eilenberg–Moore object Ac; while the 2-
functor Cmd sends an adjunction A= (C,D, l, r, η, ε) to the associated comonad (D, lr, lηr, ε),
and the 2-functor EMA sends a comonad c to the Eilenberg–Moore adjunction between A
and Ac.

Example 3.2. Although the terminology already suggests clearly the kind of generalisation
adopted, we hasten to point out that in the 2-category Cat of (small) categories, functors and
natural transfomations, the definitions in (i) and (ii) instantiate exactly to the usual notions of
(standard) adjunction between categories l � r – where η and ε are the unit and the counit of the
adjunction – and to comonads. Clearly, Cat admits the Eilenberg–Moore construction for every
comonad.
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In the next sections we shall characterise adjunctions and comonads in the 2-category Dtn of
doctrines.

4. The 2-Category of Doctrines
The 2-categoryDtn of doctrines consists of the following data:

objects are doctrines, i.e. a functor P: C op → Pos from the opposite of a category C to the category
Pos of posets and monotone functions – in the nomenclature of indexed categories, the
category C is named the base of the doctrine, for X an object in C the poset P(X) is the
fibre over X, and for t: X → Y an arrow in C , the monotone function Pt: PY → PX is called
reindexing along t;2

a 1-arrow (F, f ): P →Q from the doctrine P: C op → Pos to the doctrine Q: Dop → Pos is a pair
where the first component F: C → D is a functor and the second component f : P .→QFop is
a natural transformation;

a 2-arrow θ : (F, f )⇒ (F′, f ′) is a natural transformation θ : F .→ F′ such that, for each object X in
C , fX ≤X (Qθ op)X ◦ f ′X .

Composition of 1-arrows (G, g): (B ,M)→ (C , P) and (F, f ): (C , P)→ (D ,Q) is (essentially)
pairwise (FG, (fGop) · g): (B ,M)→ (D ,Q).

Composition of 2-arrows θ : (F, f )⇒ (F′, f ′) and ζ : (F′, f ′)⇒ (F′′, f ′′) is the natural transforma-
tion (ζX ◦ θX)X∈C0 : (F, f )⇒ (F′′, f ′′) since, for any object X in C ,

fX ≤X Q(θ opX) ◦ f ′X ≤X Q(θ opX) ◦Q(ζ op
X) ◦ f ′′X ≤X Q((ζ ◦ θ)opX) ◦ f ′′X .

There is an obvious forgetful 2-functorDtn→Cat to the 2-category of categories, functors and
natural transformations, which maps a doctrine (C , P) to its base category C , and acts similarly
on the arrows. Note that such a 2-functor is actually a 2-fibration, in the sense of Hermida (1999),
where cartesian 1-arrows are ‘change of base’, that is, arrows of the form (F, id), while vertical
1-arrows are arrows of the form (Id,f ).3

We define also the 2-category�-Dtn of doctrines endowedwith an interior operator as follows:

objects are pairs (P,�) where P is a doctrine and� is an interior operator on P;
a 1-arrow from (P,�) to (Q,�′) is a 1-arrow (F, f ): P →Q in Dtn such that, for each object X in

the base category of P, we have fX ◦�X ≤�′
FX ◦ fX ;

a 2-arrow from (F, f ) to (G, g) is a 2-arrow θ : (F, f )⇒ (G, g) inDtn.
Compositions are inherited from those of the 2-categoryDtn.

It is easy to verify that the requirement on the component f of a 1-arrow in�-Dtn is equivalent to
the condition that�′

FX ◦ fX ◦�X = fX ◦�X , i.e. fX maps�-stable elements to�-stable elements.

Example 4.1. Consider the forgetful functor U: Opn → Set , and for a topological space (X, τ )
let uX = idP(X):P(X)→P(X). If (P, int) is as in Example 2.3, then (U, u): (P, int)→ (P, IdP) is a
1-arrow in�-Dtn.

Example 4.2. For a Kripke frame K = (W, R) where R is reflexive and transitive, the pairs
(P(W)(–), jR ◦ –) and (SubW-Fam ,�), introduced in Example 2.4, are objects of�-Dtn.
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Consider the functor C: Set →W-Fam which maps a set S the pair (S, (S)w∈W) where the sec-
ond component is the constant family of value S. Also, for α ∈P(W)S, consider the W-indexed
family given by

(cS(α))w := {
s ∈ S

∣∣w ∈ α(s)} .
Then (C, c): (P(W)(–), jR ◦ –)→ (SubW-Fam ,�) is a 1-arrow in�-Dtn.

One can show that the 1-arrow (C, c):P(W)(–) → SubW-Fam is the comprehension completion
of the doctrine P(W)(–): Set op → Pos , and that the interior operator � is the canonical extension
of the other operator jR ◦ –, see Maietti and Rosolini (2013b); Streicher (1991).

Remark 4.3. There is a forgetful 2-functor �-Dtn→Dtn which deletes the interior operator. It
has a right 2-adjoint, which sends a doctrine P: C op → Pos to (P, id) and is the identity both on
1-arrows and 2-arrows. Indeed, for any object (P,�) in�-Dtn the inequality�X ≤ idPX holds; so
for any 1-arrow (F, f ): P →Q inDtn we have fX ◦�X ≤ fX by monotonicity of fX .

5. Interior Modalities from Adjunctions
The main goal of this section is to connect interior operators as in Definition 2.1 and adjunc-
tions in Dtn. First we characterise the general 2-categorical notion of adjunction, as introduced
in Section 3, for the particular case of the 2-category Dtn in terms of the functors and natural
transformations involved.

Proposition 5.1. An adjunction in the 2-category Dtn in the sense of Definition 3.1(i) is com-
pletely determined by an octuple (P,Q, L, λ, R, ρ, η, ε), where P: C op → Pos and Q: Dop → Pos are
doctrines, L: C → D and R: D → C are functors, λ: P .→QLop, ρ:Q .→ PRop, η: IdD

.→ RL and
ε: LR .→ IdD are natural transformations such that

(i) (C , D , L, R, η, ε) is an adjunction in Cat;
(ii) (L, λ): P →Q and (R, ρ):Q→ P are 1-arrows in Dtn;
(iii) η: (IdC , idP)⇒ (RL, (ρLop)λ) and ε: (LR, (λRop)ρ)⇒ (IdD , idQ) are 2-arrows in Dtn.

Proof. If (P,Q, l, r, η, ε) is an adjunction in Dtn, applying the forgetful functor Dtn→Cat one
gets immediately i where L and R are the first components of l and r respectively. The rest of the
proof is plain bookkeeping.

As for any 2-category, one can consider the 2-category Adj(Dtn) of adjunctions in Dtn. The
following proposition is just as straightforward as the previous one.

Proposition 5.2. The 2-category Adj(Dtn) of adjunctions in Dtn has objects which are adjunc-
tions A= (PA,QA, LA, λA, RA, ρA, ηA, εA) as in Proposition 5.1, where PA: (CA)op → Pos and
QA: (DA)op → Pos .

A 1-arrow (F, f ,G, g, θ):A→B in Adj(Dtn) consists of two 1-arrows (F, f ): PA → PB and
(G, g):QA →QB, and a 2-arrow θ : (FRA, (f (RA)op)ρA)⇒ (RBG, (ρBGop)g) in Dtn such that the
triple (F,G, θ) is a homomorphism of adjunctions in Cat, and the two natural transformations
(g(LA)op)λA: PA .→QB(GLA)op and (λBFop)f : PA .→QB(LBF)op coincide (note that GLA = LBF by
the first condition).

A 2-arrow (α, β): (F, f ,G, g, θ)⇒ (F′, f ′,G′, g′, θ ′) in Adj(Dtn) consists of two 2-arrows
α: (F, f )⇒ (F′, f ′) and β : (G, g)⇒ (G′, g′) in Dtn such that (α, β) is a 2-cell from the adjunction
homomorphism (F,G, θ) to the adjunction homomorphism (F′,G′, θ ′) in Cat.
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Remark 5.3. To elucidate the conditions in Proposition 5.2 in terms of some diagrams, consider
first that the forgetful 2-functor Dtn→Cat extends to a 2-functor Adj(Dtn)→ Adj(Cat). Hence
the condition that the triple (F,G, θ) is a homomorphism of adjunctions in Cat requires that the
diagram of functors

CA F �


LA
��

CB

LB
��

DA G �
 DB

commutes as well as (either of) the diagrams of natural transformations

F
.

ηBF
��

.Fη
A

�
 FRALA

. θLA
��

RBLBF

 RBGLA

LBFRA�� .LBθ �
 LBRBG

. εBG
��

GLARA .
GεA

�
 G

as the two commutativity conditions are equivalent. For instance, if we assume the first com-
mutes, postcomposing it with LB and precomposing it with RA, and using the naturality of θ and
εB and the triangular identities of adjunctions, we get the second as depicted in the following
diagram:

LBFRA

. LBηBFRA
��

.LBFηARA �


.
id

��

.id

��

LBFRALARA

. LBθLARA
��

.LBFRAεA �
 LBFRA

. LBθ
��

LBRBLBFRA



. εBLBFRA
��

LBRBGLARA .LBRBGεA �
 LBRBG

. εBG
��

LBFRA

 GLARA .GεA �
 LBRBG
The condition that the pair (α, β) is a 2-cell from the adjunction homomorphism (F,G, θ) to

the adjunction homomorphism (F′,G′, θ ′) in Cat translates into commutativity of the following
diagrams of natural transformations:

LBF .LBα �
�� LBF′��

GLA .βL
A

�
 G′LA.

FRA .αRA �


.
θ
��

F′RA

. θ ′
��

RBG .RBβ �
 RBG′

From now on, when referring to an adjunction in the 2-category Dtn, we shall take advantage
of Proposition 5.1 and write it as an octuple (P,Q, L, λ, R, ρ, η, ε).

Example 5.4. Examples are many as any adjunction between categories with pullbacks gives rise
to an adjunction between the doctrines of subobjects. In details, given a category with pullbacks C ,
one can define a functor SubC : C op → Pos taking advantage of the fact that pulling back preserves
monos. The functor maps an object to the poset of its subobjects and reindexing along f : X′ → X
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is as follows: a subobject [A � � α �
X] , determined by the isomorphism class of the mono α, is
taken to the subobject determined by the mono α′ obtained as a pullback

A′

��

� � α′
�
 X′

f
��

A � �

α
�
 X.

Let D be also a category with pullbacks, and consider an adjunction (C , D , L, R, η, ε) where
L: C → D preserves pullbacks (as a right adjoint, the functor R: D → C preserves all existing lim-
its). Between the doctrines SubC : C op → Pos and SubD : Dop → Pos there are 1-arrows of Dtn
(L, λ): SubC → SubD and (R, ρ): SubD → SubC , where for X in C and Y in D

λX([A � � α �
X])= [LA � � Lα �
LX] ρX([B �
� β �
Y])= [RA � � Rβ �
RY].

The naturality of λ and ρ follows since reindexing is given by pulling back, and L and R preserve
pullbacks. To see that (SubC , SubD , L, λ, R, ρ, η, ε) is an adjunction inDtn there remains to check
that η: (IdC , idSubC )⇒ (RL, (ρLop)λ) and ε: (LR, (λRop)ρ)⇒ (IdD , idSubD ) are 2-arrows ofDtn: in

other words, for any [A � � α �
X] and [B � � β �
Y] , we have

[α]≤ SubC (ηX) [RL(α)] and [LR(β)]≤ SubD (εY) [β].

But this follows from naturality of η and ε together with the reindexing pullbacks

A � �

α

��
ηA

��

���
�

�
�

�

P

��

� � �


p.b.

X
ηX
��

RLA � �

RL(α)
�
 RLX

LRB

���
�

�
�

�
� �

LR(β)

��

εB

��

P

��

� � �


p.b.

LRY
εY
��

B � �

β
�
 Y

We now put to use the characterisation in Proposition 5.1 to construct an interior operator
starting from an adjunction of doctrines. We begin the process performing the construction for a
very specific type of adjunctions: adjunctions between vertical 1-arrows.

Proposition 5.5. Let P: C op → Pos and Q: C op → Pos be doctrines, and suppose the octuple
(P,Q, IdC , λ, IdC , ρ, idIdC , idIdC ) is an adjunction inDtn. Then

(i) for each object X in C , the following adjunction holds between the fibres

PX
λX



⊥ QX,
ρX

�� X ∈ C0;

(ii) �= λ · ρ is an interior operator on Q.

Proof. By Proposition 5.1, the hypothesis ensures that idIdC : (IdC , id)⇒ (IdC , ρλ) and
idIdC : (IdC , λρ)⇒ (IdC , id) are 2-arrows inDtn. From this, the conclusion follows directly.
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Example 5.6. Recall from Rosenthal (1990) that a commutative quantale is a complete lattice
endowed with further structure (V ,

∨
,≤,⊗, 1) where (V ,

∨
,≤) is a complete lattice, (V ,⊗, 1) is

a commutative monoid such that the operation ⊗ distributes over sups:

x⊗
(∨

i∈I xi
)

=
∨

i∈I(x⊗ xi)

for elements x and families (xi)i∈I in V – note that this yields that ⊗ is monotone in its two
arguments.

Let RV = {x ∈V | x≤ 1 and x≤ x⊗ x} ⊆V . It is easy to check that 1 ∈ RV and RV is closed
with respect to ⊗ and

∨
. Hence (RV ,

∨
,≤,⊗, 1) is a commutative quantale. Let ι: RV →V be

the inclusion function which clearly preserves sups. Its right adjoint r:V → RV is determined as
r(x)= ∨{y ∈ RV | y≤ x}.

Consider the doctrine V(–): Set op → Pos and R(–)V : Set op → Pos mapping a set X to the sets
of functions VX and RXV , ordered pointwise, and acting on functions by precomposition. And
the 1-arrow (Id, ι ◦ –): R(–)V →V(–) has a right adjoint given by (Id, r ◦ –):V(–) → R(–)V . Hence, by
Proposition 5.5, there is an interior operator !:V(–) .→V(–) given by !Xα= ι ◦ r ◦ α, for any set X
and α ∈VX .

Recall that the doctrine V(–) carries a much richer structure induced from that of the original
quantale V : for any set X, (VX ,

∨
,≤X ,⊗X , 1X) is a commutative quantale with the pointwise

structure and, for α, β ∈VX , the operation α�X β := ∨{ζ ∈VX | α⊗X ζ ≤X β} determines an
adjoint pair –⊗X α � α�X –; i.e. for every γ ∈VX , one has that α⊗X γ ≤X β if and only if γ ≤X
α�X β . Furthermore, the interior operator !:V(–) .→V(–) enjoys additional properties: for any
set X and α, β ∈VX , we have !Xα ≤X 1X and !Xα ≤X !Xα⊗X !Xα, and 1X ≤X !X1X and !Xα⊗X
!Xβ ≤X !X(α⊗X β). Therefore, the indexed posetV(–) provides a model of first order intuitionistic
linear logic, where ! is the linear exponential modality.

Examples 5.7. Let P: C op → Pos be a doctrine. The propositional connectives are defined in
terms of adjunctions involving P and another doctrine defined from it where the adjoint functors
between the base categories are the identity, see Lawvere (1969), see also Jacobs (1999);Maietti and
Rosolini (2015). So Proposition 5.5 provides interior operators associated with each connectives.
Two interesting instances are the following:

(1) Consider the doctrine P2: C op → Pos , defined by P2X = PX × PX and P2f = Pf × Pf .
Note that there is a 1-arrow (IdC ,�): P → P2 where �X = (idPX , idPX). Conjunction
on P is determined by a right adjoint to (IdC ,�) in Dtn, that is the octuple
(IdC ,�, IdC ,∧, idIdC , idIdC ) is an adjunction between P and P2. Hence, by Proposition 5.5,
there is an interior operator on P2 given by (α, β) �→ (α ∧ β , α ∧ β), for α, β ∈ PX.

(2) Assume further that C has finite products and consider an object X in C . Consider the
doctrine PX : C op → Pos , determined as PX(Y)= P(Y × X) and PX(f )= P(f × idX). There
is a 1-arrow (IdC , pX): P → PX where pXY = Pπ1 and π1: Y × X → Y is the first projection.
A universal quantifier ∀X on P over X is a right adjoint to (IdC , pX) in Dtn, i.e. the octuple
(P, PX , IdC , pX , IdC , ∀X , idIdC , idIdC ) is an adjunction in Dtn. Hence, by Proposition 5.5,
there is an interior operator on PX given as α �→ pX(∀Xα) for α ∈ PX(Y)= P(Y × X).

We did not consider the other cases of connectives because the modality each of those induces
is the identity as the next proposition explains in a more general context.

Proposition 5.8. Let P: C op → Pos and Q: C op → Pos be doctrines on the same base category.
Suppose (P,Q, IdC , λ, IdC , ρ, idIdC , idIdC ) is an adjunction. Then, for each object X in C , the
following hold:
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(i) λX · ρX · λX = λX and ρX · λX · ρX = ρX;
(ii) λX · ρX = idQX if and only if ρX is injective if and only if λX is surjective;
(iii) ρX · λX = idPX if and only if λX is injective if and only if ρX is surjective.

Proof. (i) is immediate since the adjunction λX � ρX involves posetal categories. (ii) and (iii)
follow directly from (i).

The next step is an application of a remarkable result by Hermida (1994) about fibred adjunc-
tions as it allows to show that any adjunction in Dtn can be factored as the composition of
two adjunctions where one is the identity adjunction on the base categories. For this, recall
that Dtn has a vertical/cartesian factorisation system, that is, any 1-arrow (F, f ): P →Q from
the doctrine P: C op → Pos to the doctrine Q: Dop → Pos can be factored by ‘change of base’ as
(F, idQFop ) ◦ (IdC , f )

C op
P

��
Idop

C ��
C op QFop

�


Fop

��

Pos

Dop Q

��

f .������

id
.�� ����

The factorisation of the adjunction follows this decomposition for the left adjoint. Recall
Lemma 3.2 from Hermida (1994) in the case of doctrines.

Lemma 5.9. Let (C , D , L, R, η, ε) be an adjunction inCat. If Q: Dop → Pos is a doctrine, then there
is an adjunction (QLop,Q, L, id, R,Qεop, η, ε) in Dtn as depicted in the diagram

QLop

(L, id)
�� Q.

(R,Qεop)
�� (7)

Proof. We apply Proposition 5.1 to show (QLop,Q, L, idQLop , R,Qεop, η, ε) is an adjunction in
Dtn. Since (C , D , L, R, η, ε) is already an adjunction in Cat, it remains to check the natural
transformations η: IdC

.→ RL and ε: LR .→ IdD determine 2-arrows inDtn as follows

η: (IdC , idQLop)⇒ (RL,Q(εL)op) ε: (LR,Qεop)⇒ (IdD , idQ).

In other words, the inequalities

idQLX ≤QLηX ◦QεLX QεY ≤QεY

hold for each object X in C and Y in D . They are in fact identities: the second is immediate, and
the first follows from the triangular identity (1) for an adjunction

QLηX ◦QεLX =Q(εLX ◦ LηX)=QidLX = idQLX (8)

by functoriality of Q.

Theorem 3.4 in Hermida (1994) restricted to the case of doctrines is the following.

Theorem 5.10. Let P: C op → Pos and Q: Dop → Pos be doctrines, and suppose the octuple
(P,Q, L, λ, R, ρ, η, ε) is an adjunction in Dtn. Then that adjunction factors through the adjunction
in (7) as
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P
(IdC , λ)

�� QLop

(IdC , (Pηop)(ρLop))
��

(L, id)
�� Q.

(R,Qεop)
�� (9)

where the first one is (P,QLop, IdC , λ, IdC , (Pηop)(ρLop), id, id).

Proof. We see the (P,QLop, IdC , λ, IdC , (Pηop)(ρLop), idIdC , idIdC ) is an adjunction in Dtn as
another application of Proposition 5.1. Obviously (C , C , IdC , IdC , id, id) is the identity adjunction
in Cat. To check the natural transformation idIdC : IdC

.→ IdC determines 2-arrows inDtn

idIdC : (IdC , idP)⇒ (IdC , (Pηop)(ρLop)λ) and idIdC : (IdC , λ(Pηop)(ρLop))⇒ (IdC , idQLop)

we must see that the inequalities

idPX ≤ PηX ◦ ρLX ◦ λX and λX ◦ PηX ◦ ρLX ≤ idQLX
hold for each object X in C . The first inequality holds since η: (IdC , idP)⇒ (RL, (ρLop)λ) is a
2-arrow in Dtn. For the second inequality, note that λX ◦ PηX ◦ ρLX =QLηX ◦ λRLX ◦ ρLX since
λ: P .→QLop. Since ε: (LR, (λRop)ρ)⇒ (IdD , idQ) is a 2-arrow in Dtn, we have that λRLX ◦ ρLX ≤
QεLX . Now the result follows from (8).

To see that the composition of the two adjunctions gives the original adjunction, note that the
top and bottom compositions in (9) give the top and bottom 1-arrow in

P
(L, λ)



 Q.
(R, ρ)

��

It is immediate to see that (L, id) · (IdC , λ)= (L, λ). For the other composition, the first compo-
nents coincide trivially, and for the second components apply the commutativity of the following
diagram of natural transformations

Q

ρ

��

Qεop

��

ρ
�
 PRop

PRopεop

��

P((Rε)(ηR))op
�
 PRop

QLopRop ρLopRop
�
 PRopLopRop

PηopRop

����������������������

where the square commutes by naturality of ρ, the right-hand triangle by functoriality of P, and
the top triangle by one of the triangular identities for adjunctions (1). Finally one sees immediately
the compositions of the 2-arrows give the 2-arrows of the original adjunction.

Corollary 5.11. Let P: C op → Pos and Q: Dop → Pos be doctrines, and suppose the octuple
(P,Q, L, λ, R, ρ, η, ε) is an adjunction in Dtn. Then �= λ · (Pηop) · (ρLop) is an interior operator
on the doctrine QLop: C op → Pos .

Proof. It follows immediately applying Proposition 5.5 to the first adjunction in (9).

Example 5.12. Let C and D be category with pullbacks, and let (C , D , L, R, η, ε) be an
adjunction where L: C → D preserves pullbacks. As in Example 5.4, there is an adjunc-
tion (SubC , SubD , L, λ, R, ρ, η, ε) on the doctrines of subobjects. By Corollary 5.11, there is
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an interior operator on the doctrine SubDLop: C op → Pos , defined as �Xα = Lα′, where X ∈ C0
and α ∈ SubD (LX) and α′ ∈ SubC (X) is defined by the following pullback diagram

P

��

� � α′
�


p.b.

X
ηX
��

RA � �

Rα
�
 RLX

The construction is reminiscent of that of a modal operator from a geometric morphism between
elementary toposes, see the original paper Ghilardi and Meloni (1988), or Section 10.1 in Braüner
and Ghilardi (2007), and also Awodey and Birkedal (2003); Awodey et al. (2002); Reyes (1991).
Indeed, a geometric morphism from the topos E to the topos F is an adjunction (E , F , L, R, η, ε)
such that the left adjoint L preserves finite limits.

The paradigmatic example of a interior operator obtained from a geometric morphism is that
offered by presheaves over a category C . Recall that the category of presheaves over C is the func-
tor category [C op, Set ]. If we let C0 be the discrete category of the objects of C and write i: C0 → C
the inclusion functor, postcomposition with it determines a functor L= – ◦ iop: [C op, Set ]→
[C0

op, Set ] which preserves all limits and colimits as these are computed pointwise – although
C0 = C op

0 we maintain the redundant notation C op
0 just for mental hygiene. Since the functor

category [C op, Set ] is complete and has a generating set, L has a right adjoint R: [C0
op, Set ]→

[C op, Set ]. Hence, L� R is a geometric morphism, thus it induces an interior operator on

[C op, Set ]op
Sub[C0

op,Set ]Lop
�


Lop
����

���
���

���
Pos

[C0
op, Set ]

Sub[C0
op,Set ]

������������

Finally, note that, if K = (W, R) is a Kripke frame with R reflexive and transitive, taking
C =Kop, the above geometric morphism provides another way to construct Kripke models cat-
egorically. In detail, a presheaf D over Kop specifies, for each world w ∈W, a set D(w), modelling
individuals which exist at the world w, and, for each wRv, a function Dwv:Dw →Dv, describing
how individuals existing at the world w ‘evolve’ in the world v. A ‘formula’ α on D is a family
of subsets, that is, for each world w ∈W, αw ⊆Dw, and the modal operator identifies those for-
mulas which are subpresheaves of D, namely, those α such that, for all w, v ∈W, if wRv then
αw ⊆D−1

wv (αv).

We conclude this section showing that the construction in Corollary 5.11 extends to a 2-functor
AM: Adj(Dtn)→�-Dtn.

For an adjunction A inDtn write

�A := λA · (PA(ηA)op) · (ρA(LA)op)
which is an interior operator by Corollary 5.11. Let AM(A)= (QA(LA)op,�A). For a 1-arrow
(F, f ,G, g, θ):A→B, let

AM((F, f ,G, g, θ)) := (F, g(LA)op). (10)

For a 2-arrow (α, β): (F, f ,G, g, θ)⇒ (F′, f ′,G′, g′, θ ′), let

AM((α, β)) := α. (11)
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Proposition 5.13. With the assignments above, AM: Adj(Dtn)→�-Dtn is a 2-functor.

Proof. We just have to check that the identities in (10) and (11) determine arrows in �-Dtn, as
the algebraic identities will then follow immediately. Since g(LA)op:QA(LA)op .→QB(GLA)op and
GLA = LBF by Proposition 5.2, in order to see that

(F, g(LA)op): (QA(LA)op,�A)→ (QB(LB)op,�B)

ia a 1-arrow in �-Dtn we are left to check that for every object X in the base category of Q(LA)op,
we have

gLAX ·�A
X ≤�B

FX · gLAX .
In the diagram of natural transformations

QA(LA)op .ρA(LA)op �


. g(LA)op

��

PA(RALA)op .PA(ηA)op �


.f (RALA)op

��

∗

PA .λA �


.f

��

QA(LA)op
. g(LA)op
��

QB(GLA)op

PB(FRALA)op .PB(FηA)op �
 PBFop .λBFop
�
 PB(LBF)op

� �

QB(LA)op .PBθ(LA)op �


.����
���

��

ρB(LBF)op ����
���

���
�

≥

PB(RBGLA)op

.PB(θLA)op
��

.���������

PB(θLA · FηA)op
�����������

PB(RBLBF)op

.�������������

PB(ηBF)op

� �������������

the marked square commutes by naturality of f , the triangle by functoriality of PB, and all the
other paths commutes (possibly up to inequality as shown) by Proposition 5.2.

Given now a 2-arrow (α, β): (F, f ,G, g, θ)⇒ (F′, f ′,G′, g′, θ ′) in Adj(Dtn) to see that
α: (F, gLA)⇒ (F′, g′LA) is a 2-arrow in �-Dtn, we have to show that, for every object X in the
base category of Q(LA)op, it is the case that gLAX ≤Q′LBαX · g′

LAX . By Proposition 5.2, the equality
LBα = βLA holds and, since β : (G, g)⇒ (G′, g′) in Dtn, we obtain that gLAX ≤Q′βLAX · g′

LAX , as
needed.

Example 5.14. A particular example of interior operators is found in the categorical semantics
of the linear exponential modality (a.k.a. bang modality) of propositional linear logic provided by
linear–non-linear adjunctions. A linear–non-linear adjunction is a monoidal adjunction between
a symmetric monoidal category and a cartesian category; the induced comonad on the symmetric
monoidal category interprets the bang modality, see Benton (1994). The categorical notion swiftly
extends to doctrines where the construction in Corollary 5.11 provides amodel of the bangmodal-
ity in a higher order setting. The role of the cartesian category is played by a primary doctrine, see
e.g. Emmenegger et al. (2020)), that is, a doctrine P: C op → Pos where C has finite products and,
for each object X in C , the fibre PX carries an inf-semilattice structure preserved by reindexing.
The role of the symmetric monoidal category is played by a (symmetric)monoidal doctrine, which
one defines following the work on monoidal indexed categories of Moeller and Vasilakopoulou
(2020). We give some of the details in Appendix A, but shall develop fully the particular instance
of interior operators in a subsequent paper.
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6. Interior Modalities from Comonads
As is well known, there is a deep connection between comonads and adjunctions in a 2-category:
every adjunction determines a comonad. Viceversa, when the 2-category admits the Eilenberg–
Moore construction for comonads, a comonad generates an adjunction. This connection is
particularly interesting when we consider a left exact comonad K on a topos E : the category of
coalgebras EK is a topos and the Eilenberg–Moore adjunction between EK and E is a geometric
morphism, see e.g. Mac Lane and Moerdijk (1992). As we have seen in Example 5.12, geometric
morphisms generate interior operators; hence, combining these two facts, we obtain that a left
exact comonads on an elementary topos determines an interior operator.

In this section, we study the relationship between adjunctions and comonads in the 2-
categoryDtn of doctrines, showing how comonads generate adjunctions, as expected, and interior
operators from those. We start by determining comonads in Dtn.

Proposition 6.1. Let P: C op → Pos be a doctrine. A comonad on P is completely determined by a
quadruple K= (K, κ ,μ, ν) where

(i) (K,μ, ν) is a comonad on C ;
(ii) (K, κ): P → P is a 1-arrow in Dtn;
(iii) μ: (K, κ)⇒ (K2, (κKop)κ) and ν: (K, κ)⇒ (IdC , id) are 2-arrows in Dtn.

Proof. Straightforward.

Remark 6.2. More explicitly, condition (ii) in Proposition 6.1 requires that μ: P .→ PKop and
condition (iii) in Proposition 6.1 states that, for each object X in C , the following inequalities hold

κX ≤ PμX ◦ κKX ◦ κX and κX ≤ PνX .

For abstract reasons, a comonad in Dtn always admits the Eilenberg–Moore construction, see
Blackwell et al. (1989). Here we limit ourselves to present the direct computation of the Eilenberg–
Moore object for a comonad K= (K, κ ,μ, ν) on the doctrine P: C op → Pos . The Eilenbeerg-Moore
object for K can be given on the doctrine PK:

(
CK)op → Pos defined as follows.

The category CK is the category of coalgebras for the comonad (K,μ, ν) on C , namely, objects
are pairs (C, c) where C is an object in C and c: C →KC is an arrow in C such that the diagram

C
c
��

idC
�!��
��
��
��

c �
 KC
μC
��

C KC
νC

�"
Kc

�
 KKC

commutes, and an arrow f : (C, c)→ (C′, c′) is an arrow f : C → C′ in C , such that

C

c
��

f
�
 C′

c′
��

KC
Kf

�
 KC′.

With the intention to produce the doctrine PK:
(
CK)op → Pos , for each coalgebra (C, c) let

PK(C, c) be the suborder of PC on the subset
{
α ∈ PC

∣∣ α ≤ Pc(κC(α))
}
.
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Given an arrow f : (C, c)→ (C′, c′) in CK and β ∈ PK(C′, c′), note that β ≤ Pc′(κC′(β)) by
definition of PK(C′, c′). Thus

Pf (β)≤ Pf (Pc′(κC′(β)))= P(c′f )(κC′(β)))= P(fKc)(κC′(β)))

= Pc(PK(f )(κC′(β)))= Pc(κC(Pf (β))).

So Pf sends elements of PK(C′, c′) to elements of PK(C, c): let PKf be the restriction of Pf . It follows
immediately that PK is a doctrine.

Remark 6.3. Note that the inequality Pc(κC(α))≤ α holds for every α ∈ PC, by properties of
c and νC. Hence the elements of PK(C, c) are the fixpoints of Pc ◦ κC. Furthermore, as we shall
see, Pc ◦ κC is an idempotent on PC (it is a consequence of Proposition 6.6). Thus, as in Pos
idempotents split, one gets PK(C, c) by splitting Pc ◦ κC.

Next we introduce the forgetful 1-arrow (UK, ιK): PK → P as follows: the functor UK: CK → C
is the actual forgetful functor from the category of coalgebras; the natural transformation ιK: PK .→
P(UK)op is given by the inclusion of PK(C, c) into PC as (C, c) varies amongst the objects of CK .
It is immediate to see the functor UK is faithful and, for each object (C, c) in CK , the map ιK(C,c) is
injective.

Finally the universal 2-arrow ςK: (UK, ιK)⇒ (K, κ)(UK, ιK) as requested in (3) is given by the
family ςK given by

ςK(C,c) := c: C →KC, as (C, c) varies amongst the objects in CK .

One sees immediately that ςK:UK .→KUK. It determines an appropriate 2-arrow in Dtn because
for any α ∈ PK(C, c), by definition of PK(C, c) one has that

α ≤ Pc(κC(α))=
(
PςK(C,c) ◦ κ

(
UK)op

(C,c)

)
(α)

After introducing the dramatis personæ, we are ready to prove the characterisation of the
Eilenberg–Moore construction for a comonad inDtn.

Theorem 6.4. Let P: C op → Pos be a doctrine and K a comonad on P. Then

P

(K, κ)
��

PK
(UK, ιK) 
#�����������

(UK, ιK)  $���
����

���� ςK �%����� �����

P

is the Eilenberg–Moore construction for K in Dtn.

Proof. We begin the proof analysing the data for the 2-problem in Definition 3.1(iii): one has an
arbitrary doctrine Q: Dop → Pos and a diagram of 1-arrows and 2-arrows inDtn

P

(K, κ)
��

Q

(X, x) 
#�����������

(X, x)  $���
����

���� ξ �%����� �����

P

(12)
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where the pair ((X, x), ξ ) satisfies the two commutativity conditions in (4). These translate
precisely in the commutative diagrams of natural transformations

X .ξ �


.ξ
��

KX

.μX
��

KX .
Kξ

�
 KKX

X .ξ �


.��
��

idX !&�
��

�

KX

. νX
��
X

(13)

while the condition on the 2-arrow in (12) requires that the natural transformation ξ : X .→KX is
such that, for every object D in D and β ∈Q(D), we have

xD(β)≤ P(ξD)(κX(D)(xD(β))). (14)

In turn, the commutativity of the two diagrams (13) is equivalent to requiring that, for every
object D in D , there is a structure of coalgebra (X(D), ξD) for the comonad (K,μ, ν) on the object
X(D) in the category C , and that, for every arrow f :D→D′ in D , the arrow X(f ): (X(D), ξD)→
(X(D′), ξD′) is a homomorphism of coalgebras. At the same time, condition (14) is equivalent to
requiring that the monotone function xD:Q(X(D))→ P(X(D)) factors through

Q(X(D))
xD �������
�����

xD �
 P(X(D))

PK(X(D), ξD)
� 	

"������

Hence the data for the 2-problem determine precisely a 1-arrow ((X, ξ ), x):Q→ PK ensuring
uniqueness, and it is immediate to check that the required diagram commutes.

Similarly, for an arrow γ : ((X, x), ξ )→ ((Y , y), υ) of the 2-problem, that is, a 2-arrow
γ : (X, x)⇒ (Y , y) in Dtn, the commutative diagram (5) determines precisely a natural transfor-
mation γ : (X, ξ ) .→ (Y , υ); the inequality encoded in the 2-arrow γ : (X, x)⇒ (Y , y) in Dtn is the
same as that encoded in the 2-arrow γ : ((X, ξ ), x)⇒ ((Y , υ), y) inDtn.

Corollary 6.5. Let P: C op → Pos be a doctrine and K= (K, κ ,μ, ν) be a comonad on P. Then there
is an adjunction A

K = (PK, P,UK, ιK, K̂, κ , ηK, ν) between PK and P.

Proof. It follows from Theorem 6.4 and general results in Street (1972). But we make explicit each
component of the adjunction as is obtained from the general case. Amongst the data determining
the adjunction, only two may need to be described: the functor K̂: C → CK is the free coalgebra
functor and gives, for an object X in C , the free coalgebra K̂X = (KX,μX). The natural transfor-
mation is the canonical embedding of a coalgebra into the free coalgebra ηK: IdCK

.→ K̂UK defined
as ηK(X,c) = c.

In fact, in the general 2-adjunction between comonads and adjunctions in a 2-category K when
K admits the Eilenberg–Moore construction, as in diagram (6), we know that the Eilenberg–
Moore construction gives the right 2-adjoint from the 2-category Cmd(K ) of comonads in K . So
we briefly collect the data for the 2-category Cmd(Dtn) in order to apply that result in the present
situation. The 2-category Cmd(Dtn) has

objects which are pairs (P, K) where P is a doctrine and K is a comonad on P;
1-arrows from (P, K) to (Q, J), with K= (K, κ ,μK, νK) and J= (J,ψ ,μJ, νJ), consist of a 1-arrow

(F, f ): P →Q and a 2-arrow θ : (FK, (fKop)κ)⇒ (JF, (ψFop)f ) inDtn such that the following
diagrams of functors and natural transformations commute:
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FK θ �


FνK !&�
��

��
��

� JF

νJF
��
F

FK

FμK
��

θ �
 JF

μJF
��

FK2
θK

�
 JFK
Jθ

�
 J2F

2-arrows from ((F, f ), θ) to ((G, g), ζ ), which are 1-arrows from (P, K) to (Q, J), with K=
(K, κ ,μK, νK) and J= (J,ψ ,μJ, νJ), consist of a 2-arrow α: (F, f )⇒ (G, g) such that the
following diagram of functors and natural transformations commutes

FK αK �


θ
��

GK

ζ
��

JF
Jα

�
 JG

The instance of diagram (6) which we have been addressing is the following:

Dtn
Inc ��
⊥ Cmd(Dtn)
EM

��

EMA
��⊥ Adj(Dtn)

Cmd��

Since by Corollary 5.11 every adjunction between doctrines induces an interior operator, via EMA
one obtains an interior operator also from a comonad.

Proposition 6.6. Let P: C op → Pos be a doctrine and K= (K, κ ,μ, ν) a comonad on P. Then, the
natural transformation �K: PUK .→ PUK, defined, for each coalgebra (X, c) in CK, by �K

(X,c) = Pc ◦
κX, is an interior operator on PUKop: CK → Pos .

Proof. By Corollary 6.5, (UK, ιK, K̂, κ , ηK, ν) is an adjunction between PK and P. By Corollary 5.11,
�K = ιK · (PKηK) · (κUK) is an interior operator on PUKop: CK op → Pos , but, for each coalgebra
(X, c) in CK , ηK(X,c) = c and UK(X, c)= X, PKc= Pc by definition, and ιK is an inclusion.

Example 6.7. An interesting case of Proposition 6.6 is that of toposes of presheaves as models
of first order modal logic. We have already seen in Example 5.12 how one obtains an interior
operator

[C op, Set ]op
Sub[C0

op,Set ]Lop
�


Lop
����

���
���

���
Pos

[C0
op, Set ]

Sub[C0
op,Set ]

������������

on the category of presheaves [C op, Set ] from the adjunction which is the geometric morphism

[C0
op, Set ]

R #'
� [C op, Set ]

– ◦ iop
$( (15)

where C0 denotes the discrete category of the objects of C and i: C0 → C is the inclusion functor.
But the category of presheaves is exactly the category of coalgebras for the comonad determined
by the adjunction (15), see Johnstone (2002); so Proposition 6.6 applies, and the modal operator
obtained on a presheaf model is obtained directly from the subobject doctrine on [C0

op, Set ]] and
the geometric morphism that determines the presheaves as coalgebras.
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7. The Global Picture
Proposition 5.13 produces a construction of an interior operator from adjunctions as a 2-functor
AM: Adj(Dtn)→�-Dtn. And Proposition 6.6 describes the action of the composition CM in the
diagram

Cmd(Dtn)
EMA

%)⊥

CM
���

��
��

��
��

��
��

��
��

��
Adj(Dtn)

AM

��

Cmd&*

�-Dtn.
The goal of this section is to complete the above diagram, by showing that AM is part of a local
adjunction, see Betti and Power (1988). Hence so is CM.

We start by comparing the 2-functor AM to the composite CM ◦Cmd, both constructing a
doctrine with interior operator from an adjunction in Dtn. They do not coincide, but can be
canonically compared by a 2-natural transformation. Recall that CM maps a comonad (P, K), for
K= (K, κ ,μK νK), to the doctrine with an interior operator (P(UK)op,�K) where�K

(X,c) = Pc · κ .
Since AM is a 2-functor, its action on the unit of the 2-adjunction Cmd� EMA produces a

natural comparison AM(A)→CM(Cmd(A)) forA= (P,Q, L, λ, R, ρ, η, ε) an adjunction inDtn.
Indeed, let K :=Cmd(A)= (LR, (λRop)ρ, LηR, ε) be the induced comonad on Q. The compo-

nent of the unit of the 2-adjunction on A is given by the 1-arrow (K, k, Id, id, id):A→ EMA(K),
where (K, k): P →QK is the comparison 1-arrow given by the Eilenberg–Moore construction. The
1-arrow (K, k) is obtained by the universal property of QK applied to the following diagram:

Q

(LR, (λRop)ρ)
��

P
(L, λ) 		���������

(L, λ) 

���
����

�� Lη 
�������
Q

More explicitly, (K, k) is defined as follows:KX := (LX, LηX), for each objectX in the base category
of P, Kf := Lf , for each arrow in the base category of P, and k= λ. This is well-defined thanks to
the following chain of inequalities:

λX ≤ λX ◦ PηX ◦ ρLX ◦ λX =Q(LηX) ◦ ((λRop) · ρ)LX ◦ λX .
Proposition 7.1. Let A= (P,Q, L, λ, R, ρ, η, ε) be an adjunction in Dtn, and consider K :=
(LR, (λRop)ρ, LηR, ε) the associated comonad on the doctrine Q. Let (K, k) be the comparison
1-arrow. Then, (K, id): (QLop,�A)→ (Q(UK)op,�K) is a 1-arrow in Dtn and�A =�KK.

Proof. It is immediate since, for each object X,�A
X = λXPηXρLX =QLηXλRLXρLX =�K

KX .

Finally, let us note that this comparison 1-arrow is a component of a 2-natural transformation,
obtained by postcomposition of the unit of the 2-adjunction Cmd� EMAwith the 2-functor AM.

In order to show that AM is part of a local adjunction, We start by constructing a comonad
from an object (P,�) in�-Dtn.

Proposition 7.2. Let P: C op → Pos be a doctrine and�: P .→ P be an interior operator on P. Then,
(IdC ,�, id, id) is a comonad on P.

Proof. There is only to check that id: (IdC ,�)⇒ (IdC , id) and id: (IdC ,�)⇒ (IdC ,� ·�) are
well-defined 2-arrows. But, for each object X in C , �X ≤ idPX and �X ≤�X ·�X hold by
Definition 2.1.
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In other words, Proposition 7.2 shows that an interior operator on a doctrine P is exactly a
vertical comonad on it.

We introduce the 2-functor MC:�-Dtn→ Cmd(Dtn) by letting, for (P,�) a doctrine with
interior operator, MC((P,�)) := (P, Id,�, id, id), which is a comonad by Proposition 7.2; for a
1-arrow (F, f ): (P,�P)→ (Q,�Q) MC((F, f )) := (F, f , id); for a 2-arrow θ : (F, f )⇒ (G, g) MC(θ)
:= θ .

Proposition 7.3. With the assignments above,MC:�-Dtn→ Cmd(Dtn) is a 2-functor.

Proof. The proof is straightforward. The only interesting part is checking that it is well defined on
the 1-arrows. Indeed, for each object X in the base category C of the doctrine P, we have fX ·�P

X ≤
�Q

FX · fX , by definition of 1-arrow in�-Dtn. And this ensures that id: (F, f ·�P)⇒ (F, (�QFop) · f )
is a 2-arrow inDtn.

It is easy to see that the 2-functor MC is full and faithful. Hence the 2-category �-Dtn is
isomorphic to the 2-category of vertical comonads in Dtn.

Now letMA:�-Dtn→ Adj(Dtn) be the composition �-Dtn MC �
 Cmd(Dtn) EMA �
 Adj(Dtn)
which sends an object (P,�) in �-Dtn to the Eilenberg–Moore adjunction of the associated
comonad MC(P,�)= (IdC ,�, id, id)

�P
(IdC , ιK)



⊥ P
(IdC ,�)

��

where, from the general construction in (6), the Eilenberg–Moore object �P: C op → Pos for the
comonad induced by � is �PX = {

α ∈ PX
∣∣ α =�Xα

}
. Also �Pf = Pf , and ιK:�P .→ P is the

inclusion.

Theorem 7.4. There is a local adjunctionMA�AM, where

• the unit�: Id�-Dtn
.→AM ·MA is the identity lax 2-natural transformation, and

• the counit ∇ : MA ·AM .→ IdAdj(Dtn) is given, for an adjunction A= (P,Q, L, λ, R, ρ, η, ε)
where P: C op → Pos and Q: Dop → Pos , by ∇A = (IdC , (Pηop) · (ρLop), L, id, η), as in the
following diagram

�QLop

(IdC , (Pηop) · (ρLop))

��

(IdC , ιK)
��⊥ QLop

(IdC ,�A)
��

(L, id)

��
P

(L, λ)


⊥

���� '&
η

Q
(R, ρ)

��

and, for each 1-arrow φ:A→B, ∇φ = (id, id).

Proof. The fact that � is a well-defined lax 2-natural transformation is straightforward, since
AM ·MA= Id�-Dtn. We check that ∇A is a 1-arrow from MA((QLop,�A)) to A. We have
(L ◦ IdC , λ · (Pηop) · (ρLop))= (L ◦ IdC , id · ιK), since, for each object X in C and α ∈�QLopX,
we have λX(PηX(ρLX(α)))=�A

Xα = α, by definition of �QLop. Then, we have to check that
η: (IdC ◦ IdC , (Pηop) · (ρLop) ·�A)⇒ (RL, (ρLop) · id) is a 2-arrow in Dtn, but this holds because
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η: IdC
.→ RL is a natural transformation and , for each object X in C , �A

X ≤ idQLopX , hence we get
PηX ◦ ρLX ◦�A

X ≤ PηX ◦ ρLX .
Now, consider a 1-arrow φ = (F, f ,G, g, θ):A→B in Adj(Dtn); hence, we haveMA(AM(φ))=

(F, g(LA)op, F, g(LA)op, id), and we have to show that

∇φ = (id, id): (F, f ,G, g, θ) ◦ ∇A ⇒ ∇B ◦ (F, g(LA)op, F, g(LA)op, id)
is a 2-arrow in Adj(Dtn). To this end, it is enough to prove that

id: (F, f · (PA(ηA)op) · (ρA(LA)op))⇒ (F, (PB(ηB)opFop) · (ρB(LB)opFop) · (g(LA)op))
and

id: (GLA, g(LA)op)⇒ (LBF, g(LA)op)

are 2-arrows in Dtn, since the other conditions are trivially satisfied as the two components are
identities. The second is a 2-arrow since, by definition of 1-arrow in Adj(Dtn), the equality GLA =
LBF holds. To see that so is the first, consider the following inequalities for X an object in C :

fX ◦ PAηAX ◦ ρALAX = PBFηAX ◦ fRALAX ◦ ρALAX f is natural

≤ PBFηAX ◦ PBθLAX ◦ ρBGLAX · gLAX θ is a 2-arrow inDtn

= PBηBFX ◦ ρBLBFX ◦ gLAX (θLA)(FηA)= ηBF and GLA = LBF

Finally, we have the check the adjunction triangular laws: (AM∇)(�AM)= IdAM and
(∇MA)(MA�)= IdMA. The former holds as AM(∇A) is the identity on AM(A) for any adjunc-
tion A. The latter holds because, for any object (P,�) in �-Dtn, ∇MA((P,�)) is the identity on
MA((P,�)), since MA((P,�)) is the Eilenberg–Moore adjunction of the comonad (Id,�, id, id)
on P.

Now recall that, by definition, we have MA= EMA ·MC and observe that Cmd · EMA=
IdCmd(Dtn). Hence MC=Cmd ◦MA. Therefore, MC�CM is a local adjunction, as stated in the
following corollary.

Corollary 7.5. There is a diagram of (lax) 2-adjunctions

where the diagonal adjunction is the composite of the other two.

Finally we refine Theorem 5.10, providing a new factorisation through the doctrine�QLop.
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Theorem 7.6. Let P: C op → Pos and Q: Dop → Pos be doctrines and consider an adjunction
(L, λ, R, ρ, η, ε) between them. Then, the following diagram (of adjunctions)

commutes. Moreover λ: P .→�QLop is surjective and (Pηop)(ρLop):�QLop .→ P is injective.

Proof. The commutativity of the diagram follows immediately from the definition of � and con-
dition (i) in Proposition 5.8 and Theorem 5.10. The fact that, for each object X, the function
λX : PX →�QLopX is surjective and PηXρLX :�QLopX → PX is injective, follows from condi-
tion (ii) in Proposition 5.8, noting that �X = λX ◦ PηX ◦ ρLX is the identity on �QLopX by
definition.

Example 7.7. Temporal Logics. Consider the standard powerset doctrine P: Set op → Pos , send-
ing a setX to the powersetP(X) and a function t: X → Y to the inverse image function t∗:P(Y)→
P(X), and a 1-arrow (F, f ):P→P. Suppose that F: Set → Set is an accessible functor, hence it
admits a free comonad (cf. Ghani et al. (2001)) KF : Set → Set . We recall the construction in the
following.

• Given a set A, let KFA= νX.A× FX be the (underlying set of the) final coalgebra for the
functor

Set A× F �
 Set
X � �
 A× FX

and denote by ζA:KFA→A× F(KFA) the structure map of the finalA× F-coalgebra, which
is an iso by the Lambek Lemma.

• Since (id, pr2 ◦ ζA):KFA→KFA× F(KFA) is a KFA× F-coalgebra, there is a unique KFA×
F-coalgebra homomorphism μF

A:KFA→KFKFA such that the diagram

KFA
(id, pr2 ◦ ζA) �


μF
A
��

KFA× F(KFA)

μF
A × id

��
KFKFA

ζA �
 KFKF × F(KFKFA)

commute.
• Let νFA:KFA→A be νFA = pr1 ◦ ζA.
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• Given a function t: B→A, the function ζB:KFB→ B× F(KFB) is a final B× F-coalgebra; let
KFt:KFB→KFA be the unique A× F-homomorphism such that the diagram

KFB
ζB �


KFt
��

B× F(KFB)
t × id �
 A× F(KFB)

KFt
��

KFA
ζA �
 A× F(KFA)

commutes.

We can also define a natural transformation κf :P
.→PKFop as follows. Consider a setA and a sub-

set α ∈P(A). We define a function φα :P
(
KFA

) →P
(
KFA

)
as φα(β)= ζ ∗

A(α× fKFA(β)), which
is monotone by construction, hence, since P

(
KFA

)
is a complete lattice, by the Knaster–Tarski

theorem, φα has a greatest fixed point, given by νφα = ⋃ {
β ∈P

(
KFA

) ∣∣ β ⊆ φα(β)
}
.

Define κ fA(α) as νφα . This function is monotone, because, if α⊆ β , then νφα = ζ ∗
A(α×

fKFA(νφα))⊆ ζ ∗
A(β × fKFA(νφα))= φβ(νφα). Thus, by coinduction, we get νφα ⊆ νφβ , as needed.

In order to prove that κ fA is natural in A, we have to check that, for each function t: B→A and
α ∈P(A), it is the case that (KFt)∗(νφα)= νφt inf (α). First, note that

(KFt)∗(νφα)= (KFt)∗(ζ ∗
A(α× fKFA(νφα)))

= (ζA ◦KFt)∗(α× fKFA(νφα))
= ((id × FKFt) ◦ (t × id) ◦ ζB)∗(α× fKFA(νφα))
= ζ ∗

B (t
∗(α)× (FKFt)∗(fKFA(νφα)))

= ζ ∗
B (t

∗(α)× fKFB((KFt)∗(νφα)))
= φt∗(α)((KFt)∗(νφα)).

Hence, by coinduction, we get (KFt)∗(νφα)⊆ νφt∗(α). To prove the other inclusion, we just have
to prove that KFt[νφt∗(α)]⊆ νφα , where KFt[β] denotes the direct image of β ∈P

(
KFB

)
along

KFt. To this end, we note that

KFt[νφt∗(α)]⊆KFt[ζ ∗
B (t

∗(α)× fKFB(νφt∗(α)))]
=KFt[((t × id) ◦ ζB)∗(α× fKFB(νφt∗(α)))]
⊆ ζ ∗

A((id × FKFt)[α × fKFB(νφt∗(α))])
= ζ ∗

A(α× FKFt[fKFB(νφt∗(α))])
⊆ ζ ∗

A(α× fKFA(KFt[νφt∗(α)]))
= φα(KFt[νφt∗(α)]).

To check that KF = (KF , κF ,μF , νF) is a comonad on P, it is enough to show the following two
inequalities: (1) κFA(α)⊆ (νFA)∗(α) and (2) κFA(α)⊆ (μF

A)∗(κFKFA(κ
F
A(α))) for all α ∈P(A).

Ad (1) note that α× fKFA(νφα)⊆ pr∗1(α). Hence νφα = ζ ∗
A(α× fKFA(νφα))⊆ ζ ∗

A(pr∗1(α))=
(νFA)∗(α).

Ad (2) we show μF
A[νφα]⊆ νφνφα . First of all, since α× fKFA(νφα)⊆ pr∗2(fKFA(νφα)),

we have νφα = ζ ∗
A(α× fKFA(νφα))⊆ (pr2 ◦ ζA)∗(fKFA(νφα)). Hence νφα ⊆ νφα ∩ (pr2 ◦
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ζA)∗(fKFA(νφα))= (id, pr2 ◦ ζA)∗(νφα × fKFA(νφα)). Therefore

μF
A[νφα]⊆μF

A[(id, pr2 ◦ ζA)∗(νφα × fKFA(νφα))]
⊆ ζ ∗

KFA((id × FμF
A)[νφα × fKFA(νφα)])

= ζ ∗
KFA(νφα × FμF

A[fKFA(νφα)])
⊆ ζ ∗

KFA(νφα × fKFKFA(μF
A[νφα]))

= φνφα (μ
F
A[νφα]).

Thus by coinduction we obtain (2).
Applying the construction in Proposition 6.6, we obtain a comonadic modal operator �KF on

the indexed posetQ: (SetK
F
)op → Pos , mapping a coalgebra (A, c) for the comonad KF toP(A) and

a coalgebra morphism t: (B, d)→ (A, c) to the inverse image function t∗:P(A)→P(B). Explicitly,
given a coalgebra (A, c) and an element α ∈P(A), we have�KF

(A,c)α = c∗(κFA(α))= c∗(νφα).
This setting has a temporal interpretation: given the 1-arrow (F, f ), the functor F represents

the ‘branching type’, namely, the branching structure of time, and f lifts formulas to branches. The
functor KF models the whole time structure, that is, the present and all possible futures, generated
by the branching type F, and κF lifts a formula to time structures, basically, universally quantifying
over time, according to f , roughly saying that the formula holds in all possible future branches.
Given a coalgebra (A, c) for the comonad KF , for each x ∈A, c(x) represents the whole evolution
of x along time, hence, for each α ∈P(A), we have x ∈�KF

(A,c)α if all future evolutions of x belongs
to α. Therefore, roughly, �KF is a generic kind of ‘always’ modality, typical of temporal logics. In
the following we consider two explicit instances of this situation.

Example 7.8. Linear time. Consider (F, f )= (Id, id), that is, each instant has exactly one possible
future. The free comonad is the stream comonad StrA= νX.A× X =Aω, mapping a set A to the
set Aω of sequences of elements in A indexed over natural numbers. Given a sequence a ∈Aω,
we write si to denote the ith element of s, and s[i..] to denote the sequence r ∈Aω such that rj =
sj+i for all j ∈N. Then, the counit maps s to s0 (the first element, namely the present) and the
comultiplication maps s to the sequence (s[i..])i∈N, namely the sequence of all suffixes of s.

Let α ∈P(A), we have κFA(α)= {s ∈Aω | si ∈ α for all i ∈N}, namely, the set of sequences where
all elements belongs to/satisfies α. Therefore, if (A, c) is a coalgebra for Str, �Str

(A,c)α = {x ∈A |
c(x)i ∈ α for all i ∈N}, that is, it is the set of all elements x ∈A such that all its future instances
(including the present one) belongs to α.

Therefore, �Str
(A,c) provides a model for the ‘globally’ (G) modality of Linear Temporal Logic

(LTL) Baier and Katoen (2008) and, moreover, the modality on the free coalgebra (StrA,μStrA )
implements exactly the standard semantics of such a modality on infinite sequences.

Example 7.9. Finitely ordered branching time. Let F: Set → Set be the functor FX = ⋃
n∈N Xn.

We can consider several natural transformations f :P .→P Fop making (F, f ) a 1-arrow. The two
paradigmatic examples are the following: f ∀A (α)= {(n, (x1, . . . , xn)) ∈ FX | xi ∈ α for all i ∈ 1..n}
and f ∃A(α)= {(n, (x1, . . . , xn)) ∈ FX | xi ∈ α for some i ∈ 1..n}.

The free comonad is Tr, mapping a set A to the set of finitely branching and ordered trees
labelled by A. Formally, such a tree is a partial function t:N� ⇀A with a non-empty and prefix-
closed domain such that, if (k1, . . . , kn) ∈ domt and k≤ kn, then (k1, . . . , k) ∈ domt (cf. Aczel
et al. (2003); Courcelle (1983)). The counit maps a tree t to the label of its root, that is t(ε),
where ε is the empty sequence, and the comultiplication maps a tree t to μF

A(t) such that
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domμT
A(t)= domt and μF

A(t)(u) is the subtree of t rooted at u ∈ domt. The behaviour of the nat-
ural transformation κF of course depends on f , for instance, for f = f ∀, it maps α ∈P(A) to the
set of trees where all nodes have label in α, while for f = f ∃, it maps α ∈P(A) to the set of trees
containing an infinite path starting from the root where all nodes have label in α.

Then, given a coalgebra (A, c) for the comonad Tr and α ∈P(A), we have x ∈�Tr
(A,c)α if all

nodes in c(x) have label in α, when f = f ∀, and if there is an infinite path in c(x) where all nodes
have label in α, when f = f ∃. Therefore, �Tr

(A,c) provides a model for the modalities ‘invariantly’
(AG) and ‘potentially always’ (EG) of Computation Tree Logic (CTL) Baier and Katoen (2008),
depending on the choice of f .

Acknowledgements. The authors would like to thank Jacopo Emmenegger, Fabio Pasquali and Cosimo Perini Brogi for
many helpful discussions on the subject, and the two referees for their useful comments.

Notes
1 There are many reasonable 2-categories whose objects are adjunctions in K . In this paper, the 2-category Adj(K ) we
introduce is the one that gives rise to the 2-adjunction with Cmd(K ).
2 In the following, wemay sometime refer to a doctrine as a pair (C , P) in order tomake the base C of the doctrine conspicous.
3 Many notions in this paper can be phrased using the language of 2-fibrations, but with the hope to keep the presentation
more accessible, we shall just highlight the connection in a few important cases.
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Appendix A. Interior Operators from Linear–Non-Linear Adjunctions
A well-known approach to provide categorical semantics to the linear exponential modality ! –
read as ‘bang’ – of propositional linear logic is by means of linear–non-linear adjunctions as in
Benton (1994). A linear–non-linear adjuction is a monoidal adjunction beween a symmetric
monoidal category and a cartesian category; the induced comonad on the symmetric monoidal
category interprets the bang modality. This notion is easily extended to doctrines where the
construction in Corollary 5.11 provides a model of the bang modality in a higher order setting.

In the present context, the role of the cartesian category is played by a primary doctrine, that
is, a doctrine P: C op → Pos where C has finite products and, for each object X in C , the fibre PX
carries an inf-semilattice structure preserved by reindexing, see e.g. Emmenegger et al. (2020).
The symmetric monoidal category turns into a (symmetric) monoidal doctrine, which we define
below, following the definition of monoidal indexed categories in Moeller and Vasilakopoulou
(2020).We shall employ the 2-cartesian structure of the 2-categoryDtn. So, in the following, given
indexed posets P: C op → Pos and Q: Dop → Pos , we denote by P ×Q: (C × D)op → Pos the prod-
uct doctrinemapping a pair of objects (X, Y) to the product (in Pos) PX ×QY and acting similarly
on arrows. Furthermore, we denote by 1 the terminal doctrine whose base is the terminal category
and mapping its unique object to the singleton poset. We shall write αP1,P2,P3 : P1 × (P2 × P3)→
(P1 × P2)× P3, λP: 1× P → P, ρP: 1× P → P, and σP1,P2 : P1 × P2 → P2 × P1 for the usual 1-iso
for associativity, left and right identity, and symmetry.

A (symmetric)monoidal doctrine consists of

• a doctrine Q: Dop → Pos ,
• two 1-arrows (⊗, •):Q×Q→Q and (I, ι): 1→Q, and
• four invertible 2-arrows

a: (⊗, •) ◦ ((⊗, •)× (Id, id)) ◦ αQ,Q,Q ⇒ (⊗, •) ◦ ((Id, id)× (⊗, •))
l: (⊗, •) ◦ ((I, ι)× (Id, id))⇒ λQ r: (⊗, •) ◦ ((Id, id)× (I, ι))⇒ ρQ

s: (⊗, •) ◦ σQ,Q ⇒ (⊗, •)
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such that (D ,⊗, I, a, l, r, s) is a symmetric monoidal category. As the 2-arrows a, l, r and s are
invertible, the inequalities they induce on the fibres are actually equalities, namely, the following
diagrams commute

(QA×QB)×QC

•A,B × id
��

(αQ,Q,Q)A,B,C �
 QA× (QB×QC) id × •B,C
�������

������

QA×Q(B⊗ C)

•A,B⊗C

��

Q(A⊗ B)×QC •A⊗B,C
�������

������
�

Q((A⊗ B)⊗ C)
Q(aA,B,C) �
 Q(A⊗ (B⊗ C))

Q1×A

(λQ)A
��

(ι, id)�
 QI ×QA

•I,A
��

QA
Q(lA) �
 Q(I ⊗A)

QA× 1

(ρQ)A
��

(id, ι)�
 QA×QI

•A,I
��

QA
Q(rA) �
 Q(A⊗ I)

QA×QB

(σQ)A,B
��

•A,B �
 Q(A⊗ B)

Q(sA,B)
��

QB×QA
•B,A �
 Q(B⊗A)

Note that a primary doctrine P: C op → Pos is a monoidal doctrine with (×, �): P × P → P and
(1,�1): 1→ P, where 1 is the terminal object and �1 is the top element in P1, × is the binary
product in the category and � is defined, for all objects X, Y in C , by �X,Y = ∧X×Y ◦ (Pπ1 × Pπ2),
where π1: X × Y → X and π2: X × Y → Y are the projections.

Now, consider a primary doctrine P and a monoidal doctrine Q. An adjunction
(P,Q, L, λ, R, ρ, η, ε) is said to be monoidal if L and R are lax monoidal functors and η and ε
are monoidal natural trasformations, that is, we have the following additional structure:

• two 2-arrows u: (I, ι)⇒ (Lλ) ◦ (1,�) and φ: (⊗, •) ◦ ((L, λ)× (L, λ))⇒ (L, λ) ◦ (×, �), that
is, u: I → L1 and, for all objects X, Y in C , φX,Y : LX ⊗ LY → L(X ⊗ Y) are arrows in D , and

• two 2-arrows v: (1,�)⇒ (R, ρ) ◦ (I, ι) and ψ : (×, �) ◦ ((R, ρ)× (R, ρ))⇒ (R, ρ) ◦ (×, �),
that is, v: 1→ RI and, for all objects A, B in D , ψA,B: RA× RB→ R(A× B) are arrows in
C , and

• the following diagrams commute:

X × Y

ηX × ηY
��

idX×Y �
 X × Y

ηX×Y
��

RLX × RLY
ψLX,LY�
 R(LX ⊗ LY)

RφX,Y �
 RL(X × Y)

LRA⊗ LRB

εA ⊗ εB
��

φRA,RB�
 L(RA× RB)
LψA,B �
 LR(A⊗ B)

εA⊗B
��

A⊗ B
idA⊗B �
 A⊗ B
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1
η1

��

v �
 RI Ru �
 RL1

RL1
idRL1

��              

I

idI ��!!
!!!

!!!
!!!

!!!
!!
u �
 L1 Lv �
 LRI

εI
��
I

and the following inequalities on the fibres:

QA×QB

≤

•A,B �


ρA × ρB
��

Q(A⊗ B)

ρA⊗B

��

PRA× PRB

�RA,RB
��

P(RA× RB) PR(A⊗ B)
PψA,B�"

1

≤�1
��

ι �
 QI

ρI
��

P1 PRIPv�"

PX × PY

≤

�X,Y �


λX × λY
��

P(X × Y)

λX×Y

��

QLX ×QLY

•LX,LY
��

Q(LX ⊗ LY) QL(X × Y)
QφX,Y�"

1

≤ι
��

�1 �
 P1

λ1
��

QI QL1
Qu�"

From general results about monoidal adjunctions between categories, we know that u and φ are
(natural) isos. Hence the inequalities on the left-hand side are equalities, that is, those diagrams
commute.

Consider now the doctrine QLop: C op → Pos . By Corollary 5.11, there is an interior operator
!:QLop .→QLop defined as ! = λ · (Pηop) · ρLop. However, in this richer context, QLop has a richer
structure. First of all C has finite products, hence, for each objectX in C , there are arrows ζ : X → 1
and �X : X → X × X natural in X. Then, we can define a monoid structure on QLopX as the two
composite arrows

1
eX

%)
ι �
 QI

Qu−1
�
 Q(L1)

QLζX �
 Q(LX)

Q(LX)×Q(LX)
∗X

(+
•LX,LX �
 Q(LX ⊗ LX)

Qφ−1
X,X �
 Q(L(X × X))

QL�X �
 Q(LX).

It follows that (QLopX, ∗X , eX) is a commutative monoid and that such structure is preserved by
reindexing. This structure interprets the multiplicative conjunction of linear logic and its unit. To
ensure that ! correctly interprets the ‘bang’ modality of linear logic, four properties, in addition to
those of interior operators, are required to hold: for each object X in C and α, β ∈Q(LX),

(1) !Xα ≤ eX (2) !Xα ≤ !Xα ∗X !Xα
(3) eX ≤ !XeX (4) !Xα ∗X !Xβ ≤ !X(α ∗X β).

(1) Note that PηX(ρLX(α)) ∈ PX, which is an inf-semilattice with top element �X , hence
PηX(ρLX(α))≤ �X = PζX(�1), because reindexing preserves the inf-semilattice struc-
ture. Therefore, we get !Xα = λX(PηX(ρLX(α)))≤ λX(PζX(�1))=QLζX(λ1(�1))= eX , by
naturality of λ and one of the diagrams above.
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(2) Again, note that PηX(ρLX(α)) ∈ PX, which is an inf-semilattice, hence PηX(ρLX(α))≤
PηX(ρLX(α))∧X PηX(ρLX(α)). Since πi ◦�X = idX , using naturality of ∧, we get

PηX(ρLX(α))≤ P�X(Pπ1(PηX(ρLX(α)))∧X×X Pπ2(PηX(ρLX(α))))
= P�X(PηX(ρLX(α)) �X,X PηX(ρLX(α)))

Therefore, applying λX and using one of the diagrams above we get

!Xα = λX(PηX(ρLX(α)))
≤ λX(P�X(PηX(ρLX(α)) �X,X PηX(ρLX(α)))
=QL�X(λX×X(PηX(ρLX(α)) �X,X PηX(ρLX(α))))
= λX(PηX(ρLX(α))) ∗X λX(PηX(ρLX(α)))
= !Xα ∗X !Xα

(3) By one of the diagrams above, naturality of λ and the fact that reindexing in P pre-
serves the inf-semilattice structure, we have eX = λX(�X). Furthermore, since η: (Id, id)⇒
(RL, (ρLop)λ) is a 2-arrow inDtn, we get

eX = λX(�X)≤ λX(PηX(ρLX(λX(�X))))= !XeX
(4) Using the diagrams above and the definitions of ∗X and !X we get

!Xα ∗X !Xβ = (λX(PηX(ρLX(α)))) ∗X (λX(PηX(ρLX(β))))
=QL�X(λX×X(PηX(ρLX(α)) �X,X PηX(ρLX(β))))
= λX(P�X(P(ηX × ηX)(ρLX(α) �RLX,RLX ρLX(β))))
≤ λX(P�X(P(ηX × ηX)(PψLX,LX(ρLX⊗LX(α •LX,LX β)))))

From one of the diagrams above, we have ψLX,LX ◦ (ηX × ηX)= Rφ−1
X,X ◦ ηX×X , hence

we get

!Xα ∗X !Xβ ≤ λX(P�X(P(ηX × ηX)(PψLX,LX(ρLX⊗LX(α •LX,LX β)))))
= λX(P�X(PηX×X(PRφ−1

X,X(ρLX⊗LX(α •LX,LX β)))))
= λX(PηX(ρLX(QL�X(Qφ−1

X,X(α •LX,LX β)))))
= !X(α ∗X β)
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