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Abstract
Motivated by classical Alexander invariants of affine hypersurface complements, we endow certain finite dimen-
sional quotients of the homology of abelian covers of complex algebraic varieties with a canonical and functorial
mixed Hodge structure (MHS). More precisely, we focus on covers which arise algebraically in the following way:
if U is a smooth connected complex algebraic variety and G is a complex semiabelian variety, the pullback of the
exponential map by an algebraic morphism 𝑓 : 𝑈 → 𝐺 yields a covering space 𝜋 : 𝑈 𝑓 → 𝑈 whose group of deck
transformations is 𝜋1 (𝐺). The new MHSs are compatible with Deligne’s MHS on the homology of U through the
covering map 𝜋 and satisfy a direct sum decomposition as MHSs into generalized eigenspaces by the action of
deck transformations. This provides a vast generalization of the previous results regarding univariable Alexander
modules by Geske, Maxim, Wang and the authors in [16, 17]. Lastly, we reduce the problem of whether the first
Betti number of the Milnor fiber of a central hyperplane arrangement complement is combinatorial to a question
about the Hodge filtration of certain MHSs defined in this paper, providing evidence that the new structures contain
interesting information.
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1. Introduction

The goal of this note is to develop a Hodge theory for certain (infinite-sheeted) covers of smooth complex
algebraic varieties. Let us start by precisely defining our setting: Let U be a smooth connected complex
algebraic variety. Let G be a semiabelian variety. Let 𝑇𝐺 denote the tangent space of G at the identity,
and let exp : 𝑇𝐺 → 𝐺 be the exponential map of complex Lie groups, which, since G is a commutative
algebraic group, is the universal covering map of G.

Let 𝑓 : 𝑈 → 𝐺 be an algebraic morphism. The map f determines an abelian cover 𝜋 : 𝑈 𝑓 → 𝑈.
Indeed, 𝜋 : 𝑈 𝑓 → 𝑈 is the pullback of exp by f, as shown in the following diagram:

𝑈 𝑓 ⊂ 𝑈 × 𝑇𝐺 𝑇𝐺

𝑈 𝐺,

𝑓

𝜋
�

exp
𝑓

(1.1)

Note that the deck transformation group of 𝜋 : 𝑈 𝑓 → 𝑈 coincides with that of exp : 𝑇𝐺 → 𝐺, and
is thus isomorphic to 𝜋1 (𝐺), a free abelian group. Hence, the homology groups 𝐻 𝑗 (𝑈

𝑓 ,K) have an
𝑅 � K[𝜋1 (𝐺)]-action by deck transformations for any fieldK, which in this note will beQ,R orC. Also
note that, if g is the rank of 𝜋1 (𝐺), then R is (noncanonically) isomorphic to the Laurent polynomial
ring on g variables over K.

By Deligne’s theory of 1-motives [10], there are plenty such morphisms f : out of the ones that give
rise to connected covers, there is one for each mixed Hodge structure quotient of 𝐻1(𝑈,Q). Hence,
the covering spaces considered in this paper are abelian covers which arise from algebraic data that is
related to the Hodge theory of U, thus providing a natural setting for which to develop a Hodge theory
for covering spaces of algebraic varieties. One such morphism f is the generalized Albanese morphism
[24, 25], which yields the universal torsion-free abelian cover of U (that is, the covering space of U
associated to the kernel of the projection of 𝜋1 (𝑈) into its maximal torsion-free abelian quotient).
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A well-studied particular case is that of affine hypersurface complements. Let

𝑈 � C𝑛 \
𝑚⋃
𝑖=1

𝑉 ( 𝑓𝑖),

where 𝑓𝑖 ∈ C[𝑥1, . . . , 𝑥𝑛] are pairwise coprime irreducible polynomials, and let𝑈 𝑓 be the cover induced
by the map

𝑓 = ( 𝑓1, . . . , 𝑓𝑛) : 𝑈 → (C∗)𝑛.

In this case, 𝑓∗ : 𝐻1(𝑈,Z) → 𝐻1((C
∗)𝑛,Z) is an isomorphism, and 𝐻 𝑗 (𝑈

𝑓 ,K) are classical Alexander
invariants of the hypersurface 𝐻 = ∪𝑚𝑖=1𝑉 ( 𝑓𝑖) (see Example 2.36). These kinds of multivariable Alexan-
der invariants are typically studied through their support loci, cf. [13], [31], [34], [45]. Moreover, each
morphism 𝜋1 (𝑈) → Z

𝑙 is the morphism induced at the level of fundamental groups of an algebraic
morphism 𝑈 → (C∗)𝑙 which factors through f.

Let us note that, unless G is a point, 𝜋 : 𝑈 𝑓 → 𝑈 is an infinite-sheeted cover, and 𝑈 𝑓 is a complex
analytic manifold which in general is not an algebraic variety (nor has the homotopy type of a finite
CW complex). Moreover, the homology groups 𝐻 𝑗 (𝑈

𝑓 ,K) are finitely generated R-modules, so their
dimension as K-vector spaces is countable, but it will not be finite in general. If dimK 𝐻 𝑗 (𝑈,K) = ∞,
the dimension of its K-dual 𝐻 𝑗 (𝑈 𝑓 ,K) will not be countable, and thus 𝐻 𝑗 (𝑈 𝑓 ,K) will not be a finitely
generated R-module. For this reason, and even if Deligne’s mixed Hodge theory of algebraic varieties
arises in cohomology rather than homology, we will focus on the homology groups of 𝑈 𝑓 throughout
this note.

Even though they are finitely generated over R, the homology groups of 𝑈 𝑓 can be infinite dimen-
sional, so in order to develop a Hodge theory for them, we need to extract finite dimensional spaces
from them. Since the R-action is by deck transformations and we want our theory to reflect the fact that
𝜋 : 𝑈 𝑓 → 𝑈 is a covering space, we will also want these finite dimensional spaces to have a natural
R-module structure. There are two natural ways to do this:

1. Focus on finite dimensional R-submodules of 𝐻 𝑗 (𝑈
𝑓 ,K):

◦ If 𝐺 = C∗, then 𝑅 � K[𝑡±1], so R is a principal ideal domain. Hence, the R-module 𝐻 𝑗 (𝑈
𝑓 ,K) has

a direct sum decomposition into its free part and its torsion part. In particular, Tors𝑅 𝐻 𝑗 (𝑈
𝑓 ,K)

is the maximal R-submodule of 𝐻 𝑗 (𝑈
𝑓 ,K) which is a finite dimensional K-vector space. At this

level of generality, a Hodge theory for these torsion submodules was developed in [16] (see also
[15] for a survey of the main results therein), although there had been prior constructions of MHSs
on Tors𝑅 𝐻 𝑗 (𝑈

𝑓 ,K) in some special situations [12, 22, 33, 28, 32] (see the introduction of [16]
for a description of the particular cases).

◦ If G is not isomorphic to C∗, then R is not a principal ideal domain, and 𝐻 𝑗 (𝑈
𝑓 ,K) no longer

decomposes into its free part and its torsion part. However, by analogy with the 𝐺 = C∗ case,
one could still focus on the maximal Artinian submodule of 𝐻 𝑗 (𝑈

𝑓 ,K), which is the maximal
submodule of 𝐻 𝑗 (𝑈

𝑓 ,K) which is a finite dimensional K-vector space. If 𝐺 � (C∗)𝑛 for some
𝑛 ≥ 1, this was the approach that was taken in [19], although not for 𝐻 𝑗 (𝑈

𝑓 ,K) but for the
cohomological Alexander modules defined therein.

2. Focus on finite dimensional R-module quotients of𝐻 𝑗 (𝑈
𝑓 ,K): This is the approach we take in this pa-

per. More concretely, for every finite index subgroup 𝐻 ≤ 𝜋1 (𝐺), let𝔪𝐻 � (𝛾 − 1 | 𝛾 ∈ 𝐻) ⊂ K[𝐻]
be the augmentation ideal of K[𝐻] ⊂ 𝑅. Then, the quotient 𝐻 𝑗 (𝑈

𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
is finite dimensional for

all 𝑚 ≥ 1 and all 𝑗 ≥ 0. The goal of this paper is to endow these quotients with canonical mixed
Hodge structures (MHSs).

These kinds of quotients have interesting applications. For example, they were used in [1] by Artal
Bartolo, Carmona Ruber, Cogolludo Agustín, and Marco Buzunáriz to give a proof of the fact that Ryb-
nikov’s pair of combinatorially equivalent projective line arrangements from [42] have nonisomorphic
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fundamental groups. In their proof, they use objects such as 𝐻1 (𝑈
𝑓 ,K)

𝔪2𝐻1 (𝑈 𝑓 ,K)
(but with Z coefficients), where

𝑈 𝑓 is the universal abelian cover of a line arrangement complement and 𝔪 is the augmentation ideal of
R.
Remark 1.2. Let us further justify our choice of quotients to do Hodge theory on. For these quotients to
be finite dimensional, they need to be supported in a finite number of points of Spec 𝑅 � (C∗)𝑔, where
Spec denotes the maximal spectrum. By [39, Theorem 2.5], we know that, for all 𝑞 ≥ 0,⋃

𝑗≤𝑞

supp 𝐻 𝑗 (𝑈
𝑓 ,C) =

⋃
𝑗≤𝑞

( 𝑓 ∗)−1 (V 𝑗 (𝑈)
)
, (1.3)

where 𝑓 ∗ : Spec 𝑅 � Hom(𝜋1 (𝐺),C
∗) → Hom(𝜋1 (𝑈),C

∗) is the map induced by f, and

V 𝑗 (𝑈) = {rank 1 C-local systems 𝐿 on 𝑈 | 𝐻 𝑗 (𝑈, 𝐿) ≠ 0}

is the j-th homology jump loci. Using the structure theorem of (co)homology jump loci [4, Theorem
1.4.1] one can show that the right-hand side of (1.3) is a finite union of torsion translated subtori in
Spec 𝑅. Hence, when deciding which finite dimensional quotients of 𝐻 𝑗 (𝑈

𝑓 ,C) to study, a natural
choice is to force them to be supported at the interesting torsion points, that is, those corresponding
to the torsion-translated irreducible components of ∪ 𝑗≥0 supp 𝐻 𝑗 (𝑈

𝑓 ,C). This is precisely what we
achieve by looking at 𝐻 𝑗 (𝑈

𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
for an appropriate choice of 𝐻 ≤ 𝜋1 (𝐺). Furthermore, by making

m grow, we get larger and larger quotients which are supported in the same finite set of points. This
corresponds to looking at an infinitesimal neighborhood of these torsion points.

In principle, approaches (1) and (2) might seem unrelated. However, in the case when 𝐺 = C∗,
approach (2) generalizes approach (1) as follows.
Remark 1.4 (Generalization of [16]). Suppose that 𝐺 = C∗, and identify R with K[𝑡±1]. By [16,
Proposition 2.24] (based on [2, Proposition 4.1]), there exists 𝑁 ∈ N such that Tors𝑅 𝐻 𝑗 (𝑈

𝑓 ,K) is
annihilated by a big enough power of 𝑡𝑁 − 1 for all 𝑗 ≥ 0. Hence, for 𝑚 � 1, there are canonical
inclusions

Tors𝑅 𝐻 𝑗 (𝑈
𝑓 ,K) ↩→

𝐻 𝑗 (𝑈
𝑓 ,K)

(𝑡𝑁 − 1)𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
(1.5)

for all 𝑗 ≥ 0. In [16], Tors𝑅 𝐻 𝑗 (𝑈
𝑓 ,K) is endowed with a canonical and functorial MHS, but this shows

that the MHS on 𝐻 𝑗 (𝑈
𝑓 ,K)

(𝑡𝑁−1)𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
defined in this paper corresponding to the subgroup 𝐻 = 〈𝑁〉 ⊂ Z =

𝜋1 ((C
∗)𝑛) sees more than just the R-torsion, it also sees more and more of the free part as we increase

the values of N and m.
In fact, we show in [18] that the morphism (1.5) is a morphism of MHSs, so the theory developed in

this paper extends the theory developed in [16].
Remark 1.6 (Comparison with [19]). Definition 6.17 endows certain quotients of the cohomology
Alexander modules considered in [19] with a canonical MHS. However, we will not try to address how
the MHS on the maximal Artinian submodules of the cohomology Alexander modules from [19] relates
to the MHS defined in this note, as the techniques used to define them are very different from one
another. The reader may consult [19, Section 1.4] for an explanation of the main differences between
[16] and [19] regarding the scope and the methods used.

Let us note that the MHSs found in earlier work [16, 19] following approach (1) have applications
that go beyond Hodge theory. For example, in [16], the existence and properties of the MHS on
Tors𝑅 𝐻 𝑗 (𝑈

𝑓 ,K) give a bound on the size of the Jordan blocks of Tors𝑅 𝐻 𝑗 (𝑈
𝑓 ,K) for the t-action

(see [16, Corollary 7.20]), which in particular implies that Tors𝑅 𝐻1(𝑈
𝑓 ,K) is always a semisimple R-

module. This was unknown in this sort of generality before; see [12, Corollary 1.7] for the case of affine
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curve complements. A similar bound was obtained for the Jordan blocks of the action of any element of
𝜋1 ((C

∗)𝑛) on the maximal Artinian submodules of the cohomological Alexander modules considered
in [19] (see [19, Corollary 1.7(c)]).

This note is devoted to developing a Hodge theory following approach (2) which generalizes the theory
developed in [16] (approach (1)). The focus is on providing structural results rather than investigating
possible applications outside of Hodge theory, which, given the success of the previous approaches,
remains a topic for further research.

1.1. Summary of the main results

In this paper we prove the following statement, which provides a generalization of [16, Theorem 1.0.2]:

Theorem 1.7. Let U be a smooth connected complex algebraic variety, let G be a semiabelian variety
whose tangent space at the identity is denoted by 𝑇𝐺 and let 𝑓 : 𝑈 → 𝐺 be an algebraic morphism.
Denote by

𝜋 : 𝑈 𝑓 � {(𝑢, 𝑧) ∈ 𝑈 × 𝑇𝐺 | 𝑓 (𝑢) = exp(𝑧)} ⊂ 𝑈 × 𝑇𝐺 −→ 𝑈
(𝑢, 𝑧) ↦−→ 𝑢

the corresponding cover of U, with deck group isomorphic to 𝜋1 (𝐺), which is a finitely generated free
abelian group. Let 𝑅 = K[𝜋1 (𝐺)], for K = Q or R. Let 𝐻 ≤ 𝐺 be a finite index subgroup, and let 𝔪 be
the augmentation ideal of R. Let 𝑗 ≥ 0 and 𝑚 ≥ 1. The following statements hold:

1. If K = R, 𝐻 𝑗 (𝑈
𝑓 ,K)

𝔪𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
carries a canonical K-MHS (see Definition 6.17). If 𝐺 � (C∗)𝑛 for some

𝑛 ≥ 1, then this holds for K = Q too (see Corollary 10.11).
2. Let K be as in part (1), and let 𝑚′ ≥ 𝑚. Then, the projection morphism

𝐻 𝑗 (𝑈
𝑓 ,K)

𝔪𝑚′𝐻 𝑗 (𝑈 𝑓 ,K)
�

𝐻 𝑗 (𝑈
𝑓 ,K)

𝔪𝑚𝐻 𝑗 (𝑈 𝑓 ,K)

is an MHS morphism (see Remark 6.18).
3. LetK be as in part (1). For all 𝛾 ∈ 𝜋1 (𝐺), let log 𝛾 ∈ 𝐻1 (𝐺,Z) be the element corresponding to 𝛾 via

the abelianization map. Consider the multiplication map, defined as the onlyK-linear map satisfying

𝐻1(𝐺,K) ⊗K
𝐻 𝑗 (𝑈

𝑓 ,K)

𝔪𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
−→

𝐻 𝑗 (𝑈
𝑓 ,K)

𝔪𝑚𝐻 𝑗 (𝑈 𝑓 ,K)

log 𝛾 ⊗ 𝑣 ↦−→ log(𝛾) · 𝑣 � −
𝑚−1∑
𝑖=1

(1 − 𝛾)𝑖 · 𝑣
𝑖

for all 𝛾 ∈ 𝜋1 (𝐺) and all 𝑣 ∈ 𝐻 𝑗 (𝑈
𝑓 ,K)

𝔪𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
. Then, this map is an MHS morphism.

4. Let H be a finite index subgroup of 𝜋1 (𝐺), and let

𝔪𝐻 � (𝛾 − 1 | 𝛾 ∈ 𝐻)

be the augmentation ideal of K[𝐻] ⊂ 𝑅. Then, the results in parts (1)–(3) hold if we substitute
𝔪𝑚𝐻 𝑗 (𝑈

𝑓 ,K) by (𝔪𝐻 )
𝑚𝐻 𝑗 (𝑈

𝑓 ,K), and 𝐻1(𝐺,K) by 𝐻1(𝐺𝐻 ,K), where𝐺𝐻 → 𝐺 is the covering
space associated to 𝐻 ≤ 𝜋1 (𝐺) (see Proposition 8.3).
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5. Let 𝐾2 ≤ 𝐾1 ≤ 𝐺 be a sequence of finite index subgroups. Then, the natural projection

𝐻 𝑗 (𝑈
𝑓 ,K)

(𝔪𝐾2)
𝑚𝐻 𝑗 (𝑈 𝑓 ,K)

�
𝐻 𝑗 (𝑈

𝑓 ,K)

(𝔪𝐾1)
𝑚𝐻 𝑗 (𝑈 𝑓 ,K)

is an MHS morphism (see Proposition 8.4).
Moreover, the MHS from Theorem 1.7 is functorial in the following sense, both in the domain and

the target of 𝑓 : 𝑈 → 𝐺 (see Theorem 7.1 combined with Proposition 8.3 and Corollary 10.11).
Theorem 1.8 (Functoriality). Let 𝑈1,𝑈2 be smooth connected complex algebraic varieties, and let
𝐺1, 𝐺2 be semiabelian varieties. Consider a commutative diagram of algebraic morphisms (below, on
the left-hand side), where 𝜌 is a group homomorphism.

𝑈1 𝑈2 𝑈
𝑓1

1 𝑈
𝑓2

2

𝐺1 𝐺2 𝑇𝐺1 𝑇𝐺2

𝑓1

𝑔

𝑓2 𝑓̃1

𝑔

𝑓2

𝜌 𝜌

(1.9)

On the right-hand side, 𝜌̃ is the unique lift of 𝜌 which is an additive group homomorphism, 𝑓̃1 and 𝑓̃2
are defined from the pullback diagrams as in (1.1), and 𝑔̃ is the unique lift of g that makes the diagram
commute.

Let K = R unless both 𝐺1 and 𝐺2 are affine tori, in which case we may take K = Q. For 𝑖 = 1, 2 and
for all finite index subgroups 𝐾𝑖 ≤ 𝜋1 (𝐺𝑖), let 𝔪𝐾𝑖 be the augmentation ideal of K[𝐾𝑖] ⊂ K[𝜋1 (𝐺𝑖)].

Under these assumptions, the map 𝑔̃ : 𝑈 𝑓1
1 → 𝑈

𝑓2
1 induces MHS morphisms

𝑔̃∗,𝑚 :
𝐻 𝑗 (𝑈

𝑓1
1 ,K)

(𝔪𝐾1 )
𝑚𝐻 𝑗 (𝑈

𝑓1
1 ,K)

→
𝐻 𝑗 (𝑈

𝑓1
1 ,K)

(𝔪𝐾2)
𝑚𝐻 𝑗 (𝑈

𝑓1
1 ,K)

for all 𝑗 ≥ 0, 𝑚 ≥ 1 and all finite index subgroups 𝐾1 ≤ 𝜋1 (𝐺1) and 𝐾2 ≤ 𝜋1 (𝐺2) such that
𝜌∗(𝐾1) ≤ 𝐾2.

Note that this is a more general version of the functoriality found in [16, Theorem 5.4.9], which
corresponds to the diagram (1.9) in the case where 𝐺1 = 𝐺2 = C∗ and 𝜌 = Id. In other words, while
in this paper our MHS behaves functorially in both the domain and the target of 𝑓 : 𝑈 → 𝐺, the
MHS in [16] is only functorial in the domain. Because of this more general functoriality, we obtain the
following compatibility with Deligne’s MHS as a Corollary of Theorem 1.8, by making 𝐺2 be a point
(see Corollary 7.18 combined with Corollary 10.11). This is a generalization of [16, Theorem 1.0.3],
but the proof here is much simpler due to the extra functoriality features in this paper.
Corollary 1.10 (Compatibility with Deligne’s MHS). Let U be a smooth connected complex algebraic
variety, let G be a semiabelian variety, and let 𝑓 : 𝑈 → 𝐺 be an algebraic morphism. Let K = R unless
G is isomorphic to an affine torus, in which case we may take K = Q. Let H be a finite index subgroup
of 𝜋1 (𝐺), and let 𝔪𝐻 be the augmentation ideal of K[𝐻] ⊂ K[𝜋1 (𝐺)].

Then, the covering space map 𝜋 : 𝑈 𝑓 → 𝑈 induces the MHS morphism

𝐻 𝑗 (𝑈
𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
→ 𝐻 𝑗 (𝑈,K)

for all 𝑗 ≥ 0 and all 𝑚 ≥ 1, where 𝐻 𝑗 (𝑈,K) is endowed with Deligne’s MHS.
By Theorem 1.7 part (3), the logarithm of deck transformations behaves well with respect to the

MHS. Let 𝛾 ∈ 𝜋1 (𝐺), which we interpret as a deck transformation of 𝜋 : 𝑈 𝑓 → 𝑈. In general, 𝛾
does not preserve the MHS, but its semisimple part does, as exemplified in the following result (see
Theorem 9.1 combined with Corollary 10.11), which provides a generalization of [17, Theorem 1.3].
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Theorem 1.11. Let U be a smooth connected complex algebraic variety, let G be a semiabelian variety,
and let 𝑓 : 𝑈 → 𝐺 be an algebraic morphism. Let K = R unless G is isomorphic to an affine torus, in
which case we may take K = Q. Let H be a finite index subgroup of 𝜋1 (𝐺), let 𝛾 ∈ 𝜋1 (𝐺), and let 𝔪𝐻

be the augmentation ideal of K[𝐻]. Let 𝛾 = 𝛾𝑠𝑠𝛾𝑢 be the Jordan-Chevalley decomposition of 𝛾 acting
on 𝐻 𝑗 (𝑈

𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
as the product of a semisimple and a unipotent operator that commute with each

other. Then,

𝛾𝑠𝑠 :
𝐻 𝑗 (𝑈

𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
→

𝐻 𝑗 (𝑈
𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)

is an MHS isomorphism for all 𝑗 ≥ 0 and all 𝑚 ≥ 1.

As a consequence of the theorem above, we obtain that the direct sum decomposition of the quotient
𝐻 𝑗 (𝑈

𝑓 ,C)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,C)
into its generalized eigenspaces by the action of 𝛾 is an MHS decomposition; see

Corollary 9.2, which also contains a version for R-coefficients that is extended to Q-coefficients by
Corollary 10.11.

Remark 1.12. All of the results in this paper for R and C coefficients also hold for holomorphic maps
𝑓 : 𝑈 → 𝐺, where U is a compact Kähler manifold and G a (compact) complex torus which are not
necessarily algebraic. Indeed, following the notation of Definition 2.69,(

A•𝑈,R,
(
A•𝑈,C, 𝐹

�
)
, 𝛼

)
is a (pure) Hodge complex of weight 0 which endows the cohomology of U with the usual pure Hodge
structure of compact Kähler manifolds ([38, Théorème 8.8, 41, Example 2.34]). The constructions of
Definition-Proposition 4.8 and Definition 6.1 can be carried out in the exact same way in this setting,
and the remaining results in the paper follow from this.

Lastly, we use the celebrated result of Budur and Saito [3] on the combinatorial nature of the spectrum
of a hyperplane arrangement to reduce the open problem of whether the first Betti number of the Milnor
fiber of a central hyperplane arrangement complement in C𝑛 is combinatorial to a question about the
MHSs defined in this paper (see Corollary 11.14). Specifically, it is reduced to a question about the
combinatorial nature of the Hodge filtration of 𝐻2 (𝑈

𝑓 ,C)
𝔪𝐻𝐻2 (𝑈 𝑓 ,C)

, where U is an essential line arrangement
complement in C2 of three or more lines, 𝑓 : 𝑈 → C∗ is the defining (reduced) polynomial of the
arrangement, and H is a subgroup of 𝜋1 (C

∗) which is determined by the combinatorial data of the
arrangement (see Lemma 11.6 and Theorem 11.11). We highlight a couple of aspects of this reduction:

◦ In this case, 𝐻2(𝑈
𝑓 ,C) is a free 𝑅 = C[𝑡±1]-module. Hence, even if𝐺 = C∗, the MHS of 𝐻2 (𝑈

𝑓 ,C)
𝔪𝐻𝐻2 (𝑈 𝑓 ,C)

is completely new from this paper, as [16] only dealt with the torsion part of the homology of 𝑈 𝑓 .
◦ The rank of 𝐻2(𝑈

𝑓 ,C) as a free 𝑅 = C[𝑡±1]-module is determined by the combinatorics of the
essential line arrangement, which we denote by H. Hence, the dimension of 𝐻2 (𝑈

𝑓 ,C)
𝔪𝐻𝐻2 (𝑈 𝑓 ,C)

is also

determined by combinatorial data of H. The work in Section 11 shows that, even if 𝐻2 (𝑈
𝑓 ,C)

𝔪𝐻𝐻2 (𝑈 𝑓 ,C)
is

well understood, its MHS contains interesting information.
◦ The MHS on 𝐻2 (𝑈

𝑓 ,C)
𝔪𝐻𝐻2 (𝑈 𝑓 ,C)

only has three nontrivial graded pieces by the Hodge filtration, and we show
that the dimension of the middle piece is also determined by the combinatorics of H. Specifically,
Theorem 11.11 reduces the problem of whether the first Betti number of the Milnor fiber of a central
hyperplane arrangement complement is combinatorial to the question of whether dimC 𝐹0 𝐻2 (𝑈

𝑓 ,C)
𝔪𝐻𝐻2 (𝑈 𝑓 ,C)

is determined by the combinatorics of H for every essential line arrangement H in C2.

The last point motivates further work regarding the development of techniques that allow the compu-
tation of examples of the MHS defined in this paper (or at the very least of its Hodge filtration). This note
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is devoted to proving structural results and developing a new theory, not the computation of examples.
However, using Remark 1.4, note that the examples from [16, Chapter 10] regarding affine hyperplane
arrangement complements are also examples of the MHS 𝐻 𝑗 (𝑈

𝑓 ,Q)

𝔪𝐻𝐻 𝑗 (𝑈 𝑓 ,Q)
from this paper for suitable H,

since in those cases 𝐻 𝑗 (𝑈
𝑓 ,Q) was a semisimple torsion module for the chosen j. Similarly, the results

from [17, Sections 5 and 6] (the ones which help with the computation of the MHS in [16] in cases such
as when U is formal or the affine complement of a hypersurface which is transversal at infinity) also ap-
ply to the MHS 𝐻 𝑗 (𝑈

𝑓 ,Q)

𝔪𝐻𝐻 𝑗 (𝑈 𝑓 ,Q)
for suitable H, since 𝐻 𝑗 (𝑈

𝑓 ,Q) is semisimple and torsion for all but one j.

1.2. Outline of the paper

This paper provides a vast generalization of the main results in [16] and in [17]. More precisely,
Sections 3 to 8 and Section 10 generalize the results in [16, Chapters 3–6], which are precisely the
chapters which have clear analogies in this general setting (they do not depend on G being C∗), and
Section 9 generalizes [17].

In Section 2 we recall the relevant background and set notations for the rest of the paper. We review
results regarding semiabelian varieties and Albanese morphisms, homology of abelian covers, local
systems and how to interpret the homology groups of 𝑈 𝑓 as the homology groups of a local system L
on U, the compactifications of algebraic varieties that will be used throughout this paper, differential
graded algebras (both cdga’s and dgla’s), and mixed Hodge complexes of sheaves. The latter includes
the analytic logarithmic Dolbeault mixed Hodge complex of sheaves from Navarro Aznar [38], which
endows the cohomology of smooth complex algebraic varieties with the same MHS as Deligne (which
he obtained using holomorphic logarithmic forms).

Sections 3–5 provide the theoretical framework needed to develop a Hodge theory for 𝑈 𝑓 . In
Section 3 we describe a general procedure to obtain mixed Hodge complexes of sheaves as “thickenings,”
that is, infinitesimal deformations, of other known mixed Hodge complexes of sheaves. Very roughly
speaking, the construction amounts to tensoring the complexes of sheaves by a mixed Hodge structure
and twisting the differentials. In Section 4, we give an explicit description of how to perform suitable
thickenings of the analytic logarithmic Dolbeault mixed Hodge complex of sheaves. In Section 5 we
show that these thickenings realize certain truncated local systems obtained from L.

In Section 6 we start by endowing the cohomology of the aforementioned truncated local systems with
MHSs (see Definition 6.1), show that those MHS are independent of the choices used in their construction
via mixed Hodge complexes of sheaves, and finally arrive at the first three parts of Theorem 1.7 forK = R
in Section 6.3. We also endow other related (co)homology groups with canonical MHSs in Section 6.3.

Section 7 is devoted to proving the version of the functoriality Theorem 1.8 for K = R, 𝐾1 = 𝜋1 (𝐺1)
and 𝐾2 = 𝜋1 (𝐺2), that is, when 𝔪𝐾𝑖 is the augmentation ideal of R[𝜋1 (𝐺𝑖)] (Theorem 7.1), as well
as the corresponding version of Corollary 1.10 (Corollary 7.18). We also study how the statement
of Theorem 1.8 changes if 𝜌 in diagram (1.9) is not a group homomorphism, but just a morphism
of algebraic varieties (see Theorem 7.16). This has the following interesting consequence: if f is the
generalized Albanese morphism, then the MHSs obtained in this paper are invariants of the topology
and the algebraic structure of U, but its isomorphism class does not depend on the choice of f (which is
defined up to translation and isomorphism of semiabelian varieties); see Example 7.17.

In Section 8 we prove parts (4) and (5) of Theorem 1.7 in the case where K = R. The results in this
section can be used to immediately generalize the main results in Section 7 to the form they have in
Section 1.1 (namely Theorem 1.8 and Corollary 1.10) (for K = R).

Theorem 1.11 is proved in Section 9 in the case where K = R. The consequent eigenspace decompo-
sition appears in full detail in Corollary 9.2.

In Section 10 we show that the different MHSs defined in Section 6 are in fact defined over Q
if 𝐺 � (C∗)𝑛 for some 𝑛 ≥ 1 (Corollary 10.11). The reason for this distinction is that we perform a
thickening of a particularQ-mixed Hodge complex of sheaves and show that it computes the cohomology
of the local systems used in this paper, but this specific construction cannot be carried out if G is not
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an affine torus. We expect the result to be true in general, but were unable so far to find an explicit
description of a multiplicative Q-mixed Hodge complex of sheaves that we could use to perform the
needed thickenings. The construction of such thickenings over Q would involve fixing a particular
morphism relating the appropriate Q-local systems to the corresponding thickened complexes in a
compatible way with the construction over R.

In Section 11 we discuss the applications to the study of Milnor fibers of hyperplane arrangements
discussed above.

1.3. Summary of the techniques and new insights

There are several constructions of MHSs in the literature which are related with the construction in this
note, either because of the objects considered or the techniques used. We will discuss the relations and
point out the main differences here.

1.3.1. Single variable Alexander modules
Roughly speaking, the strategy in both [16] and this paper is as follows. First, we interpret 𝐻 𝑗 (𝑈

𝑓 ,K)
as the j-th homology group of a rank 1 local system of free R-modules L on U. We also consider the
R-dual local system L of L. The local system L has infinite dimensional stalks, so we truncate it by
quotienting by powers of the augmentation ideal. Then, we create a mixed Hodge complex of sheaves
which endows the cohomology groups of these truncated local systems with canonical mixed Hodge
structures. These MHSs are used to endow the desired objects (Tors𝑅 𝐻 𝑗 (𝑈

𝑓 ,K) in [16], where 𝐺 = C∗,
or the aforementioned quotients of 𝐻 𝑗 (𝑈

𝑓 ,K) in this paper) with canonical MHSs in different ways.
In both cases, the mixed Hodge complexes of sheaves that we use are obtained by thickening known
mixed Hodge complexes of sheaves which endow the cohomology of U (or of a finite cover of U)
with Deligne’s MHS. This thickening process consists of tensoring the complexes of sheaves by a finite
dimensional vector space V (endowed with an MHS) and by twisting the differentials.

However, although in principle the techniques seem similar in both papers, there are several new key
technical insights in this note that make the generalization possible:

◦ In [16] V was chosen to be K[𝑡±1]/(𝑡 − 1)𝑚 and the weight and Hodge filtrations were defined by
hand. This was possible because we picked coordinates in 𝐺 = C∗. However, in this paper G can be
any semiabelian variety, and we go further than in [16] and also explore connections between these
different mixed Hodge structures that arise from morphisms between the corresponding semiabelian
varieties (see Theorem 1.8). Hence, we use a coordinate-free description of V (see Remark 2.55
for the definition of the MHS 𝑅𝑚 and 𝑅−𝑚 used in place of V in this paper) and construct the
thickened complexes without fixed coordinates (see Sections 4 and 5). As a result of this generality,
the new coordinate-free construction is more involved than the construction in [16]; see Definition-
Proposition 4.6 to illustrate this. However, the choice of the maps used to construct the thickenings
can be made explicit by picking coordinates in the case when G is an affine torus (see Section 10).

◦ Deligne’s mixed Hodge complex of sheaves considered in [16], which consists of logarithmic holo-
morphic forms on a compactification of U, could not be used in the new construction, as it does not
contain enough forms to construct a thickening representing the truncations of L if G is a semiabelian
variety in general (not isomorphic to (C∗)𝑛). For this reason, we need to consider a mixed Hodge com-
plex of sheaves due to Navarro Aznar consisting of logarithmic analytic forms on a compactification
of U instead.

◦ R is a principal ideal domain in the case when 𝐺 = C∗, so the Universal Coefficient Theorem is avail-
able. We use it in [16, Proposition 2.14] to obtain that Tors𝑅 𝐻 𝑗+1 (𝑈,L) (the torsion part of the ( 𝑗+1)-
th cohomology Alexander module) is canonically isomorphic to the K-dual of Tors𝑅 𝐻 𝑗 (𝑈

𝑓 ,K) (the
torsion part of the j-th homology Alexander module). The MHS on Tors𝑅 𝐻 𝑗 (𝑈

𝑓 ,K) is endowed
through this isomorphism by an MHS on Tors𝑅 𝐻 𝑗+1(𝑈,L) obtained using the aforementioned meth-
ods. However, there is no analogous duality between the objects we consider in this paper in homology
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and cohomology, namely, quotients of 𝐻∗(𝑈 𝑓 ,K) and 𝐻∗(𝑈,L) by powers of the augmentation ideal.
To overcome this, we need to define different mixed Hodge complexes of sheaves to study quotients
of 𝐻∗(𝑈 𝑓 ,K) and of 𝐻∗(𝑈,L) respectively: the mixed Hodge complex of sheaves that we use for
homology and cohomology are thickenings of the same mixed Hodge complex of sheaves, but the
MHSs 𝑅−𝑚 and 𝑅𝑚 that we tensor by are different and dual to one another.
The lack of duality in this paper mentioned in the last point turns out to be a blessing in disguise:

In [16], the statements regarding the behaviour of the MHS with respect to morphisms which had a
natural geometric interpretation for homology Alexander modules but not for cohomology Alexander
modules were very difficult to prove. The difficulty stemmed from the fact that the MHS had a natural
interpretation in cohomology but not in homology, and the duality map used to define the MHS in
homology was explicit but not easy to work with. Examples of these kinds of results are the compatibility
with Deligne’s MHS on U [16, Theorem 6.1] or the independence of the MHS of the choice of finite
cover of U used in the construction [16, Theorem 5.22]. However, the generalizations of these results
in this paper (namely Corollary 7.18 and Proposition 8.4) have much simpler proofs due to the fact that
the mixed Hodge complex of sheaves constructed in this paper was designed for homology. As a result,
and although the construction of the MHS in this note is longer, this paper is shorter in length than [16]
despite providing a vast generalization of the main results of loc. cit. (Sections 3 to 8 in this paper) and
also of the main result of [17] (Section 9).

1.3.2. Classification of unipotent variations of mixed Hodge structure
Unipotent variations of MHS were classified in the works of Hain and Zucker [23, 22], which are also
related to the work of Sullivan [46] and Morgan [37] (see [41, Remark 9.25] for the relation). The
tautological variations of mixed Hodge structures (VMHS) of [23] (whose stalks are MHSs defined in
[22]) for a semiabelian variety G have 𝑅/𝔪𝑚 ⊗𝑅L𝐺 as underlying local systems, where 𝑚 ≥ 1, 𝔪 is the
augmentation ideal of R and L𝐺 = exp! K𝑇𝐺 . In this paper, the truncated local systems that we consider
in order to endow quotients of 𝐻 𝑗 (𝑈

𝑓 ,K) by powers of 𝔪 with canonical MHSs are 𝑅−𝑚 ⊗𝑅 L, which,
by Remarks 2.23 and 2.26, are the K-dual local systems to 𝑓 −1(𝑅/𝔪𝑚 ⊗𝑅 L𝐺) for each 𝑚 ≥ 1. The
following questions remain open:
◦ Can the mixed Hodge complexes of sheaves defined in this paper be used to endow 𝑅−𝑚 ⊗𝑅 L

with the structure of an admissible VMHS on U? If so, since the cohomology of an admissible
VMHS is endowed with an MHS, does this MHS coincide with the MHS on 𝐻∗(𝑈, 𝑅−𝑚 ⊗𝑅 L)
from Definition 6.1? We note that these MHSs on 𝐻∗(𝑈, 𝑅−𝑚 ⊗𝑅 L) are the ingredients needed to
endow the quotients of 𝐻∗(𝑈 𝑓 ,K) by powers of the augmentation ideal with canonical MHSs (see
Definition 6.17).

◦ Is the MHS on 𝐻∗(𝑈, 𝑓 −1(𝑅/𝔪𝑚 ⊗𝑅 L𝐺)) endowed through Hain and Zucker’s work related to the
MHS from Definition 6.1? If so, how?
Both techniques have different scopes, so establishing a relationship between the two as in the

previous two questions (which pertain to their common intersection) would potentially expand their
respective strengths. The tautological VMHS of Hain and Zucker is a very general construction which
is a key player in the classification of admissible unipotent VMHS on a smooth quasi-projective variety
[23, Theorem 1.6]. On the other hand, the thickening process described in Section 3 can be applied to
any mixed Hodge complex of sheaves, not just those resolving a local system potentially underlying a
VMHS. The definition of the tautological VMHS makes heavy use of Chen’s iterated integrals and the
bar construction. Its description in the case of (C∗)𝑛 is explicit, but not in general. If a relation between
Hain and Zucker’s construction and our work could be shown, the thickening construction in this paper
could yield an alternative interpretation of Hain and Zucker’s construction for semiabelian varieties. We
want to note that the explicit description of the thickened mixed Hodge complexes of sheaves defined
in this paper is heavily used in many of the proofs. One example of this is the proof of Theorem 1.11,
which to the best of our knowledge has no analogue for the tautological VMHS of Hain and Zucker.
The explicit nature of the thickened complex in [16] also allowed us to establish a relationship between
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the MHS on univariable (𝐺 = C∗) Alexander modules defined therein and the limit MHS constructed
using the nearby cycles functor (see [16, Theorem 1.8, Theorem 9.8]).

1.3.3. Deformations of local systems
Let U be a smooth algebraic variety with a base point x, and let 𝜌 be a representation of 𝜋1 (𝑈, 𝑥) in
GL𝑛 (K), corresponding to a local system 𝐿𝜌. Let Ô𝜌 be the completed local ring of the representation
variety Hom(𝜋1 (𝑈, 𝑥),GL𝑛 (K)) at 𝜌. This ring was given a (pro-)MHS in many situations in recent
work of Lefèvre [29], which generalizes [20] and [26].

Furthermore, representation varieties contain cohomology jump loci. For any finite rank K-local
system W, they are defined as follows (we will state the homological version, for consistency with the
rest of this paper):

V 𝑘
𝑗 (𝑈,𝑊) � {rank 𝑛 K-local systems 𝐿 on 𝑈 | dimK 𝐻 𝑗 (𝑈, 𝐿 ⊗K𝑊) ≥ 𝑘}.

Let 𝜌 be a representation, with corresponding local system 𝐿𝜌, and suppose that 𝐿𝜌 underlies a VMHS
and W underlies an admissible VMHS. Consider the defining ideal of V 𝑘

𝑗 (𝑈,𝑊), inside of Ô𝜌. In further
work of Lefèvre [30], it is shown that these ideals are sub-pro-MHSs of Ô𝜌.

Lefèvre’s work and the present paper use similar techniques, each more suited for a particular
purpose: both construct new mixed Hodge complexes as deformations of previously known ones. One
difference is that in his works, Lefèvre deforms complexes of vector spaces, such as the global de Rham
complex, where in this paper we need to use complexes of sheaves, such as the de Rham complex of
sheaves. To construct deformations, Lefèvre [29, Section 9] relies on the bar construction mentioned in
Section 1.3.2, while here we make a more explicit, ad-hoc construction (Definition-Proposition 3.9).

The relation between Lefèvre’s work and the present paper appears when considering the representa-
tion variety for GL1(K) and, in the notation of (1.1), taking 𝑓 : 𝑈 → 𝐺 to be the generalized Albanese
map. Letting 𝑅 = K[𝜋1 (𝐺)] as above, Spec 𝑅 is the identity component of the representation variety
Hom(𝜋1 (𝑈, 𝑥),GL1(K)). The Alexander module is a quasicoherent sheaf on Spec 𝑅, and this paper
constructs (pro-)MHSs on the completed local rings at torsion points. The local ring case [29] concerns
a local ring which in this case (a very particular case of the much more general constructions therein) is
isomorphic to the completed symmetric tensor algebra of 𝐻1(𝐺,K), and therefore has an obvious MHS
obtained from that of 𝐻1 (𝐺,K).

There is a universal local system on U associated to the representation variety Spec 𝑅, which is
denoted L in this paper (see Section 2.2). It is universal in the sense that for any representation 𝜌 in the
identity component, the corresponding local system 𝐿𝜌 is K𝜌 ⊗𝑅 L, where K𝜌 denotes K endowed with
an R-module structure via 𝜌. Furthermore, there is a canonical isomorphism between 𝐻 𝑗 (𝑈,L) and the
j-th Alexander module (Remark 2.13).

Regarding jump loci, there is a relation between jump loci in the case where 𝑊 = K𝑈 and the
Alexander modules considered in this paper, but only via a spectral sequence. At a given point 𝜌 ∈
Spec 𝑅, one may take the double complex that is the tensor product of the Koszul resolution of K𝜌 with
the chain complex of L. It yields a spectral sequence whose second page is:

Tor𝑅𝑝 (K𝜌, 𝐻𝑞 (𝑈
𝑓 ,K)) ⇒ 𝐻𝑝+𝑞 (𝑈, 𝐿𝜌). (1.13)

It is therefore not straightforward to find an explicit relation between Lefèvre’s work and the present
paper .

While the structure theorem of rank 1 cohomology jump loci (for the local system 𝑊 = K𝑈 ) yields
that they are unions of torsion-translated subtori, it is not known whether the analogous statement is
true for the Alexander varieties 𝐴𝑘

𝑗 (𝑈), defined as in [45] as follows:

𝐴𝑘
𝑗 (𝑈) ≔ {𝜌 ∈ Spec 𝑅 | dimK K𝜌 ⊗𝑅 𝐻 𝑗 (𝑈

𝑓 ,K) ≥ 𝑘},
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see also Remark 1.2. In [30], the structure theorem for these rank 1 cohomology jump loci is recovered
by using the Hodge theory for their defining ideals developed therein. By analogy, it would be interesting
to see whether the Hodge theory for Alexander modules developed in this paper can yield information
about the structure of Alexander varieties.

2. Preliminaries

2.1. Semiabelian varieties

We begin this section recalling the Chevalley decomposition of complex connected algebraic groups
(cf. [7, Theorem 1.1]).

Theorem 2.1 (Chevalley decomposition). Let G be a complex connected algebraic group. Then there
exists a unique normal affine algebraic closed subgroup H of G for which 𝐺/𝐻 is an abelian variety A.
That is, there is a unique short exact sequence of algebraic groups

1→ 𝐻 → 𝐺 → 𝐴→ 1.

Definition 2.2 (Semiabelian variety). Let G be a complex connected algebraic group, and let H be as in
Theorem 2.1. We say that G is a semiabelian variety if 𝐻 � (C∗)𝑛 for some 𝑛 ≥ 0.

Remark 2.3. Semiabelian varieties are commutative groups (see [25, Lemma 4]), so we will denote
their Chevalley decompositions with additive notation (0 instead of 1).

The following is well known.

Proposition 2.4 (Functoriality of the Chevalley decomposition). Let 𝑓 : 𝐺1 → 𝐺2 be a morphism of
algebraic groups between two semiabelian varieties. Let 0 → (𝐺𝑖)𝑇

𝑡𝑖
−→ 𝐺𝑖

(𝑝𝐴)𝑖
−−−−→ (𝐺𝑖)𝐴 → 0 be the

Chevalley decomposition of 𝐺𝑖 for 𝑖 = 1, 2. Then, 𝑓 ((𝐺1)𝑇 ) ⊂ (𝐺2)𝑇 .

Proof. (𝑝𝐴)2 ◦ 𝑓 ◦ 𝑡1 is an algebraic morphism between an affine algebraic group and an abelian variety.
Since it is a group homomorphism, it sends the identity in (𝐺1)𝑇 to the identity in (𝐺2)𝐴. By [7, Lemma
2.3], (𝑝𝐴)2 ◦ 𝑓 ◦ 𝑡1 is the constant morphism to the identity in (𝐺2)𝐴. Hence, 𝑓 ((𝐺1)𝑇 ) ⊂ ker(𝑝𝐴)2 =
(𝐺2)𝑇 . �

Proposition 2.5. Let G be a semiabelian variety. Its Chevalley decomposition

0→ 𝐺𝑇 → 𝐺 → 𝐺𝐴→ 0

gives G the structure of a 𝐺𝑇 -torsor over 𝐺𝐴. This torsor is Zariski-locally trivial, that is, there is a
Zariski open covering of 𝐺𝐴 over which 𝐺 � 𝐺𝑇 × 𝐺𝐴.

Proof. This follows from the results in [36, III.4.], concretely, Propositions 4.6 and 4.9. �

Proposition 2.6. If G is a semiabelian variety, the only holomorphic group homomorphism 𝐺 → C is
trivial.

Proof. Consider a group homomorphism 𝜌 : 𝐺 → C, and G’s Chevalley decomposition as in Proposi-
tion 2.5. Then, 𝜌 |𝐺𝑇 : 𝐺𝑇 → C is a holomorphic group homomorphism, so, since the torsion points are
mapped to 0, it must be trivial. Therefore, 𝜌 descends to a holomorphic map 𝜌 : 𝐺𝐴 → C, which must
be constant, since 𝐺𝐴 is compact. �

Remark 2.7 (Universal cover of a semiabelian variety). As complex manifolds, every semiabelian
variety G is isomorphic to C𝑔/Z𝑟 for 𝑔 = dim𝐺 and some 𝑟 ∈ Z≥0, where Z𝑟 is embedded into C𝑔 as a
discrete subgroup. In particular, 𝑟 ≤ 2𝑔. Also, Z𝑟 must generate C𝑔 as a C-vector space: otherwise, G
would have a nontrivial holomorphic homomorphism to C, contradicting Proposition 2.6. In particular,
𝑔 ≤ 𝑟 . The universal cover of G is given by the exponential map of Lie groups exp : 𝑇𝐺 → 𝐺, where
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𝑇𝐺 � 𝑇𝑒𝐺 is the tangent space of G at the identity 𝑒 ∈ 𝐺. Note that, since G is an abelian group, exp is
a group homomorphism, where 𝑇𝐺 is seen as a group under addition. Note that 𝑇𝐺 � C𝑔, and exp−1 (𝑒)
is identified with the lattice Z𝑟 through this identification, so 𝑟 = rank 𝜋1 (𝐺).

Remark 2.8. Let 𝑓 : 𝐺1 → 𝐺2 be an algebraic morphism between two semiabelian varieties. Up to
translation, f is also a group homomorphism. Indeed, up to translation in 𝐺2, we can assume that f takes
the identity to the identity. Such f induces a linear map (the differential of f at the identity) between the
universal covers given by the exponential map, which implies that f is also a group homomorphism.

2.2. Alexander modules

Let U be a smooth connected complex algebraic variety. Let G be a complex semiabelian variety and
let 𝑒 ∈ 𝐺 be its identity. Let 𝑓 : 𝑈 → 𝐺 be an algebraic map. Let 𝑈 𝑓 be the complex manifold defined
as the pullback of the universal cover of G as in the commutative diagram (1.1).

Since 𝜋1 (𝐺, 𝑒) is abelian, 𝜋1 (𝐺, 𝑥) is canonically identified with 𝜋1 (𝐺, 𝑒) for all 𝑥 ∈ 𝐺. Therefore,
we will not specify the choice of base points and will denote the fundamental group of G by 𝜋1 (𝐺).
The fundamental group 𝜋1 (𝐺) acts on 𝑇𝐺 by deck transformations. By the universal property of fiber
products, 𝜋 : 𝑈 𝑓 → 𝑈 is also a covering map whose deck action comes from the lift of the deck action
of 𝜋1 (𝐺) on 𝑇𝐺, and its deck transformation group is 𝜋1 (𝐺).

Let K be a field (which for us will be Q, R or C) and let 𝑅 = K[𝜋1 (𝐺)]. Since 𝜋1 (𝐺) � Z𝑟 , R is
noncanonically isomorphic to the ring of Laurent polynomials K[𝑡±1

1 , . . . , 𝑡±1
𝑟 ].

Definition 2.9. Let K be a field. The i-th (multivariable) homology Alexander module associated to
(𝑈, 𝑓 ) is 𝐻𝑖 (𝑈

𝑓 ,K). It is an 𝑅 = K[𝜋1 (𝐺)]-module via the deck action of 𝜋1 (𝐺) on 𝑈 𝑓 .

Remark 2.10. Since U has the homotopy type of a finite CW complex, 𝐻𝑖 (𝑈
𝑓 ,K) is a finitely generated

R-module.

For our purposes, it will be useful to realize the Alexander modules as homology groups of certain
local systems on U.

Definition 2.11. Let K be a field. In the notation of (1.1), we define L𝐺 � exp! K𝑇𝐺 .

The action of 𝜋1 (𝐺) on𝑇𝐺 by deck transformation induces an automorphism of L𝐺 , making L𝐺 into
a local system of rank 1 free R-modules. For any 𝑧 ∈ 𝐺, the stalks are given by (L𝐺)𝑧 =

⊕
𝑧′ ∈exp−1 (𝑧)

K.

The monodromy action of a loop 𝛾 ∈ 𝜋1 (𝐺) on (L𝐺)𝑧 interchanges the summands according to the
monodromy action of 𝛾 on exp−1(𝑧).

Definition 2.12. Let K be a field. In the notation of (1.1), we define L � 𝑓 −1 exp!K𝑇𝐺 , which is a rank
1 local system of free R-modules. Similarly, we let L = 𝑅 ⊗𝛾 ↦→𝛾−1 L denote the same local system, with
a new R-module structure where 𝛾 ∈ 𝜋1 (𝐺) acts in the way that 𝛾−1 acts on L.

Remark 2.13. There is a natural R-module isomorphism 𝐻𝑖 (𝑈
𝑓 ,K) � 𝐻𝑖 (𝑈,L). This follows from

the definition of the right-hand side, since the chain complex that computes it is the same chain complex
that computes the homology of 𝑈 𝑓 (see [11, Section 2.5]).

Remark 2.14. If 𝑉 ⊂ 𝑈 is a simply connected open set, 𝜋−1 (𝑉) � 𝜋1 (𝐺) × 𝑉 . For any 𝛾 ∈ 𝜋1 (𝑈), the
action of 𝛾 on the stalk L𝑥 is given by multiplication by 𝑓∗(𝛾) ∈ 𝜋1 (𝐺).

Remark 2.15. LetS be the sheaf (of sets) of lifts of f to𝑇𝐺, that is,Γ(S , 𝑉) = {𝜄 : 𝑉 → 𝑇𝐺 | exp ◦𝜄 = 𝑓 }
for any open set 𝑉 ⊆ 𝑈. For every 𝑥 ∈ 𝑈, the stalk S𝑥 is canonically isomorphic to exp−1( 𝑓 (𝑥)), and it
carries a 𝜋1 (𝐺)-action coming from the action on 𝑇𝐺.

On the other hand, a basis of the stalk of L𝐺 at 𝑓 (𝑥) is given by exp−1( 𝑓 (𝑥)), where each point 𝑧′
on the fiber corresponds to the locally constant function that is 1 around 𝑧′ and 0 elsewhere on the fiber,
and this bijection is also compatible with the 𝜋1 (𝐺) action. The same can be said of the stalk of L at x,
since 𝑓 −1 preserves stalks.
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This provides us with a map of sheaves S → L that sends S to a basis of L on each open set, and it is
compatible with the action of 𝜋1 (𝐺). Thus, a (locally defined) function 𝜄 : 𝑈 → 𝑇𝐺 such that exp ◦𝜄 = 𝑓
can be seen as a (local) section of L, and these locally form a K-basis. For 𝛾 ∈ 𝜋1 (𝐺), we will denote
𝛾 · 𝜄 � 𝛾 ◦ 𝜄.

Notation 2.16. We will denote the (identity) R-antilinear isomorphism L → L by 𝜄 ↦→ 𝜄, that is, 𝜄 is
the notation that we will use to refer to 𝜄 when seen in L. This way, for 𝜄 ∈ L and 𝛾 ∈ 𝜋1 (𝐺), we have
𝛾 · 𝜄 = 𝛾−1 ◦ 𝜄.

Remark 2.17. There is a canonical isomorphism Hom𝑅 (L, 𝑅) � L. On our local K-bases of L and L,
it is given by the pairing:

L × L −→ 𝑅𝑈

defined by 〈𝛾1 · 𝜄, 𝛾2 · 𝜄〉 = 𝛾1𝛾2 ∈ 𝜋1 (𝐺) ⊆ 𝑅 for every 𝜄, 𝛾1, 𝛾2. One readily verifies that this is well-
defined. Extending it in a K-bilinear way makes it automatically R-bilinear and it induces the above
isomorphism.

Remark 2.18. The observation from Remark 2.17 also holds if we replace R by K[𝐻], where H is a
finite index subgroup of 𝜋1 (𝐺). Indeed, let 𝐻𝛾1, . . . , 𝐻𝛾𝑛 be the distinct elements of 𝜋1 (𝐺)/𝐻, seen
as right cosets. Then, {𝛾1 · 𝜄, . . . , 𝛾𝑛 · 𝜄} is a local K[𝐻]-basis of L, and L is a rank n free K[𝐻]-
module. Similarly, since 𝜋1 (𝐺) is abelian, {𝛾−1

1 · 𝜄, . . . , 𝛾
−1
𝑛 · 𝜄} is a local K[𝐻]-basis of L. We define

the K[𝐻]-bilinear pairing L × L→ K[𝐻]
𝑈

by the K-bilinear extension of the pairing given by

〈𝛿1𝛾
−1
𝑖 · 𝜄, 𝛿2𝛾 𝑗 · 𝜄〉 =

{
0 if 𝑖 ≠ 𝑗 ,
𝛿1𝛿2 if 𝑖 = 𝑗

for all 𝛿1, 𝛿2 ∈ 𝐻, 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. One readily verifies that this is well-defined and induces the
isomorphism of sheaves of K[𝐻]-modules

HomK[𝐻 ] (L,K[𝐻]) � L,

which is also an isomorphism of sheaves of R-modules.

Remarks 2.13 and 2.17 motivate the following definition. Indeed, since the stalks of L are infinite
dimensional vector spaces but rank 1 free R-modules, it seems more reasonable to dualize over R rather
than over K to define the cohomological version of Alexander modules.

Definition 2.19. Let K be a field. The i-th (multivariable) cohomology Alexander module associated to
(𝑈, 𝑓 ) is the R-module 𝐻𝑖 (𝑈,L), where 𝑅 = K[𝜋1 (𝐺)].

2.3. Truncated local systems

For the purposes of doing Hodge theory on Alexander modules, we will have to work with truncated
versions of the local systems L and L.

Definition 2.20. Let 𝑚 ∈ Z>0, and let K = Q,R,C. We define the rings 𝑅∞ and 𝑅𝑚 by

𝑅∞ �
∞∏
𝑗=0

Sym 𝑗 𝐻1(𝐺,K); 𝑅𝑚 �
𝑅∞

∞∏
𝑗=𝑚

Sym 𝑗 𝐻1 (𝐺,K)

,

and the 𝑅𝑚-module 𝑅−𝑚 by

𝑅−𝑚 � HomK (𝑅𝑚,K).
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Note that for all 𝑚 > 0, 𝑅𝑚 and 𝑅−𝑚 have natural 𝑅∞-module structures. Also note that the field K
does not appear in the notation for 𝑅∞, 𝑅𝑚 and 𝑅−𝑚 (like it did not appear in R), but whenever we use
this notation, the base field will either be explicitly specified or clear from context.

Notation 2.21. For all 𝛾 ∈ 𝜋1 (𝐺) we denote its corresponding element in 𝐻1 (𝐺,Z) ⊂ 𝐻1(𝐺,K) by
log 𝛾.

Even if 𝜋1 (𝐺) is abelian and thus isomorphic to 𝐻1 (𝐺,Z), this notation is useful because 𝜋1 (𝐺) will
be thought of as having multiplication as its group operation, but 𝐻1(𝐺,Z) has the sum as its group
operation.

Definition 2.22 (The R-module structure of 𝑅∞, 𝑅𝑚 and 𝑅−𝑚). Let 𝑚 > 0. TheK-linear ring monomor-
phism

𝑅 = K[𝜋1 (𝐺)] −→ 𝑅∞

𝛾 ↦−→ 𝑒log 𝛾 =
∑∞

𝑗=0
(log 𝛾) 𝑗

𝑗!

endows 𝑅∞, 𝑅𝑚 and 𝑅−𝑚 with R-module structures.

Remark 2.23 (𝑅𝑚 and 𝑅/𝔪𝑚 are isomorphic R-modules). Let 𝔪 � (𝛾 − 1 | 𝛾 ∈ 𝜋1 (𝐺)) be the aug-
mentation ideal of R, and let 𝑚 ≥ 1. The image of 𝔪 by the K-linear ring monomorphism described in
Definition 2.22 lies in

∏∞
𝑗=1 Sym 𝑗 𝐻1 (𝐺,K), so one gets an induced ring homomorphism 𝑅/𝔪𝑚 → 𝑅𝑚,

which is also an R-module homomorphism. In fact, it is an R-module isomorphism. To see this, it suf-
fices to see that 𝑅/𝔪𝑚 → 𝑅𝑚 is an isomorphism of K-vector spaces. Let 𝛾1, . . . , 𝛾𝑟 be a basis of
generators of 𝜋1 (𝐺), and let us consider the bases

𝑚−1⋃
𝑗=0
{(𝛾1 − 1)𝑖1 · · · (𝛾𝑟 − 1)𝑖𝑟 | 𝑖𝑙 ≥ 0 for all 𝑙 = 1, . . . , 𝑟, 𝑖1 + · · · + 𝑖𝑟 = 𝑗},

𝑚−1⋃
𝑗=0
{(log 𝛾1)

𝑖1 · · · (log 𝛾𝑟 )𝑖𝑟 | 𝑖𝑙 ≥ 0 for all 𝑙 = 1, . . . , 𝑟, 𝑖1 + · · · + 𝑖𝑟 = 𝑗}

of 𝑅/𝔪𝑚 and 𝑅𝑚, respectively, where both are ordered in the same way by increasing order of j, and
amongst the ones with the same j, by lexicographical order. The square matrix representing the R module
homomorphism between 𝑅/𝔪𝑚 and 𝑅𝑚 (seen as aK-linear homomorphism) in these bases is triangular
with ones along the diagonal.

Remark 2.24. Let 𝔪 ⊂ 𝑅 be as in the previous remark. Taking inverse limits in the isomorphism
between 𝑅

𝔪𝑚 and 𝑅𝑚 from the previous remark, one obtains an R-module isomorphism

lim
←−−
𝑚

𝑅

𝔪𝑚
� 𝑅∞.

In light of the Definition 2.22, we can think about the local systems 𝑅∞⊗𝑅L, 𝑅𝑚⊗𝑅L and 𝑅−𝑚⊗𝑅L,
and similarly with L. Note that, by tensoring L or L with 𝑅𝑚 (resp. 𝑅−𝑚) over R, we obtain finite
dimensional K-local systems whose stalk is isomorphic to 𝑅𝑚 (resp. 𝑅−𝑚). These will be the truncated
local systems that we consider.

Let us understand the relationship between the homology and the cohomology of these truncated
local systems. We begin by recalling a well-known duality result for finite dimensional K-local systems.

Proposition 2.25 (cf. [11] section 2.5). Let L be a finite dimensional local system over a field K on a
connected algebraic variety U. Then, for all 𝑖 ≥ 0, there is a natural isomorphism

HomK (𝐻𝑖 (𝑈, 𝐿),K) � 𝐻𝑖 (𝑈,HomK (𝐿,K)).
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Remark 2.26 (Relationship between homology and cohomology). For all 𝑚 ≠ 0, we have a chain of
natural isomorphisms

HomK (𝑅𝑚 ⊗𝑅 L,K) � Hom𝑅 (L,HomK (𝑅𝑚,K)) (Tensor-hom adjunction)
= Hom𝑅 (L, 𝑅−𝑚)
� Hom𝑅 (L, 𝑅) ⊗𝑅 𝑅−𝑚 (Because L is locally free over 𝑅)

� L ⊗𝑅 𝑅−𝑚. Remark 2.17

Since R is commutative, one can identify L ⊗𝑅 𝑅−𝑚 with 𝑅−𝑚 ⊗𝑅 L. We apply Proposition 2.25 to
𝐿 = 𝑅𝑚 ⊗𝑅 L, and the above to get R and 𝑅∞-module isomorphisms for all 𝑖 ≥ 0 and 𝑚 ≠ 0:

HomK (𝐻𝑖 (𝑈, 𝑅𝑚 ⊗𝑅 L),K) � 𝐻𝑖 (𝑈,HomK (𝑅𝑚 ⊗𝑅 L,K)). Proposition 2.25

� 𝐻𝑖 (𝑈, 𝑅−𝑚 ⊗𝑅 L).

Remark 2.27. Let H be a finite index subgroup of 𝜋1 (𝐺), and let 𝜋𝐻 : 𝐺𝐻 → 𝐺 be the corresponding
finite cover. 𝐺𝐻 is the quotient of 𝑇𝐺 by H, where 𝐻 ≤ 𝜋1 (𝐺) acts by deck transformations. In
particular, 𝐺𝐻 is a commutative algebraic group, which is in fact a semiabelian variety (see [8, Section
3], for example), and 𝜋𝐻 is a morphism of algebraic groups. In that case, we may define 𝑅𝐻 � K[𝐻] =
K[𝜋1 (𝐺𝐻 )], and 𝑅𝐻

∞ , 𝑅𝐻
𝑚 and 𝑅𝐻

−𝑚 analogously as in Definition 2.20 using 𝐻1 (𝐺𝐻 ,K) instead of
𝐻1 (𝐺,K). Note thatL is locally free of finite rank as a sheaf of 𝑅𝐻 -modules. Hence, using Remark 2.17,
the argument in Remark 2.26 can be replicated to obtain 𝑅𝐻 and 𝑅𝐻

∞ -module isomorphisms

HomK (𝐻𝑖 (𝑈, 𝑅𝐻
𝑚 ⊗𝑅𝐻 L),K) � 𝐻𝑖 (𝑈, 𝑅𝐻

−𝑚 ⊗𝑅𝐻 L)

for all 𝑚 ≠ 0 and all 𝑖 ≥ 0.

The rest of Section 2.3 will be devoted to establishing the relationship between the (co)homology
of these truncated local systems and the homological and cohomological Alexander modules of Defini-
tions 2.9 and 2.19. For this, we will need the following technical result.

Proposition 2.28. Let (𝑆, 𝔞) be a complete Noetherian local ring. Let 𝐶• be a complex of finitely
generated free S-modules. For 𝑚 ≥ 0, let 𝑆𝑚 � 𝑆/𝔞𝑚. Then, the natural maps Ξ∞,𝑚 : 𝐻𝑖 (𝐶•) →
𝐻𝑖 (𝑆𝑚 ⊗𝑆 𝐶

•) induce an isomorphism of S-modules:

Ξ : 𝐻𝑖 (𝐶•)
�
−→ lim
←−−
𝑚

𝐻𝑖 (𝑆𝑚 ⊗𝑆 𝐶
•).

Proof. First, we show that the map is injective. Let 𝑀 = 𝐶𝑖

𝑑𝐶𝑖−1 , and let 𝑁 = 𝐻𝑖 (𝐶•) ⊆ 𝑀 . Following
the definitions, we have that

kerΞ =
⋂
𝑚

kerΞ∞,𝑚 =
⋂
𝑚

(𝔞𝑚𝑀 ∩ 𝑁) ⊆
⋂
𝑚

𝔞𝑚𝑀 = 0,

where the last equality follows from Krull’s Intersection Theorem.
Let us now prove that Ξ is surjective. It suffices to prove that for every m there exists an 𝑚′ � 𝑚

such that

imΞ𝑚′,𝑚 ⊆ imΞ∞,𝑚,
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where Ξ𝑚′,𝑚 is the natural map 𝐻𝑖 (𝑆𝑚′ ⊗ 𝐶•) → 𝐻𝑖 (𝑆𝑚 ⊗ 𝐶•). Consider the map of short exact
sequences:

0 𝔞𝑚
′
𝐶• 𝐶• 𝑆𝑚′ ⊗ 𝐶

• 0

0 𝔞𝑚𝐶• 𝐶• 𝑆𝑚 ⊗ 𝐶
• 0.

=

Taking cohomology, it induces the following map of exact sequences for every i:

𝐻𝑖 (𝐶•) 𝐻𝑖 (𝑆𝑚′ ⊗ 𝐶
•) ker(𝐻𝑖+1(𝔞𝑚

′
𝐶•) → 𝐻𝑖+1(𝐶•)) 0

𝐻𝑖 (𝐶•) 𝐻𝑖 (𝑆𝑚 ⊗ 𝐶
•) ker(𝐻𝑖+1(𝔞𝑚𝐶•) → 𝐻𝑖+1(𝐶•)) 0.

Ξ∞,𝑚′

= Ξ𝑚′,𝑚 ★

Ξ∞,𝑚

By the exactness of the rows, it is enough to show that for 𝑚′ � 𝑚, ★ = 0. By definition,

ker(𝐻𝑖+1(𝔞𝑚
′

𝐶•) → 𝐻𝑖+1(𝐶•)) =
𝔞𝑚

′
𝐶𝑖+1 ∩ 𝑑−1(0) ∩ 𝑑𝐶𝑖

𝑑 (𝔞𝑚′𝐶𝑖)
⊆

𝔞𝑚
′
𝐶𝑖+1 ∩ 𝑑𝐶𝑖

𝑑 (𝔞𝑚′𝐶𝑖)

We apply the Artin-Rees Lemma to the module 𝐶𝑖+1 and its submodule 𝑑𝐶𝑖 , to conclude that there
exists an 𝑚0 � 0 such that for all 𝑚 ≥ 0,

𝔞𝑚+𝑚0𝐶𝑖+1 ∩ 𝑑𝐶𝑖 = 𝔞𝑚(𝔞𝑚0𝐶𝑖+1 ∩ 𝑑𝐶𝑖) ⊆ 𝔞𝑚 (𝑑𝐶𝑖) = 𝑑 (𝔞𝑚𝐶𝑖).

So, if 𝑚′ ≥ 𝑚0 + 𝑚, the starred map indeed vanishes, as desired. �

Corollary 2.29. Let 𝑅∞ and 𝑅𝑚 be as in Definition 2.20, for 𝑚 ≥ 1. The natural maps induce an
isomorphism of 𝑅∞-modules

𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L) =
(
lim
←−−
𝑚

𝑅𝑚

)
⊗𝑅 𝐻𝑖 (𝑈,L) �−→ lim

←−−
𝑚

𝐻𝑖
(
𝑈, 𝑅𝑚 ⊗𝑅 L

)
.

Proof. Recall that U has the homotopy type of a finite CW-complex, so 𝐻•(𝑈,L) is represented by a
bounded complex of finitely generated free R-modules 𝐶• as in [11, Section 2.5]. Now, by Remark 2.24,
𝑅∞ �

(
lim
←−−𝑚

𝑅
𝔪𝑚

)
, so the ring 𝑅∞ is flat over R. In particular, the cohomology of 𝑅∞ ⊗𝑅 𝐶• is naturally

𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L).
Let (𝑆, 𝔞) =

(
𝑅∞,

∏∞
𝑗=1 Sym 𝑗 𝐻1 (𝐺,K)

)
in Proposition 2.28 (so 𝑆𝑚 = 𝑅𝑚) and apply it to the

complex of free 𝑅∞-modules 𝑅∞ ⊗𝑅 𝐶• to obtain an isomorphism:(
lim
←−−
𝑚

𝑅𝑚

)
⊗𝑅 𝐻𝑖 (𝑈,L) ∼−→ lim

←−−
𝑚

𝐻𝑖 (𝑅𝑚 ⊗𝑅∞ 𝑅∞ ⊗𝑅 𝐶•
)
= lim
←−−
𝑚

𝐻𝑖 (𝑅𝑚 ⊗𝑅 𝐶•).

Finally, notice that 𝐻𝑖 (𝑅𝑚 ⊗𝑅 𝐶•) = 𝐻𝑖
(
𝑈, 𝑅𝑚 ⊗𝑅 L

)
. �

Corollary 2.30. Let 𝑚 ≥ 1, and 𝑅∞, 𝑅𝑚 and 𝑅−𝑚 as in Definition 2.20. There is a natural isomorphism

𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L) ∼−→ lim
←−−
𝑚

HomK
(
𝐻𝑖 (𝑈, 𝑅−𝑚 ⊗𝑅 L),K

)
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Proof. By the analogous reasoning to the proof of Corollary 2.29, we have that the natural maps induce
an isomorphism: (

lim
←−−
𝑚

𝑅𝑚

)
⊗𝑅 𝐻𝑖 (𝑈,L) ∼−→ lim

←−−
𝑚

𝐻𝑖 (𝑈, 𝑅𝑚 ⊗𝑅 L).

Taking duals in Remark 2.26, one obtains

𝐻𝑖 (𝑈, 𝑅𝑚 ⊗𝑅 L) � HomK
(
𝐻𝑖 (𝑈, 𝑅−𝑚 ⊗𝑅 L),K

)
.

�

2.4. Generalized Albanese varieties

Iitaka ([24], [25]) generalized the Albanese morphism of smooth complete complex algebraic varieties
to smooth varieties as follows. For a detailed description, see [21].

Definition 2.31 (Iitaka’s generalized Albanese maps). Let U be a smooth connected complex algebraic
variety. The Albanese map 𝛼𝑈 : 𝑈 → 𝐺𝑈 is a morphism to a semiabelian variety 𝐺𝑈 satisfying the
following universal property: for any other morphism 𝛽 : 𝑈 → 𝐺 ′ to a semiabelian variety 𝐺 ′, there
exists a unique algebraic morphism 𝑓 : 𝐺𝑈 → 𝐺 ′ such that 𝛽 = 𝑓 ◦ 𝛼𝑈 . Such 𝐺𝑈 is usually called the
Albanese variety of U.

Remark 2.32 (Existence of the Albanese map). The Albanese map 𝛼𝑈 exists for any smooth connected
complex algebraic variety (see [21]), and hence the Albanese variety 𝐺𝑈 is well defined up to algebraic
isomorphism, which, up to translation, will be a group homomorphism as well by Remark 2.8. Once 𝐺𝑈

is fixed, 𝛼𝑈 is uniquely defined defined up to translation in 𝐺𝑈 and isomorphism of algebraic groups
from 𝐺𝑈 to itself.

Remark 2.33. If U is a smooth connected complex projective variety, 𝐺𝑈 in Definition 2.31 is an
abelian variety, and 𝛼𝑈 is the usual Albanese map.

Lemma 2.34 ([21], Lemma 3.11). Let U be a smooth connected complex algebraic variety, and let
𝛼𝑈 : 𝑈 → 𝐺𝑈 be its Albanese map. Then,

(𝛼𝑈 )∗ : 𝐻1(𝑈,Z) → 𝐻1 (𝐺𝑈 ,Z)

is surjective. Moreover, the kernel of (𝛼𝑈 )∗ coincides with the torsion part of 𝐻1(𝑈,Z).

Remark 2.35. Consider the pullback of (1.1) for the map 𝛼𝑈 . If 𝐻1(𝑈,Z) is torsion free, 𝑈𝛼𝑈 is the
universal abelian cover of U.

Example 2.36 (Affine hypersurface complements). Suppose that 𝑈 = C𝑛 \ 𝐻 is an affine hypersurface
complement, where 𝐻 = 𝑉 ( 𝑓1 · · · 𝑓𝑚), and 𝑓𝑖 are nonconstant irreducible polynomials in C[𝑥1, . . . , 𝑥𝑛]
such that 𝑓𝑖 and 𝑓 𝑗 do not have any nonconstant common factors for all 𝑖 ≠ 𝑗 ∈ {1, . . . , 𝑚}. Then,
𝐻1 (𝑈,Z) � Z𝑚 is generated by a choice of a positively oriented meridians around each of the m
irreducible components of H. Hence, the map

𝑓 = ( 𝑓1, . . . , 𝑓𝑚) : 𝑈 −→ (C∗)𝑚
𝑥 ↦−→ ( 𝑓1(𝑥), . . . , 𝑓𝑛 (𝑥))

induces an isomorphism on first (integral) homology groups, so 𝑈 𝑓 is the universal abelian cover of
U. In this case, 𝐻1 (𝑈

𝑓 ,Q) is generally called the Alexander invariant (with Q-coefficients) of the
hypersurface H.
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Let us see that the map 𝑓 = ( 𝑓1, . . . , 𝑓𝑚) coincides with the Albanese map of U. Since both 𝛼𝑈 and f
induce isomorphisms in first homology with Q-coefficients, the mixed Hodge structure on 𝐻1 (𝐺𝑈 ,Q)
is pure of type (1, 1). The Chevalley decomposition of 𝐺𝑈 induces a short exact sequence between
(abelian) fundamental groups, so if A is the abelian variety in the Chevalley decomposition of 𝐺𝑈 ,
𝐻1 (𝐴,Q)

(𝑝𝐴)
∗

−−−−→ 𝐻1(𝐺𝑈 ,Q) is an injective morphism between pure Hodge structures of weights 1
and 2, respectively. Thus 𝐻1 (𝐴,Q) = 0 and A is a point, so 𝐺𝑈 is a torus which, looking at the rank
of 𝐻1 (𝐺𝑈 ,Q), must be isomorphic to (C∗)𝑚. By the universal property of the Albanese, there exists
a unique algebraic morphism ℎ : 𝐺𝑈 � (C∗)𝑚 → (C∗)𝑚 such that 𝑓 = ℎ ◦ 𝛼𝑈 and which, up to
translation in the target, is an algebraic group homomorphism between (C∗)𝑚 and itself which induces
an isomorphism between fundamental groups. This implies that h is an isomorphism of algebraic
varieties, so f is the Albanese map of U.

2.5. Compactifications

Let U be a smooth connected complex algebraic variety, let G be a complex semiabelian variety and
let 𝑓 : 𝑈 → 𝐺 be an algebraic morphism. For the construction of the mixed Hodge structures in this
paper, we will need to compactify f in appropriate ways. First of all, the compactifications of U and G
that will appear in this paper will always be good compactifications, as defined below.

Definition 2.37 (Good compactification). Let U be a smooth connected complex algebraic variety, and
let X be a smooth compactification of U. X is a good compactification of U if 𝐷 � 𝑋 \𝑈 is a simple
normal crossings divisor.

Let us now explain which compactifications of G will appear in this paper.

Corollary 2.38 (Of Proposition 2.5). Let G be a semiabelian variety and let 0→ 𝐺𝑇 → 𝐺 → 𝐺𝐴→ 0
be its Chevalley decomposition. Then, G has a good compactification 𝐺 which has the structure of a
fibration as follows:

𝐺𝑇 ↩→ 𝐺 � 𝐺𝐴,

where 𝐺𝑇 is a compactification of 𝐺𝑇 by a product of P1’s.

Proof. Over an open covering of 𝐺𝐴 this is the compactification of (C∗) 𝑗 × 𝐺𝐴 by (P1) 𝑗 × 𝐺𝐴. These
compactifications can be glued: by Proposition 2.5 the transition functions are multiplication in 𝐺𝑇 by
locally defined functions 𝐺𝐴 → 𝐺𝑇 , which fix the divisors at infinity of 𝐺𝑇 . Finally, the divisor at
infinity of 𝐺 has normal crossings, since this can be checked on an open cover. �

Definition 2.39 (Allowed compactifications of G). Let Y be a good compactification of G. We say
that Y is an allowed compactification of G if there exists an algebraic map 𝑝 : 𝑌 → 𝐺 satisfying that
𝑗𝐺 = 𝑝 ◦ 𝑗𝑌 , where 𝐺 is a compactification of G such as the one described in Corollary 2.38, and 𝑗𝐺
and 𝑗𝑌 are the inclusions of G into its compactifications 𝐺 and Y.

Definition 2.40 (Compatible compactifications with respect to f ). Let X be a good compactification of
U and let Y be an allowed compactification of G. We say that X and Y are compatible compactifications
with respect to 𝑓 : 𝑈 → 𝐺 if f extends to an algebraic morphism 𝑓 : 𝑋 → 𝑌 .

More generally, we have the following definition.

Definition 2.41 (Compatible compactification with respect to a commutative diagram). Suppose that
𝑈1 and 𝑈2 are smooth connected complex algebraic varieties, 𝐺1 and 𝐺2 are complex semiabelian
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varieties, and that we have the following commutative diagram of algebraic maps

𝑈1 𝐺1

𝑈2 𝐺2.

𝑓1

ℎ 𝑔

𝑓2

Let 𝑋𝑖 be a good compactification of 𝑈𝑖 and let 𝑌𝑖 be an allowed compactification of 𝐺𝑖 for 𝑖 = 1, 2. We
say that 𝑋1, 𝑋2, 𝑌1 and 𝑌2 are compatible compactifications with respect to the commutative diagram
𝑔 ◦ 𝑓1 = 𝑓2 ◦ ℎ if the morphisms in the commutative diagram extend to algebraic morphisms which fit
into the following commutative diagram:

𝑋1 𝑌1

𝑋2 𝑌2.

𝑓1

ℎ 𝑔

𝑓2

The next result follows from a standard argument.

Lemma 2.42 (Existence of compatible compactifications). Let𝑈1 and𝑈2 be smooth connected complex
algebraic varieties, let 𝐺1 and 𝐺2 be complex semiabelian varieties, and suppose that we have the
following commutative diagram of algebraic maps

𝑈1 𝐺1

𝑈2 𝐺2.

𝑓1

ℎ 𝑔

𝑓2

Then, there exist compatible compactifications of 𝑈1,𝑈2, 𝐺1, 𝐺2 with respect to the commutative dia-
gram 𝑔 ◦ 𝑓1 = 𝑓2 ◦ ℎ.

In particular, if 𝑓 : 𝑈 → 𝐺 is an algebraic morphism from a smooth connected complex algebraic
variety to a complex semiabelian variety, there exist compatible compactifications with respect to f.

Proof. Let 𝑍2 be a good compactification of 𝑈2, and let 𝐺2 be a compactification of 𝐺2 as in Corol-
lary 2.38. Let 𝑋2 be a resolution of singularities of the closure of the graph of 𝑓2 inside of 𝑍2 ×𝐺2, such
that 𝑋2 is a good compactification of𝑈2. By construction, 𝑓2 extends to an algebraic map 𝑓2 : 𝑋2 → 𝐺2.

Now, fix 𝐺1, a compactification of 𝐺1 as in Corollary 2.38. By looking at the closure of the graph
of h inside of 𝐺1 × 𝐺2 and resolving singularities as in the previous paragraph, we find an allowed
compactification 𝑌1 of 𝐺1.

Following this argument, we can find good compactifications 𝑋 ′1 and 𝑋 ′′1 of 𝑈1 such that 𝑓1 and h
extend to algebraic morphisms 𝑓1

′
: 𝑋 ′1 → 𝑌1 and ℎ

′′
: 𝑋 ′′1 → 𝑋2. Let 𝑋1 be a resolution of singularities

of the closure of the graph of the identity map of 𝑈1 inside of 𝑋 ′1 × 𝑋 ′′1 , such that 𝑋1 is a good
compactification of U. By construction, there exist algebraic maps 𝑝1 : 𝑋1 → 𝑋 ′1 and 𝑝2 : 𝑋1 → 𝑋 ′′1
which extend the identity from 𝑈1 to itself. Let 𝑓1 = 𝑓1

′
◦ 𝑝1, and ℎ = ℎ

′′
◦ 𝑝2.

We claim that 𝑋1, 𝑋2, 𝑌1 and 𝐺2 are compatible compactifications with respect to 𝑔 ◦ 𝑓1 = 𝑓2 ◦ ℎ.
This follows from the fact that 𝑔 ◦ 𝑓1 and 𝑓2 ◦ ℎ both agree on 𝑈1, and there exists a unique way of
extending them continuously to 𝑋1. �
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2.6. Commutative Differential Graded Algebras

Definition 2.43 (Commutative differential graded algebra (cdga)). A commutative differential graded
K-algebra (cdga) is a triple

(𝐸, 𝑑,∧)

such that:

◦ (𝐸,∧) is a non-negatively graded unitary associative K-algebra.
◦ 𝑎 ∧ 𝑏 = (−1) |𝑎 | |𝑏 |𝑏 ∧ 𝑎 for homogeneous 𝑎, 𝑏 ∈ 𝐸 of degrees |𝑎 | and |𝑏 |.
◦ (𝐸, 𝑑) is a cochain complex.
◦ 𝑑 (𝑎 ∧ 𝑏) = 𝑑𝑎 ∧ 𝑏 + (−1) |𝑎 |𝑎 ∧ 𝑑𝑏 for 𝑎, 𝑏 ∈ 𝐸 , and a homogeneous of degree |𝑎 |.

Notice that when we write a cdga, the field K is implicit. We often will write E instead of (𝐸, 𝑑,∧)
when the differential and multiplication are understood.

When we discuss Hodge complexes in Section 2.8, we will often work with filtered cdgas whose
filtrations are compatible with the differential and the multiplication.

Definition 2.44 (cdga filtrations). Suppose (𝐸, 𝑑,∧) is a cdga. An increasing cdga filtration on (𝐸, 𝑑,∧)
is an increasing filtration 𝑊� on E such that

𝑊𝑖𝐸 ∧𝑊 𝑗𝐸 ⊂ 𝑊𝑖+ 𝑗𝐸 and 𝑑 (𝑊𝑖𝐸) ⊂ 𝑊𝑖𝐸

for all integers i and j. By a decreasing cdga filtration on (𝐸, 𝑑,∧) we mean a decreasing filtration 𝐹 �

on E such that

𝐹𝑖𝐸 ∧ 𝐹 𝑗𝐸 ⊂ 𝐹𝑖+ 𝑗𝐸 and 𝑑 (𝐹𝑖𝐸) ⊂ 𝐹𝑖𝐸

for all integers i and j.
One defines cdga filtrations on a sheaf of cdgas analogously, by looking at the cdgas of sections over

arbitrary open subsets.

2.7. Differential graded Lie algebras and deformation theory

Differential graded Lie algebras (dglas) provide a compact way to package the deformation theory of an
object, in our case, a chain complex. We will review the definitions for the purpose of fixing notation.
We will work over a (commutative, unital) ring A, which we will later assume to be Artinian local.

Definition 2.45. A differential graded Lie algebra (dgla) over A is a graded A-module 𝑀 =
⊕

𝑗∈Z 𝑀
𝑗

together with two A-(bi)linear operations:

◦ a differential 𝑑 : 𝑀 → 𝑀 which has degree 1, that is, 𝑑𝑀 𝑗 ⊆ 𝑀 𝑗+1, and
◦ a bracket [·, ·] : 𝑀 ⊗𝐴 𝑀 → 𝑀 of degree 0, that is, [𝑀 𝑗 , 𝑀 𝑗′ ] ⊆ 𝑀 𝑗+ 𝑗′

subject to the following restrictions: throughout, suppose 𝑎, 𝑏, 𝑐 ∈ 𝑀 are homogeneous elements of
degrees |𝑎 |, |𝑏 |, |𝑐 |, respectively.

◦ (𝑀, 𝑑) is a complex, that is, 𝑑2 = 0.
◦ The bracket is graded-anticommutative:

[𝑎, 𝑏] = −(−1) |𝑎 | |𝑏 | [𝑏, 𝑎] .

◦ The bracket satisfies the graded Jacobi identity:

[𝑎, [𝑏, 𝑐]] = [[𝑎, 𝑏], 𝑐] + (−1) |𝑎 | |𝑏 | [𝑏, [𝑎, 𝑐]] .
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◦ The differential is a graded derivation for the bracket:

𝑑 [𝑎, 𝑏] = [𝑑𝑎, 𝑏] + (−1) |𝑎 | [𝑎, 𝑑𝑏] .

Remark 2.46. Our main example of a dgla is the following: suppose (𝑀•, 𝑑, ·) is a differential graded
associative algebra, that is, (𝑀•, 𝑑) is a complex, and · is an associative product for which 𝑑 (𝑎 · 𝑏) =
(𝑑𝑎) · 𝑏 + (−1) |𝑎 |𝑎 · (𝑑𝑏). Then, automatically (𝑀•, 𝑑, [, ]) is a dgla with the bracket given by

[𝑎, 𝑏] = 𝑎 · 𝑏 − (−1) |𝑎 | |𝑏 |𝑏 · 𝑎.

Definition 2.47. Let (𝐴,𝔪) be an Artinian local K-algebra with a fixed map 𝐴 � K, and let (𝐶•, 𝑑) be
a bounded complex of K-vector spaces. A deformation of (𝐶•, 𝑑) over A is a complex (𝐶•, 𝐷) of free
A-modules, together with an isomorphism of complexes K ⊗𝐴 𝐶• � 𝐶•.

We will be interested in how endomorphisms of 𝐶• give rise to deformations.

Remark 2.48. Let 𝐶• be a bounded complex of K-vector spaces. Then the vector space of K-linear
endomorphisms End•K (𝐶•) is a differential graded associative algebra, where the homogeneous elements
of degree k are linear maps 𝜙 such that 𝜙(𝐶 𝑗 ) ⊆ 𝐶 𝑗+𝑘 . The product is composition, and the differential
is the graded commutator with d, that is, if 𝜙 has degree |𝜙|,

𝑑 · 𝜙 � 𝑑 ◦ 𝜙 − (−1) |𝜙 |𝜙 ◦ 𝑑.

Note that with this differential, 𝐻 𝑗 (End•K (𝐶•)) is the group of homotopy classes of morphisms of
complexes𝐶• → 𝐶• [ 𝑗] (recall that by convention the differential on𝐶• [ 𝑗] is (−1) 𝑗𝑑). By Remark 2.46,
End•K (𝐶•) is a dgla with the bracket given by the commutator.

Remark 2.49. Let 𝑆1 → 𝑆2 be a ring map. If 𝐿• is a 𝑆1-dgla, 𝑆2 ⊗𝑆1 𝐿• becomes a dgla with the
bracket [𝑎1 ⊗ 𝑚1, 𝑎2 ⊗ 𝑚2] � 𝑎1𝑎2 ⊗ [𝑚1, 𝑚2]. We are interested in the ring map K → 𝐴 and the
K-dgla 𝐿• = End•K (𝐶•). In this case, 𝐴 ⊗K 𝐿• = End•𝐴(𝐴 ⊗K 𝐶•), and the Lie bracket extended from
K coincides with the commutator of endomorphisms. Furthermore, 𝔪 End•(𝐶•) � 𝔪 ⊗K End•K (𝐶•) =
Hom•

K
(𝐶•,𝔪 ⊗K 𝐶•) = Hom•𝐴(𝐴 ⊗K 𝐶

•,𝔪 ⊗K 𝐶•) is a sub-dgla.

Lemma 2.50. Let K = Q,R or C, and let (𝐴,𝔪) be a local Artinian K-algebra with residue field K.
Let (𝐶•, 𝑑) be a bounded complex of A-modules. Suppose 𝜙 ∈ 𝔪 End1 (𝐶•) satisfies the Maurer-Cartan
equation, that is:

𝑑 · 𝜙 +
1
2
[𝜙, 𝜙] = 0.

Then, (𝐴 ⊗K 𝐶•, 𝑑 + 𝜙) is a complex of A-modules. Furthermore, for any 𝜌 ∈ 𝔪 End0(𝐶•), one obtains
an isomorphism 𝑒𝜌 �

∑∞
𝑘=0

1
𝑘! 𝜌

𝑘 :

𝑒𝜌 : (𝐴 ⊗K 𝐶•, 𝑑 + 𝜙)
∼
−→ (𝐴 ⊗K 𝐶

•, 𝑑 + 𝜙 + [𝑒𝜌, 𝑑 + 𝜙]𝑒−𝜌)

If [𝜌, [𝜌, 𝑑 + 𝜙]] = 0, then 𝑒𝜌 is an isomorphism:

𝑒𝜌 : (𝐴 ⊗K 𝐶•, 𝑑 + 𝜙)
∼
−→ (𝐴 ⊗K 𝐶

•, 𝑑 + 𝜙 − 𝑑 · 𝜌 + [𝜌, 𝜙]).

The same result holds for sheaves: Let (K•, 𝑑) is a bounded complex of sheaves of K-vector spaces.
We obtain analogous statements for 𝐴 ⊗K K•, 𝜙 ∈ Hom1

𝐴(𝐴 ⊗K K•,𝔪 ⊗K K•) and 𝜌 ∈ Hom0
𝐴(𝐴 ⊗K

K•,𝔪 ⊗K K•).

Proof. This is all direct computation. Note that A is Artinian local, so 𝔪 is nilpotent, which ensures
that 𝑒𝜌 is well-defined. �
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Remark 2.51. In the notation of Lemma 2.50, if we let M be a (left) A-module, the analogous statements
can be made for the complexes 𝑀 ⊗K 𝐶

•, since these are simply obtained from 𝐴 ⊗K 𝐶
• by tensoring

over A with M.

Remark 2.52. Let K be a field, let A be a local Artinian K-algebra with maximal ideal 𝔪. Let (𝐶•, 𝑑, ·)
be an A-cdga and let (𝑀•, 𝑑) be a 𝐶•-differential graded (left) module. In other words, multiplication
induces an A-dga homomorphism 𝐶• → End𝐴(𝐴⊗K𝑀•). Let us abuse notation and use the same letter
for elements of 𝐶• and their multiplication endomorphism.

1. For any 𝜙 ∈ 𝔪𝐶1, [𝜙, 𝜙] = 0, so the Maurer-Cartan equation is equivalent to [𝑑, 𝜙] = 0 ∈
End𝐴(𝐴⊗K𝑀•), and therefore the condition that 𝜙 is closed in 𝐶• is sufficient for the Maurer-Cartan
equation to hold.

2. For any 𝜙 ∈ 𝔪𝐶1 and 𝜌 ∈ 𝔪𝐶0, [𝜌, 𝑑 + 𝜙] = −𝑑𝜌. Therefore, [𝜌, [𝜌, 𝑑 + 𝜙]] = 0. Applying
Lemma 2.50, 𝑒𝜌 is an isomorphism between (𝐴 ⊗K 𝑀•, 𝑑 + 𝜙) and (𝐴 ⊗K 𝑀•, 𝑑 + 𝜙 − 𝑑𝜌).

The same result also holds in the case of sheaves, as in Lemma 2.50.

2.8. Mixed Hodge structures and complexes

The purpose of this section is to compile relevant definitions and to set notations related to mixed
Hodge structures (MHSs) and mixed Hodge complexes of sheaves. Throughout this section, K will
be a subfield of R and X will be a topological space. We start by recalling how multilinear algebra
constructions behave with respect to MHSs.

Definition-Proposition 2.53 (MHS on the dual, tensor product and symmetric product, cf. Examples
3.2 in [41]). Let (𝑉,𝑊�, 𝐹 �) and (𝑉 ′,𝑊�, 𝐹 �) be K-vector spaces endowed with an MHS, where 𝑊� are
the decreasing weight filtrations in V and 𝑉 ′ and 𝐹 � are the increasing Hodge filtrations in 𝑉C and 𝑉 ′

C
.

Here 𝑉C (resp. 𝑉 ′
C

) denotes 𝑉 ⊗K C (resp. 𝑉 ′ ⊗K C).

◦ (HomK (𝑉,K),𝑊�, 𝐹 �) is an MHS, where

𝑊−𝑛 HomK (𝑉,K) = { 𝑓 : 𝑉 → K | 𝑊𝑛−1𝑉 ⊂ ker 𝑓 } for all 𝑛, and
𝐹−𝑝 (HomK (𝑉,K)C) = 𝐹−𝑝 HomC (𝑉C,C)

= { 𝑓 : 𝑉C → C | 𝐹 𝑝+1(𝑉C) ⊂ ker 𝑓 } for all 𝑝.

◦ (𝑉 ⊗K 𝑉 ′,𝑊�, 𝐹 �) is an MHS, where

𝑊𝑛 (𝑉 ⊗K 𝑉
′) =

∑
𝑚

𝑊𝑚𝑉 ⊗K𝑊𝑛−𝑚𝑉
′ for all 𝑛, and

𝐹 𝑝 (𝑉C ⊗C 𝑉
′
C) =

∑
𝑚

𝐹𝑚𝑉C ⊗C 𝐹
𝑝−𝑚𝑉 ′C for all 𝑝.

◦ Let 𝑗 ≥ 1. The projection 𝑉 ⊗K 𝑉 ⊗K · · · ⊗K 𝑉︸��������������������︷︷��������������������︸
𝑗

→ Sym 𝑗 𝑉 induces an MHS on Sym 𝑗 𝑉 given by

the image of the filtrations 𝑊� and 𝐹 � in 𝑉 ⊗K 𝑉 ⊗K · · · ⊗K 𝑉︸��������������������︷︷��������������������︸
𝑗

. By convention, Sym0 𝑉 = K is a pure

Hodge structure of type (0, 0).
◦ The multiplication map 𝑉 ⊗K Sym 𝑗 𝑉 → Sym 𝑗+1 𝑉 is an MHS morphism.

Remark 2.54 (MHS in homology). Let X be a complex algebraic variety. By work of Deligne [9, 10],
𝐻𝑖 (𝑋,K) carries a canonical and functorial MHS for all 𝑖 ≥ 0. Since 𝐻𝑖 (𝑋,K) is finite dimensional,
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its dual is canonically isomorphic to 𝐻𝑖 (𝑋,K). By Definition-Proposition 2.53, 𝐻𝑖 (𝑋,K) also carries a
canonical and functorial MHS.

Remark 2.55 (MHS on 𝑅𝑚 and 𝑅−𝑚). Let 𝑚 > 0, and let 𝑅𝑚 and 𝑅−𝑚 as in Definition 2.20. Since

𝑅𝑚 �
𝑚−1∏
𝑗=0

Sym 𝑗 𝐻1(𝐺,K) =
𝑚−1⊕
𝑗=0

Sym 𝑗 𝐻1 (𝐺,K)

and the direct sum of MHSs is an MHS, the MHS on 𝐻1(𝐺,K) endows both 𝑅𝑚 and 𝑅−𝑚 (its K-dual)
with an MHS by Definition-Proposition 2.53.

In this paper, we will obtain infinite sequences of MHS of the form

· · ·� 𝑉𝑚+1 � 𝑉𝑚 � 𝑉𝑚−1 � · · ·� 𝑉1.

The inverse limit of such a sequence can be regarded as a pro-MHS. We will not use the definition in
this paper, as we will just construct some pro-MHS and morphisms between them naively.

Remark 2.56 (Pro-MHS). Let 𝑉 = lim
←−−𝑚

𝑉𝑚, where each 𝑉𝑚 is a K-MHS for all 𝑚 ≥ 1, and all the
morphisms involved are MHS morphisms. This data can be regarded as a pro-MHS. There is a category
of pro-MHS that can be constructed as the usual abstract nonsense pro-completion: one would simply
have to replace the index set Z>0 by a more general filtered set (or category) to define a pro-MHS in full
generality. Morphisms are defined as follows. Suppose we are given two pro-MHS constructed in this
way, 𝑉 = lim

←−−𝑚
𝑉𝑚 and 𝑊 = lim

←−−𝑚′
𝑊𝑚′ . Then,

Hompro−MHS (𝑉,𝑊) = Hompro−MHS

(
lim
←−−
𝑚

𝑉𝑚, lim←−−
𝑚′

𝑊𝑚′

)
� lim
←−−
𝑚′

lim
−−→
𝑚

HomMHS (𝑉𝑚,𝑊𝑚′ )

Plainly, a morphism consists of: for every 𝑚′ one must choose an m and a morphism 𝑉𝑚 → 𝑊𝑚′ , and
these must be all compatible in the obvious ways. In this paper, the only such morphisms that will appear
will be constructed in the most naive way: for every 𝑚′, we will take 𝑚 = 𝑚′. That is, given morphisms
of MHS 𝑉𝑚 → 𝑊𝑚 for all 𝑚 ≥ 1 commuting with the linear maps 𝑉𝑚′ → 𝑉𝑚 and 𝑊𝑚′ → 𝑊𝑚 for all
𝑚′ ≥ 𝑚 ≥ 1, we obtain a morphism of pro-MHSs 𝑉 → 𝑊 .

Remark 2.57. Inverse limits are left exact, and in the context of inverse limits of finite dimensional
vector spaces, they are also right exact, since these inverse limits always satisfy the Mittag-Leffler
condition. Hence, the category of pro-MHS has kernels, images and cokernels, and they coincide with
the kernels, images and cokernels of the underlying vector spaces V.

Definition 2.58 [41, Definition 3.13]. A K-mixed Hodge complex of sheaves on a topological space X
is a triple

K• = ((K•K,𝑊�), (K•C,𝑊�, 𝐹 �), 𝛼)

where:

◦ K•
K

is a bounded below complex of sheaves of K-vector spaces on X such that H∗(𝑋,K•
K
) are finite-

dimensional, and 𝑊� is an increasing (weight) filtration on K•
K

.
◦ K•

C
is a bounded below complex of sheaves of C-vector spaces on X, 𝑊� is an increasing (weight)

filtration and 𝐹 � a decreasing (Hodge) filtration on K•
C

.
◦ 𝛼 : (K•

K
,𝑊�) � (K•C,𝑊�) is a pseudo-morphism of filtered complexes of sheaves of K-vector spaces

on X (i.e., a chain of morphisms of bounded-below complexes of sheaves as in [41, Definition 2.31]
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except that each complex in the chain is filtered, as are all the morphisms) that induces a filtered
pseudo-isomorphism

𝛼 ⊗ 1: (K•K ⊗ C,𝑊� ⊗ C) � (K•C,𝑊�)

that is, a pseudo-isomorphism on each graded component.
◦ for 𝑚 ∈ Z, the m-th W-graded component

Gr𝑊𝑚 K• =
(

Gr𝑊𝑚 K•K,
(
Gr𝑊𝑚 K•C, 𝐹 �

)
,Gr𝑊𝑚 𝛼

)
is a K-Hodge complex of sheaves [41, Definition 2.32] on X of weight m, where 𝐹 � denotes the
induced filtration.

We have not explicitly defined the concept of a K-Hodge complex of sheaves, but we will only use it
in the proof of Lemma 3.6, where we will enumerate the conditions that need to be verified to check the
definition. More concretely, Lemma 3.6 is used to endow the tensor product of an MHS and a mixed
Hodge complex of sheaves with the structure of a mixed Hodge complex of sheaves. In that case, the
W-graded piece is a direct sum of tensor products of a (pure) Hodge structure and a Hodge complex
of sheaves, which is shown to be a Hodge complex of sheaves. The mixed Hodge complexes defined
in this paper have the same W-graded pieces than tensors of previously known MHS and complexes of
sheaves, so Lemma 3.6 will imply that the last item of Definition 2.58 is satisfied for them.

We will sometimes introduce aK-mixed Hodge complex of sheaves on X simply as K• and implicitly
assume the components of the triple to be notationally the same as in the above definition.

Definition 2.59. A multiplicativeK-mixed Hodge complex of sheaves on X is aK-mixed Hodge complex
of sheaves K• on X such that the pseudo-morphism 𝛼 has a distinguished representative given by a
chain of morphisms of sheaves of cdgas on X (with all but K•

K
being a sheaf of C-cdgas), and such that

all filtrations (including those in the chain) are cdga-filtrations (over C except for the weight filtration
on K•

K
).

From a given mixed Hodge complex of sheaves, one can construct others (translation, Tate twists) as
follows: We can also obtain new MHSs from a given MHS by shifting the filtrations appropriately.

Definition 2.60 (Tate twist).

◦ Suppose K• is a K-mixed Hodge complex of sheaves on X. The j-th Tate twist of K• is the triple

K•( 𝑗) =
( (
K•K,𝑊 [2 𝑗]�

)
,
(
K•C,𝑊 [2 𝑗]�, 𝐹 [ 𝑗]�

)
, 𝛼
)

where 𝑊 [2 𝑗]𝑖 = 𝑊2 𝑗+𝑖 and 𝐹 [ 𝑗]𝑖 = 𝐹 𝑗+𝑖 are shifted filtrations. K•( 𝑗) is again a K-mixed Hodge
complex of sheaves on X. For details see [41, Definition 3.14].

◦ The j-th Tate twist of aK-mixed Hodge structure is defined by shifting the weight and Hodge filtrations
with the same formula we used for mixed Hodge complexes above. See [41, Example 3.2(3)] for an
explicit definition.

Notice that we have changed the convention of [41, Examples 3.2 (3)] in all of these definitions of
Tate twists by selecting not to multiply by (2𝜋𝑖)2 𝑗 .

Remark 2.61. The two definitions of Tate twist above are compatible in the following sense. Let
H𝑖 (𝑋,K•

K
( 𝑗)) (resp. H𝑖 (𝑋,K•

K
)) be the K-MHS induced in hypercohomology by the K-mixed Hodge

complex of sheaves K•( 𝑗) (resp. K•). By [41, Theorem 3.18], H𝑖 (𝑋,K•
K
( 𝑗)) = H𝑖 (𝑋,K•

K
) ( 𝑗).

Example 2.62. Suppose that 𝐺 = C∗ in Remark 2.55, and let 𝑚 ≥ 1. We have that 𝐻1 (𝐺,K) is a pure
Hodge structure of type (−1,−1). Let s be a generator of 𝐻1(𝐺,Z) (seen inside of 𝐻1(𝐺,K)). We have
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that {1 = 𝑠0, 𝑠, 𝑠2, . . . , 𝑠𝑚−1} is a K basis of 𝑅𝑚, and let {1∨ = (𝑠0)∨, 𝑠∨, (𝑠2)∨, . . . , (𝑠𝑚−1)∨} be its
dual basis. The following K-linear isomorphism defined on a basis as

𝐴𝑚 : 𝑅𝑚 −→ 𝑅−𝑚
𝑠 𝑗 ↦−→ (𝑠𝑚−1− 𝑗 )∨ for all 𝑗 = 0, . . . , 𝑚 − 1

is also an 𝑅∞-linear isomorphism which induces an MHS isomorphism 𝑅𝑚(1 − 𝑚) → 𝑅−𝑚, where
(1 − 𝑚) denotes the (1 − 𝑚)-th Tate twist.

Definition 2.63 (Translation of a mixed Hodge complex of sheaves).

◦ If F• is a complex of sheaves on X, then its translation by 𝑟 ∈ Z is the complex F• [𝑟] = F•+𝑟 with
differential 𝑑• [𝑟] = −(1)𝑟 𝑑•+𝑟 .

◦ Suppose that K• is a K-mixed Hodge complex of sheaves on X. The translation of K• by 𝑟 ∈ Z is the
triple

K• [𝑟] = ((K•K [𝑟],𝑊 [−𝑟]�), (K•C [𝑟],𝑊 [−𝑟]�, 𝐹 �), 𝛼[𝑟])

where the filtrations are described by:

(𝑊 [−𝑟])𝑖
(
K•K [𝑟]

)
=
(
𝑊𝑖−𝑟K•K

)
[𝑟], (𝑊 [−𝑟])𝑖

(
K•C [𝑟]

)
=
(
𝑊𝑖−𝑟K•C

)
[𝑟], 𝑖 ∈ Z,

𝐹 𝑝 (K•C [𝑟]) = (
𝐹 𝑝K•C

)
[𝑟], 𝑝 ∈ Z.

This is again a K-mixed Hodge complex of sheaves on X.

Note that this does not agree with the translation of a pure Hodge complex as defined in [41, Lemma-
Definition 2.35]. In fact, this notion of translation increases the weight of a pure Hodge complex by 1,
whereas the translation in loc. cit. decreases it (contrary to what is stated in loc. cit.). It does agree with
the translation of mixed Hodge complexes implicit in [41, Theorem 3.22].

Remark 2.64. Suppose K• is a K-mixed Hodge complex of sheaves on X. By [41, Theorem 3.18.II] the
hypercohomology vector spaces H∗(𝑋,K•

K
) inherit K-mixed Hodge structures. Furthermore, it can be

easily shown that

H∗(𝑋,K•K [𝑟]) � H∗+𝑟 (𝑋,K•K),

where the K-mixed Hodge structure on the left-hand side has been induced by the translated K-mixed
Hodge complex K• [𝑟].

Definition 2.65 (Derived direct image of a mixed Hodge complex of sheaves.). Let K• be a K-mixed
Hodge complex of sheaves on X where the filtrations𝑊� and 𝐹 � are biregular (i.e., for all m, the filtrations
induced on K𝑚 are finite). Suppose that 𝑔 : 𝑋 → 𝑌 is a continuous map between two topological spaces.
The derived direct image of K• via g is again a mixed Hodge complex of sheaves, and it is defined as
follows ([41, B.2.5]).

Let Tot[C•GdmF•] be the Godement resolution of a complex of sheaves F• as defined in [41, B.2.1],
which is a flabby resolution. Here, Tot[C•GdmF•] denotes the simple complex associated to the double
complex C•GdmF•. We define 𝑅𝑔∗K• to be the triple( (

𝑔∗ Tot[C•GdmK•K], 𝑔∗ Tot[C•Gdm𝑊�]
)
,

(
𝑔∗ Tot[C•GdmK•C], 𝑔∗ Tot[C•Gdm𝑊�], 𝑔∗ Tot[C•Gdm𝐹

�]
)
, 𝑔∗𝛼

)
,

where 𝑔∗𝛼 is the pseudo-morphism of filtered complexes of sheaves of K-vector spaces induced by 𝛼
and the functoriality of both 𝑔∗ and the Godement resolution.
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2.9. The analytic logarithmic Dolbeault complex

Let U be a smooth algebraic variety, let X be a good compactification of U and let 𝐷 � 𝑋 \ 𝑈.
Deligne defined a mixed Hodge complex of sheaves on X whose hypercohomology computes 𝐻∗(𝑈,R),
endowing it with a canonical and functorial mixed Hodge structure. If 𝑗 : 𝑈 ↩→ 𝑋 is the inclusion,
Deligne considered:

( 𝑗∗E•𝑈,R, 𝜏≤�) → ( 𝑗∗E•𝑈,C, 𝜏≤�)
∼
←−↪ (Ω•𝑋 (log 𝐷), 𝜏≤�)

∼
↩−→ (Ω•𝑋 (log 𝐷),𝑊�, 𝐹

�),

where E•𝑈,R is the real (𝐶∞) de Rham complex on U, E•𝑈,C � E•𝑈,R ⊗R C, Ω•𝑈 is the holomorphic
de Rham complex on U, and Ω•𝑋 (log 𝐷) is the subcomplex of 𝑗∗Ω•𝑈 formed by the forms 𝜔 with
logarithmic poles along D (both 𝜔 and 𝑑𝜔 have at most a pole of order 1 along D). 𝜏≤� is the canonical
increasing filtration, 𝐹 � is the decreasing trivial filtration, and 𝑊� is given by the order of the poles (see
[41, Theorem 4.2] for the precise definition).

Let us introduce different de Rham complexes from the ones in Deligne’s mixed Hodge complex of
sheaves.

Definition 2.66 (Real analytic de Rham complex of sheaves). For every smooth complex algebraic
variety Y,

◦ (A•𝑌 ,R, 𝑑) denotes the real analytic de Rham complex of sheaves on Y,
◦ (A•𝑌 ,C, 𝑑) denotes the real analytic de Rham complex of sheaves on Y with values over C, that is,
A•𝑌 ,C � C ⊗R A•𝑌 ,R.

◦ A•𝑌 ,C has a bigrading induced by the complex structure on Y, which we denote by A••𝑌 ,C, as follows: if
𝑧1, . . . , 𝑧𝑛 are local holomorphic coordinates of Y, the forms in A𝑝,𝑞

𝑌 ,C
are locally generated over A0

𝑌 ,C
by 𝑑𝑧𝑖1 ∧ . . . ∧ 𝑑𝑧𝑖𝑝 ∧ 𝑑𝑧 𝑗𝑖 ∧ . . . ∧ 𝑑𝑧 𝑗𝑞 for 𝑖1, . . . , 𝑖𝑝 , 𝑗𝑖 , . . . , 𝑗𝑞 ∈ {1, . . . , 𝑛}.

Remark 2.67. A•𝑈,C (and thus also A•𝑈,R) is a complex of 𝑗∗-acyclic and Γ-acyclic sheaves. The Γ-
acyclicity is well known (see [27, p. 127], for example). For the 𝑗∗-acyclicity, it suffices to show that
H𝑖 (𝑉𝑥 ∩ 𝑈,A𝑘

𝑈,C
) = 0 for all 𝑖 > 0, 𝑘 ≥ 0, 𝑥 ∈ 𝑋 and certain 𝑉𝑥 neighborhoods of x in X forming

a basis. Let 𝑌 = 𝑉𝑥 ∩ 𝑈, which is a complex (and thus real) analytic manifold. As a real analytic
manifold, Y can be embedded into𝑌 ×𝑌 as the diagonal, where𝑌 is the complex conjugate of Y, and the
restriction of O𝑌×𝑌 (the sheaf of complex analytic functions on 𝑌 ×𝑌 ) to Y is A0

𝑈,C
. By [6, Proposition

5.42], Y possesses arbitrarily small neighborhoods in 𝑌 × 𝑌 which are Stein. Let W be one such Stein
neighborhood. By Oka’s coherence theorem and Cartan’s theorem B, one gets H𝑖 (𝑊,O𝑌×𝑌 ) = 0 for all
𝑖 > 0, so 𝑅Γ(𝑊,O𝑌×𝑌 ) � Γ(𝑊,O𝑌×𝑌 ). Since Y is closed in the paracompact space W, taking direct
limits on W approaching Y yields 𝑅Γ(𝑌,A0

𝑈,C
) = lim
−−→
𝑊

Γ(𝑊,O𝑌×𝑌 ) = Γ(𝑌,A0
𝑈,C
), obtaining the 𝑗∗-

acyclicity of A0
𝑈,C

. For 𝑘 ≥ 1 we follow the same argument, replacing O𝑌×𝑌 by Ω𝑘
𝑌×𝑌

, which is locally
free as an O𝑌×𝑌 -module and thus it is also coherent.

In [38] (see also [5] for a similar complex using 𝐶∞ functions), Navarro Aznar defined a different
mixed Hodge complex of sheaves. The complexes of sheaves involved in its construction are the real
and complex-valued logarithmic Dolbeault complexes, defined as follows.

Definition 2.68 (Logarithmic Dolbeault Complex). Let U be a smooth connected complex algebraic
variety, let X be a good compactification of U, let 𝐷 = 𝑋 \ 𝑈, and let 𝑗 : 𝑈 ↩→ 𝑋 be the inclusion.
Let us write local holomorphic coordinates (𝑧𝑖) on X such that D has equation 𝑧1 · · · 𝑧𝑟 = 0. The real
logarithmic Dolbeault complex A•𝑋,R(log 𝐷) is the sub-A0

𝑋,R-algebra of 𝑗∗A•𝑈,R generated by the local
sections

log(𝑧𝑖𝑧𝑖),�
𝑑𝑧𝑖
𝑧𝑖

,�
𝑑𝑧𝑖
𝑧𝑖

for 1 ≤ 𝑖 ≤ 𝑟, �𝑑𝑧𝑖 ,�𝑑𝑧𝑖 for 𝑖 > 𝑟.

Similarly, the complex logarithmic Dolbeault complex is defined byA•𝑋,C (log 𝐷) � A•𝑋,R(log 𝐷) ⊗RC.
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Moreover, we define a bigrading on A•𝑋 (log 𝐷) induced by the bigrading on A•𝑈 as follows:

A𝑝,𝑞
𝑋,C
(log 𝐷) � A𝑝+𝑞

𝑋,C
(log 𝐷) ∩ 𝑗∗A𝑝,𝑞

𝑈,C
.

Definition 2.69 (Navarro Aznar’s mixed Hodge complex of sheaves). Let U, X, D, j, (𝑧𝑖) be as in
Definition 2.68. The following data describes a mixed Hodge complex of sheaves �N •𝑋,𝐷 :

�N •𝑋,𝐷 � (
(A•𝑋,R (log 𝐷),𝑊�), (A•𝑋,C (log 𝐷),𝑊�, 𝐹

�), 𝛼
)
,

where

◦ the weight filtration 𝑊� on A•𝑋,R(log 𝐷) (resp. on A•𝑋,C (log 𝐷)) is the multiplicative increasing
filtration generated by assigning weight 0 to the sections of A•𝑋,R and weight 1 to the sections defined
locally by log(𝑧𝑖𝑧𝑖),� 𝑑𝑧𝑖

𝑧𝑖
,� 𝑑𝑧𝑖

𝑧𝑖
for 1 ≤ 𝑖 ≤ 𝑟 ,

◦ the Hodge filtration 𝐹 � on A•𝑋,C(log 𝐷) is defined by

𝐹 𝑝A•𝑋,C (log 𝐷) �
⊕
𝑝′≥𝑝

A𝑝′,•
𝑋,C
(log 𝐷), and

◦ 𝛼 ⊗ 1 : (A•𝑋,R(log 𝐷),𝑊�) ⊗R C→ (A•𝑋,C (log 𝐷),𝑊�, 𝐹
�) is the identity.

We recall here some important properties of �N •𝑋,𝐷 .

Theorem 2.70 ([38], Theorem 8.8). The inclusion (Ω•𝑋 (log 𝐷),𝑊�, 𝐹
�) → (A•𝑋,C (log 𝐷),𝑊�, 𝐹

�) is a
bi-filtered quasi-isomorphism. The (weight and Hodge) filtrations on Ω•𝑋 (log 𝐷), which were described
at the beginning of the section, coincide with the ones induced by the filtrations on A•𝑋,C(log 𝐷).

Proposition 2.71 (Proposition 8.4, [38]). The identity(
A•𝑋,R(log 𝐷), 𝜏≤�

)
→

(
A•𝑋,R (log 𝐷),𝑊�

)
and the inclusion (

A•𝑋,C (log 𝐷), 𝜏≤�

)
↩→

(
𝑗∗A•𝑈,C, 𝜏≤�

)
are both filtered quasi-isomorphisms. Moreover, the second map coincides with the adjunction Id →
𝑅 𝑗∗ 𝑗

−1 applied to A•𝑋,C (log 𝐷) when seen as a morphism in the derived category.

Corollary 2.72. The following is a diagram of filtered quasi-isomorphisms (the last one is bi-filtered),
where the maps are either the identity or the natural inclusions.(

A•𝑋,C(log 𝐷),𝑊�

) Id
←−

(
A•𝑋,C(log 𝐷), 𝜏≤�

)
↩→

(
𝑗∗E•𝑈,C, 𝜏≤�

)
←↪

(
Ω•𝑋 (log 𝐷), 𝜏≤�

) Id
−→(

Ω•𝑋 (log 𝐷),𝑊�, 𝐹
�) ↩→ (

A•𝑋,C(log 𝐷),𝑊�, 𝐹
�
)

The composition of all of these maps is the identity in the derived category.

Proof. The (de Rham) resolutionR𝑈 → E•𝑈,R factors throughA•𝑈,R, which is quasi-isomorphic (through
the inclusion map) to the bigger sheaf complex E•𝑈,R, because both resolve the trivial local system R𝑈
(see [27, p. 127], for example). Since E•𝑈,R is a complex of soft sheaves, this gives rise to an isomorphism
𝑅 𝑗∗R𝑈 → 𝑗∗E•𝑈,R in the derived category, and Proposition 2.71 shows that the second map in the chain
of maps in the statement of this corollary is a (trivially filtered) quasi-isomorphism. The rest of the maps
involved are (bi-)filtered quasi-isomorphisms by Theorem 2.70 and Proposition 2.71.
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The statement about the composition of all of those maps in the derived category follows from the
fact that the inclusion Ω•𝑋 (log 𝐷) → 𝑗∗E•𝑈,C factors through A•𝑋,C(log 𝐷). �

Note that the filtration 𝑊� on the logarithmic Dolbeault complex is not biregular, a hypothesis which
is needed for Definition 2.65, for example. However, we may tweak it a little to get a mixed Hodge
complex of sheaves similar to the one from Definition 2.69 with biregular filtrations as follows.

Definition-Proposition 2.73 (Modified mixed Hodge complex of sheaves of Navarro Aznar). Let U, X,
D, j, (𝑧𝑖) be as in Definition 2.68, and let𝑊�, 𝐹 � and 𝛼 be as in Definition 2.69. Let 𝑛 ≥ max{2, dimR𝑈},
and let 𝑊𝑛

� be the increasing cdga filtration on A•𝑋,R given by

𝑊𝑛
𝑖 A

𝑗
𝑋 ,R �

{
𝑊𝑖A•𝑋,R if 𝑖 ≤ 𝑛,

A•𝑋,R if 𝑖 > 𝑛,

and let (A 𝑗
𝑋 ,C

,𝑊𝑛
� ) � (A

𝑗
𝑋 ,R ⊗R C,𝑊

𝑛
� ⊗R C).

Then, the following data describes a mixed Hodge complex of sheaves N •𝑋,𝐷,𝑛:

N •𝑋,𝐷,𝑛 �
(
(A•𝑋,R (log 𝐷),𝑊𝑛

� ), (A•𝑋,C (log 𝐷),𝑊𝑛
� , 𝐹

�), 𝛼
)
,

in which all the filtrations are biregular, and such that the identity morphism�N •𝑋,𝐷 → N •𝑋,𝐷,𝑛

induces (bi-)filtered quasi-isomorphisms in its real and complex parts.

Proof. The identity morphism �N •𝑋,𝐷 → N •𝑋,𝐷,𝑛 induces filtered morphisms in its real and complex
parts. By Proposition 2.71, if 𝑚 > 𝑛 ≥ dimR𝑈, Gr𝑊𝑚 A•𝑋,R is quasi-isomorphic to 0, so it is exact. By
induction, one can show that 𝑊𝑚A•𝑋,R/𝑊𝑛A•𝑋,R is an exact complex of sheaves for all 𝑚 > 𝑛, which
implies that A•𝑋,R/𝑊𝑛A•𝑋,R is an exact complex of sheaves, that is, quasi-isomorphic to 0. This shows
that the identity morphism induces quasi-isomorphisms between Gr𝑊𝑚 A•𝑋,R and Gr𝑊 𝑛

𝑚 A•𝑋,R for all m.
These quasi-isomorphisms are the identity if 𝑚 ≤ 𝑛. The same holds for A•𝑋,C, which concludes our
proof. �

Remark 2.74. The isomorphism 𝑅 𝑗∗R𝑈 → 𝑗∗E•𝑈,R described in the proof of Corollary 2.72 is the one
used to endow 𝐻∗(𝑈,R) with Deligne’s canonical mixed Hodge structure, using Deligne’s mixed Hodge
complex of sheaves described at the beginning of this section.

The mixed Hodge complex of Navarro Aznar (Definition 2.69) also induces a mixed Hodge structure
on 𝐻∗(𝑈,R) via the composition of 𝑅 𝑗∗R𝑈 → 𝑗∗E•𝑈,R above with A•𝑋,C (log 𝐷) ↩→ 𝑗∗E•𝑈,C. By
Corollary 2.72, both of these mixed Hodge structures on 𝐻∗(𝑈,R) coincide. Consequently, this MHS
coincides with the one induced by the modified complex N •𝑋,𝐷,𝑛 from Definition-Proposition 2.73 for
all 𝑛 ≥ max{2, dimR𝑈}.

3. Thickening of a mixed Hodge complex of sheaves

Let K = Q or R. We will show how to construct a thickened mixed Hodge complex of sheaves for any
multiplicative mixed Hodge complex of sheaves K•.

3.1. The definition of the thickening

The data required for the thickening should be understood as an MHS V and a morphism 𝑉 [−1] → K•.
Precisely, we require the following data.
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Assumption 3.1. We consider the following objects.

1. A multiplicative mixed Hodge complex K• = ((K•
K
,𝑊�), (K•C,𝑊�, 𝐹 �), 𝛼) on a topological space X. 𝛼

is a filtered pseudo-morphism, which induces the filtered pseudo-isomorphism 𝛼 ⊗ 1 after tensoring
by C over K:

(K•K ⊗K C,𝑊�) = (K•0,𝑊�)
𝛼1
−−→ (K•1,𝑊�)

𝛼2
←−− · · ·

𝛼2𝑀−1
−−−−−→ (K•2𝑀−1,𝑊�)

𝛼2𝑀
←−−− (K•2𝑀 ,𝑊�) = (K•C,𝑊�).

In addition, all the weight filtrations 𝑊� are biregular (i.e., for all m and for all 0 ≤ 𝑖 ≤ 2𝑀 , the
weight filtration induced on K𝑚

𝑖 is finite), and all the complexes of sheaves are bounded.
2. A K-MHS (𝑉,𝑊�, 𝐹 �). 𝑉C will denote the vector space 𝑉 ⊗K C.
3. For every 𝑖 = 0, . . . , 𝑀 , a morphism

Φ2𝑖 : (𝑉C,𝑊� [1]) → Γ
(
𝑋, (K1,cl

2𝑖 ,𝑊�)
)
.

Where K1,cl = ker 𝑑 ⊆ K1. Additionally, Φ2𝑀 is required to preserve 𝐹 � and Φ0 must be defined
over K.

4. For every 𝑖 = 1, . . . , 𝑀 , a morphism

Ψ2𝑖−1 : (𝑉C,𝑊� [1]) → Γ
(
𝑋, (K0

2𝑖−1,𝑊�)
)

such that

𝑑 ◦ Ψ2𝑖−1 = 𝛼2𝑖−1 ◦Φ2𝑖−2 − 𝛼2𝑖 ◦Φ2𝑖 .

In other words, the maps Φ2𝑖 are only required to be compatible with 𝛼 up to homotopy, and the
homotopies are part of the data.

Our thickening, when seen as a deformation, will be parametrized by the formal neighborhood of the
origin in V, that is, if 𝑉∨ is the dual vector space, the base ring will be the completion of Sym•𝑉∨ at its
maximal ideal. Concretely, the base ring will be the following: Let 𝑉∨ be the dual MHS. For the rest of
this section, and for all 0 ≤ 𝑚, let us generalize Definition 2.20 (which assumes 𝑉 = 𝐻1 (𝐺,K)):

𝑅∞ �
∞∏
𝑗=0

Sym 𝑗 𝑉∨; 𝑅𝑚 �
𝑅∞∏∞

𝑗=𝑚 Sym 𝑗 𝑉∨
�

𝑚−1⊕
𝑗=0

Sym 𝑗 𝑉∨

We reuse the notation from Definition 2.20 because we will only construct explicit thickened complexes
when 𝑉 = 𝐻1 (𝐺,K), but the theory will be carried out with more generality in this section.

𝑅∞ is a ring, whose multiplication is the usual multiplication in the symmetric tensor algebra, and∏∞
𝑗=𝑚 Sym 𝑗 𝑉∨ is an ideal for every 𝑚 ≥ 1. In fact, if we let

𝔞 �
∞∏
𝑗=1

Sym 𝑗 𝑉∨,

then the ideal
∏∞

𝑗=𝑚 Sym 𝑗 𝑉∨ equals 𝔞𝑚 for all 𝑚 ≥ 1. Given a basis 𝑠1, . . . , 𝑠𝑟 of 𝑉∨, we obtain an
isomorphism 𝑅∞ � K[[𝑠1, . . . , 𝑠𝑟 ]], and 𝑅𝑚 � K[[𝑠1, . . . , 𝑠𝑟 ]]/(𝑠1, . . . , 𝑠𝑟 )

𝑚.
In order to work in both homology and cohomology, we will consider the K-dual of a deformed

complex. This will require us to work over the K-dual modules of 𝑅𝑚. Let us from now on use m to
denote a nonnegative integer, and let:

𝑅−𝑚 � HomK (𝑅𝑚,K).
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The 𝑅∞-module structure of 𝑅𝑚 induces a module structure on 𝑅−𝑚. We will abuse notation and denote
by 𝑅∞, 𝑅𝑚 and 𝑅−𝑚 the same constructions but using 𝑉C instead of V and C instead of K. This abuse of
notation will be clarified as follows: The expression 𝑅∞ ⊗K − will assume that 𝑅∞ is constructed using
V, whereas 𝑅∞ ⊗C − will assume that 𝑅∞ is constructed using 𝑉C.

For 𝑚 ≥ 0, 𝑅𝑚 has an MHS, namely the direct sum of the MHSs on Sym 𝑗 𝑉∨. Furthermore, 𝑅−𝑚 has
the dual MHS. In fact, using Definition-Proposition 2.53, one can see that the multiplication morphisms

𝑉∨ ⊗K 𝑅𝑚 → 𝑅𝑚, and 𝑉∨ ⊗K 𝑅−𝑚 → 𝑅−𝑚 (3.2)

are MHS morphisms.

Definition 3.3. Let V as in Assumption 3.1. We denote by 𝜀K the canonical element of𝑉∨ ⊗K𝑉 , namely

𝜀K =
𝑟∑
𝑖=1

𝑠𝑖 ⊗ 𝑠∨𝑖 ,

where {𝑠1, . . . , 𝑠𝑟 } is a basis of 𝑉∨ and {𝑠∨1 , . . . , 𝑠
∨
𝑟 } is its dual basis. Similarly, 𝜀C will denote the

canonical element of (𝑉C)∨ ⊗C 𝑉C.

Definition 3.4. Consider the setup in Assumption 3.1.

◦ We will denote by Φ2𝑖 (𝜀C) ∈ Γ(𝑋, 𝑅∞ ⊗C K1
2𝑖) the image of 𝜀C by Id𝑉 ∨

C
⊗CΦ2𝑖 for all 𝑖 = 0, . . . , 𝑀 .

Similarly,

◦ If 𝑖 = 0, we will denote by Φ0(𝜀K) � Id𝑉 ∨ ⊗KΦ0(𝜀K) ∈ Γ(𝑋, 𝑅∞ ⊗K K1
K
) (recall that Φ0 is defined

over K).
◦ Ψ2𝑖−1(𝜀C) � Id𝑉 ∨

C
⊗CΨ2𝑖−1(𝜀C) ∈ Γ(𝑋, 𝑅∞ ⊗C K0

2𝑖−1) for all 𝑖 = 1, . . . , 𝑀 .
◦ 𝛼2𝑖−1Φ2𝑖−2(𝜀C) � Id𝑉 ∨ ⊗K𝛼2𝑖−1 ◦Φ2𝑖−2(𝜀K) ∈ Γ(𝑋, 𝑅∞ ⊗C K1

2𝑖−1) for all 𝑖 = 1, . . . , 𝑀 .
◦ 𝛼2𝑖Φ2𝑖 (𝜀C) � Id𝑉 ∨ ⊗K𝛼2𝑖 ◦Φ2𝑖 (𝜀K) ∈ Γ(𝑋, 𝑅∞ ⊗C K1

2𝑖−1) for all 𝑖 = 1, . . . , 𝑀 .

Remark 3.5. Let 𝑚 ≥ 1. Left multiplication by Φ2𝑖 (𝜀C) defines an element of

Hom1
𝑅𝑚
(𝑅±𝑚 ⊗C K•2𝑖 , 𝔞𝑅±𝑚 ⊗C K•2𝑖)

for all 𝑖 = 0, . . . , 𝑀 . Here 𝑅−𝑚 is seen as an 𝑅𝑚-module, and 𝑅𝑚 is a local Artinian C-algebra with
maximal ideal 𝔞 (where we are abusing notation and denoting by 𝔞 the image of the ideal 𝔞 of 𝑅∞
through the ring epimorphism 𝑅∞ � 𝑅𝑚). Similarly, left multiplication by the rest of the elements from
Definition 3.4 defines an element of

Hom1
𝑅𝑚
(𝑅±𝑚 ⊗C K•𝑗 , 𝔞𝑅±𝑚 ⊗C K•𝑗 )

for the appropriate j, except for Ψ2𝑖−1(𝜀C), which defines an element of

Hom0
𝑅𝑚
(𝑅±𝑚 ⊗C K•2𝑖−1, 𝔞𝑅±𝑚 ⊗C K•2𝑖−1)

for all 𝑖 = 1, . . . , 𝑀 . In particular, since 𝔞 is a nilpotent ideal in 𝑅𝑚,

𝑒Ψ2𝑖−1 (𝜀C) �
∞∑
𝑗=0

1
𝑗!
(Ψ2𝑖−1(𝜀C))

𝑗 =
𝑚−1∑
𝑗=0

1
𝑗!
(Ψ2𝑖−1(𝜀C))

𝑗 ∈ Hom0
𝑅𝑚
(𝑅±𝑚 ⊗C K•2𝑖−1, 𝑅±𝑚 ⊗C K•2𝑖−1)

is a globally (and well) defined endomorphism for all 𝑖 = 1, . . . , 𝑀 .
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Lemma 3.6. Let K• = ((K•
K
,𝑊�), (K•C,𝑊�, 𝐹 �), 𝛼) be a mixed Hodge complex of sheaves on a topolog-

ical space X, and let H be a K-MHS. Then

𝐻 ⊗ K• � ((𝐻 ⊗K K•K,𝑊�), (𝐻C ⊗C K•C,𝑊�, 𝐹 �), Id𝐻 ⊗𝛼),

with the natural (tensor) filtrations from Definition-Proposition 2.53, differential, pseudo-morphism and
K-structure, is also a mixed Hodge complex of sheaves.
Proof. Let us start by noting that, since the complex of sheaves K•

K
is a complex of sheaves of K-vector

spaces, the identity induces an isomorphism for all j:

Gr𝑊𝑗 (𝐻 ⊗K K•K) �
⊕
𝑎+𝑏= 𝑗

Gr𝑊𝑎 𝐻 ⊗K Gr𝑊𝑏 K•K, (3.7)

and similarly for 𝐻C ⊗C K•𝑖 for every complex of sheaves of C-vector spaces K•𝑖 appearing in the
pseudo-isomorphism 𝛼 ⊗ 1.

In order for𝐻⊗K• to be a mixed Hodge complex of sheaves, it must satisfy the following requirements.
We will begin with the more straightforward properties.
◦ The vector spaces H∗(𝑿, 𝑯 ⊗K K•) are finite-dimensional: this follows from the fact that K is a

field and therefore H is flat, so these are isomorphic to 𝐻 ⊗K H
∗(𝑋,K•).

◦ The differentials preserve the weight and Hodge filtrations: this is a direct consequence of the
definition of the differential on the tensor product as Id𝐻 ⊗𝑑, where d denotes the differential in K•.

◦ The maps Id𝑯 ⊗ 𝜶 form a pseudo-morphism which becomes a filtered pseudo-isomorphism
after tensoring by C over K: this also follows also from the flatness of 𝐻C over C and its graded
pieces, together with the direct sum decomposition (3.7).

Finally, we must show that the associated graded for the weight filtration is a pure Hodge complex of
sheaves, as defined in [41, Definition 2.32]. Applying the decomposition (3.7), it suffices to show this for
any summand of the form Gr𝑊𝑎 𝐻 ⊗Gr𝑊𝑏 K•. In other words, the problem is reduced to the case where H
is a pure Hodge structure of weight a and K• is a pure Hodge complex of weight b, and we need to show
that 𝐻 ⊗K• is a pure Hodge complex of weight 𝑎+𝑏. This amounts to showing the following properties:
◦ The vector spaces H∗(𝑿, 𝑯K ⊗K K•) are finite-dimensional: this is the same as above.
◦ The maps Id𝑯 ⊗ 𝜶 form a pseudo-morphism which becomes a pseudo-isomorphism after

tensoring by C over K: this is the same as above.
◦ The spectral sequenceH𝒑+𝒒 (𝑿,Gr𝒑𝑭 (𝑯C ⊗CK

•
C
)) ⇒ H𝒑+𝒒 (𝑿, 𝑯C ⊗CK•C) degenerates at 𝑬1: Let

us use the Hodge decomposition of H, namely 𝐹 𝑝1𝐻C =
⊕

𝑖≥𝑝1
(𝐻C)

𝑖,𝑎−𝑖 , to decompose the tensor
product:

𝐻C ⊗C K•C =
⊕
𝑝

(𝐻C)
𝑝,𝑎−𝑝 ⊗C K•C,

𝐹 𝑝 (𝐻C ⊗C K•C) =
∑

𝑝1+𝑝2=𝑝

𝐹 𝑝1𝐻C ⊗C 𝐹
𝑝2K•C =

⊕
𝑝1+𝑝2=𝑝

(𝐻C)
𝑝1 ,𝑎−𝑝1 ⊗C 𝐹

𝑝2K•C.
(3.8)

Since K•
C

is a Hodge complex of sheaves, the spectral sequence for the direct summands converges
at 𝐸1, since it only differs from the one for K•

C
by a tensor with a vector space and a shift in the

filtration.
Applying [41, Lemma A.42], this in particular implies that the following morphisms, induced by

the inclusion, are injective:

H𝑝+𝑞 (𝑋, 𝐹 𝑝 (𝐻C ⊗C K•C)
)
↩→ H𝑝+𝑞 (𝑋, 𝐻C ⊗C K•C).

◦ The filtration induced by 𝑭 endowsH𝒋 (𝑿, 𝑯K⊗KK•K)with a Hodge structure of weight 𝒂 + 𝒃 + 𝒋:
𝐹 𝑝H 𝑗 (𝑋, 𝐻C ⊗CK•C) is, by definition, the image of the morphism induced by the inclusion of sheaves
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(which is injective, as stated above)

H 𝑗 (𝑋, 𝐹 𝑝 (𝐻C ⊗C K•C)
)
↩→ H 𝑗 (𝑋, 𝐻C ⊗C K•C).

Applying (3.8), 𝐹 𝑝H 𝑗 (𝑋, 𝐻C ⊗C K•C) is the direct sum for all 𝑝1, 𝑝2 such that 𝑝1 + 𝑝2 = 𝑝 of all
the images of the morphisms

H 𝑗 (𝑋, (𝐻C) 𝑝1 ,𝑎−𝑝1 ⊗C 𝐹
𝑝2K•C

)
→ H 𝑗 (𝑋, 𝐻C ⊗C K•C),

that is, the direct sum of the images of

(𝐻C)
𝑝1 ,𝑎−𝑝1 ⊗C H

𝑗 (𝑋, 𝐹 𝑝2K•C) → 𝐻C ⊗C H
𝑗 (𝑋,K•C),

which coincide with (𝐻C) 𝑝1 ,𝑎−𝑝1 ⊗C 𝐹
𝑝2H 𝑗 (𝑋,K•

C
) for all 𝑝1 + 𝑝2 = 𝑝. Therefore,

𝐹 𝑝H 𝑗 (𝑋, 𝐻C ⊗C K•C) =
⊕

𝑝1+𝑝2=𝑝

(𝐻C)
𝑝1 ,𝑎−𝑝1 ⊗C 𝐹

𝑝2H 𝑗 (𝑋,K•
C
) =

∑
𝑝1+𝑝2=𝑝

𝐹 𝑝1𝐻C ⊗ 𝐹 𝑝2H 𝑗 (𝑋,K•
C
).

That is, the filtration 𝐹 � on H 𝑗 (𝑋, 𝐻C ⊗C K•C) is the tensor filtration on 𝐻C ⊗C H
𝑗 (𝑋,K•

C
). The

rest follows from the fact that 𝐻C is a Hodge structure of weight a and, since K•
C

is a Hodge complex
of sheaves of weight b, H 𝑗 (𝑋,K•

C
) is a Hodge structure of weight 𝑏 + 𝑗 .

�

Definition-Proposition 3.9. Consider the objects in Assumption 3.1, and let 𝚽 � (Φ0, . . . ,Φ2𝑀 ) and
𝚿 � (Ψ1, . . . ,Ψ2𝑀−1). Let 𝜀C and 𝜀K as in Definition 3.3. Let 𝑚 ∈ Zwhere 𝑚 ≠ 0, and let (𝑅𝑚,𝑊�, 𝐹 �)
be the MHS on 𝑅𝑚 as in this section.

Then,

K•(𝑚,𝑉,𝚽,𝚿) �
( ( (

𝑅𝑚 ⊗K K•K, 𝑑 +Φ0(𝜀K)
)
,𝑊�

)
,
( (
𝑅𝑚 ⊗C K•C, 𝑑 +Φ2𝑀 (𝜀C)

)
,𝑊�, 𝐹

�) , 𝛼̃)
is a K-mixed Hodge complex of sheaves on X, where

◦ The filtrations 𝑊�, 𝐹 � of 𝑅𝑚 ⊗K K•K and/or 𝑅𝑚 ⊗C K•𝑗 for all 𝑗 = 0, . . . , 2𝑀 that appear are the tensor
filtrations defined as in Definition-Proposition 2.53 from (𝑅𝑚,𝑊�, 𝐹 �) and the filtrations in K•.

◦ Everywhere, we write 𝑑 + 𝑎 to denote the sum of the differential Id𝑅𝑚 ⊗𝑑, where d is the differential
in K•, and left multiplication by a.

◦ 𝛼̃ is the filtered pseudo-isomorphism given by(
(𝑅𝑚 ⊗C K•0, 𝑑 +Φ0(𝜀C)),𝑊�

) (
(𝑅𝑚 ⊗C K•2, 𝑑 +Φ2(𝜀C)),𝑊�

)
· · ·

(
(𝑅𝑚 ⊗C K•1, 𝑑 + 𝛼1Φ0(𝜀)),𝑊�

) (
(𝑅𝑚 ⊗C K•1, 𝑑 + 𝛼2Φ2(𝜀C)), ,𝑊�

)Id ⊗𝛼1 Id ⊗𝛼2

Id ⊗𝛼3

𝑒Ψ1 (𝜀C )

∼

(3.10)

Proof. First note that all of the complexes of sheaves involved in this definition are indeed complexes
of sheaves by Lemma 2.50 and Remark 2.51, and they are bounded because the complexes in K• are.
All the 𝑊� filtrations that appear in the complexes appearing in K•(𝑚,𝑉,𝚽,𝚿) are increasing, as they
are tensor filtrations of increasing filtrations. Similarly, the 𝐹 � filtration of (𝑅𝑚 ⊗C K•C, 𝑑 + Φ2𝑀 (𝜀C))
is a decreasing filtration.

We have to verify the following claims:

◦ The vector spaces H∗
(
𝑿, (𝑹𝒎 ⊗K K•K, 𝒅 +𝚽0(𝜺K))

)
are finite-dimensional. If 𝑚 = 1, these hyper-

cohomology groups coincide with H∗
(
𝑋,K•

K

)
, which are finite dimensional by the hypothesis that
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K• is a mixed Hodge complex of sheaves. For 𝑚 > 1, we have a short exact sequence

0→ Sym𝑚−1 𝑉∨ → 𝑅𝑚 → 𝑅𝑚−1 → 0 (3.11)

which induces a short exact sequence of complexes of sheaves

0→ (Sym𝑚−1 𝑉∨ ⊗K K•K, 𝑑) → (𝑅𝑚 ⊗K K•K, 𝑑 +Φ(𝜀K)) → (𝑅𝑚−1 ⊗K K•K, 𝑑 +Φ(𝜀K)) → 0

We have thatH∗(𝑋, Sym𝑚−1 𝑉∨⊗KK•K) � Sym𝑚−1 𝑉∨⊗H∗(𝑋,K•
K
), so they are finite dimensional

vector spaces. The short exact sequence of complexes of sheaves induces a long exact sequence in
cohomology groups, so the result for all 𝑚 > 1 follows by induction from these long exact sequences.

For 𝑚 < 0 the result follows by dualizing (3.11) overK and following the same inductive argument.
◦ The differentials preserve the weight and Hodge filtrations, that is, the weight and Hodge filtrations

are filtrations by subcomplexes of sheaves. We start by showing that 𝜀C ∈ (𝑊0 ∩ 𝐹0) (𝑉∨
C
⊗C 𝑉C).

Recall how the filtrations are defined on duals and tensor products in Definition-Proposition 2.53.
Let us assume that a basis {𝑠∨𝑖 } is chosen in a way compatible with the filtration 𝑊� (resp. 𝐹 �), that
is, for every m, 𝑊𝑚𝑉 (resp. 𝐹 𝑝) is generated by a subset of this basis. Let {𝑠𝑖} denote the dual basis.
If 𝑠∨𝑖 ∈ 𝑊𝑚𝑉 (resp. 𝑠∨𝑖 ∈ 𝐹 𝑝𝑉C), then 𝑠𝑖 (seen as a morphism from V to K) takes 𝑊𝑚−1𝑉 (resp.
𝐹 𝑝+1𝑉C) to 0, so 𝑠𝑖 ∈ 𝑊−𝑚𝑉

∨ (resp. 𝑠𝑖 ∈ 𝐹−𝑝𝑉∨
C

). In particular, 𝑠𝑖 ⊗ 𝑠∨𝑖 ∈ 𝑊0 (𝑉
∨ ⊗K 𝑉) (resp.

𝑠𝑖 ⊗ 𝑠∨𝑖 ∈ 𝐹
0 (𝑉∨
C
⊗C 𝑉C)), so 𝜀C ∈ (𝑊0 ∩ 𝐹0) (𝑉∨

C
⊗C 𝑉C).

Now, recall that Φ2𝑖 (𝜀C) � (Id ⊗Φ2𝑖) (𝜀C) for all 𝑖 = 0, . . . , 𝑀 . By Assumption 3.1, Φ2𝑖 decreases
the weight by 1, so

Φ2𝑖 (𝜀C) ∈ Γ
(
𝑋,𝑊−1

(
𝑉∨C ⊗C K1

2𝑖

))
.

SinceK• is a mixed Hodge complex of sheaves, d preserves the weight. SinceK• is a multiplicative
mixed Hodge complex of sheaves and the multiplication morphisms in (3.2) are MHS morphisms,
multiplication by Φ2𝑖 (𝜀C) decreases the weight by 1. Hence, applying 𝑑 + Φ2𝑖 (𝜀C) preserves the
weight, since d does. Since 𝛼2𝑖 also preserves the weight for all i, multiplication by 𝛼2𝑖−1Φ2𝑖−2(𝜀C)
and 𝛼2𝑖Φ2𝑖 (𝜀C) decreases the weight by 1, so applying 𝑑+𝛼2𝑖−1Φ2𝑖−2(𝜀C) or 𝑑+𝛼2𝑖Φ2𝑖 (𝜀C) preserves
the weight. Similarly, multiplication by Φ2𝑀 (𝜀C) and the differential 𝑑 +Φ2𝑀 (𝜀C) both preserve the
Hodge filtration.

◦ The associated graded for the weight filtration is a Hodge complex of sheaves. First, note that,
by a similar argument as above, Ψ2𝑖−1(𝜀C) decreases the weight by 1, since Ψ2𝑖−1 also decreases the
weight by 1. Since Φ2𝑖 (𝜀C) also decreases the weight by 1 for all 𝑖 = 0, . . . , 𝑀 , applying Gr𝑊� to
(3.10) yields:

Gr𝑊� (𝑅𝑚 ⊗C K•0, 𝑑) Gr𝑊� (𝑅𝑚 ⊗C K•2, 𝑑) · · ·

Gr𝑊� (𝑅𝑚 ⊗C K•1, 𝑑) Gr𝑊� (𝑅𝑚 ⊗C K•1, 𝑑)

Gr𝑊� (Id ⊗𝛼1) Gr𝑊� (Id ⊗𝛼2)

Gr𝑊� (Id ⊗𝛼3)

(3.12)

Hence, Gr𝑊𝑗 applied to (3.10) yields (up to some extra identity maps between the sheaf complexes)
the same diagram as Gr𝑊𝑗 applied to 𝑅𝑚 ⊗ K• (without twisting the differential). The rest follows
from Lemma 3.6

◦ The maps 𝜶 form a filtered pseudo-morphism, which becomes a filtered pseudo-isomorphism
after tensoring with C over K: First, the maps Id ⊗𝛼𝑖 are clearly morphisms of complexes (they
preserve the differential). By Remark 2.52, 𝑒Ψ2𝑖+1 (𝜀) is an isomorphism of complexes. When passing
to Gr𝑊� , we obtain (3.12), which we already showed is a pseudo-isomorphism. Since the filtrations
𝑊� are biregular, the result now follows by increasing induction and the five lemma. �
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3.2. Properties of the thickening

Proposition 3.13. Suppose we have (K•, 𝑉,𝚽,𝚿) as in Assumption 3.1. Via the embedding 𝑉∨ ⊂ 𝑅∞,
multiplication induces a morphism of mixed Hodge complexes of sheaves for every 𝑚 ∈ Z \ {0}:

𝑉∨ ⊗ K•(𝑚,𝑉,𝚽,𝚿) → K•(𝑚,𝑉,𝚽,𝚿),

where

𝑉∨ ⊗ K•(𝑚,𝑉,𝚽,𝚿) �( ( (
𝑉∨ ⊗K ⊗𝑅𝑚 ⊗K K•K, 𝑑 +Φ0(𝜀K)

)
,𝑊�

)
,
( (
𝑉∨C ⊗C ⊗𝑅𝑚 ⊗C K•C, 𝑑 +Φ2𝑀 (𝜀C)

)
,𝑊�, 𝐹

�) , Id𝑉 ∨ ⊗𝛼̃) ,
and the filtrations are tensor filtrations of 𝑉∨ and K•(𝑚,𝑉,𝚽,𝚿) as in Definition-Proposition 2.53.

Proof. Note that 𝑉∨ ⊗ K•(𝑚,𝑉,𝚽,𝚿) is a mixed Hodge complex of sheaves by Lemma 3.6. By
(3.2), multiplication induces a mixed Hodge structure morphism 𝑉∨ ⊗ 𝑅𝑚 → 𝑅𝑚, so the multiplication
morphism𝑉∨⊗K•(𝑚,𝑉,𝚽,𝚿) → K•(𝑚,𝑉,𝚽,𝚿) preserves the filtrations. To see that it is a morphism
of mixed Hodge complexes of sheaves, we also need to see that it commutes with the pseudo-morphisms
of both mixed Hodge complexes of sheaves. That is, it suffices to see that it commutes with Id ⊗𝛼𝑖 ,
which is clear since it acts on the first factor, and with 𝑒Ψ2𝑖−1 (𝜀) , which follows from the commutativity
of 𝑅∞. �

Proposition 3.14. Suppose we have (K•, 𝑉,𝚽,𝚿) as in Assumption 3.1. Let𝑚′, 𝑚 ∈ Zwith𝑚′ ≥ 𝑚 > 0.
The projection morphism 𝑅𝑚′ � 𝑅𝑚 induces a morphism of mixed Hodge complexes of sheaves:

K•(𝑚′, 𝑉,𝚽,𝚿) → K•(𝑚,𝑉,𝚽,𝚿),

and the dual 𝑅−𝑚 ↩→ 𝑅−𝑚′ of the projection morphism induces a morphism of mixed Hodge complexes
of sheaves:

K•(−𝑚,𝑉,𝚽,𝚿) → K•(−𝑚′, 𝑉,𝚽,𝚿).

Proof. The proof follows the same steps as the proof of Proposition 3.13, this time using that the
projection 𝑅𝑚′ � 𝑅𝑚 is an MHS morphism, so we omit it. �

Proposition 3.15. Suppose we have two pieces of data as in Assumption 3.1 with a morphism connecting
them:

(K•, 𝑉,𝚽,𝚿) −→ (K•, 𝑉, ˜𝚽, ˜𝚿),

in other words, there is an MHS morphism 𝜇 : 𝑉 → 𝑉 , such that the maps Φ’s and Ψ’s commute with
these. Then, the morphisms between complexes of sheaves induced by 𝜇 and the identity in K•

K•(𝑚,𝑉, ˜𝚽, ˜𝚿) → K•(𝑚,𝑉,𝚽,𝚿), K•(−𝑚,𝑉,𝚽,𝚿) → K•(−𝑚,𝑉, ˜𝚽, ˜𝚿).

are morphisms of mixed Hodge complexes of sheaves for all 𝑚 ∈ Z≥1

Proof. Let 𝑅𝑚 and 𝑅𝑚 be constructed as in this section for the spaces V and 𝑉 , respectively. The
morphism 𝜇 : 𝑉 → 𝑉 induces MHS morphisms 𝜇∨ : 𝑉∨ → 𝑉∨ and (𝜇∨)⊗ 𝑗 : Sym 𝑗 𝑉∨ → Sym 𝑗 𝑉∨.
Together they define a ring morphism 𝜇∨∞ : 𝑅∞ → 𝑅∞, 𝑅∞-module morphisms 𝜇∨𝑚 : 𝑅𝑚 → 𝑅𝑚 and
their duals 𝜇𝑚 : 𝑅−𝑚 → 𝑅−𝑚 for all 𝑚 ≥ 1. The maps 𝜇∨𝑚 and 𝜇𝑚 are MHS morphisms for all 𝑚 ≥ 1.

Tensoring with the identity morphism of K•, we obtain morphisms between the complexes, which
automatically preserve all filtrations since 𝜇∨𝑚 do as well.

Let us show that these morphisms commute with the differentials (that is, they are morphisms of
complexes of sheaves). We start by showing that (𝜇∨𝑚 ⊗C IdK•𝑖 ) ◦ (𝑑 + Φ̃𝑖 (𝜀̃C)) = (𝑑 + Φ𝑖 (𝜀C)) ◦
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(𝜇∨𝑚 ⊗C IdK•𝑖 ), where 𝜀C and 𝜀̃C are constructed from V and 𝑉 as in Definition 3.3, and the subindex
C is changed for K if the degree i is 0 (in which case K•0 is changed for K•

K
). Since d acts as the

identity on the factor 𝑅𝑚, it is clear that it commutes with 𝜇∨𝑚. Therefore, it suffices to show that
Φ𝑖 (𝜀C)◦𝜇

∨
𝑚 = 𝜇∨𝑚◦Φ̃𝑖 (𝜀̃C) : 𝑅𝑚⊗CK• → 𝑅𝑚⊗CK•. Suppose we have a simple tensor 𝑎⊗𝑐 ∈ 𝑅𝑚⊗CK 𝑗

𝑖 .
Let {𝑠̃∨𝑟 } be a basis of 𝑉 , and let {𝑠̃𝑟 } be its dual basis. Then,

𝜇∨𝑚 (Φ̃𝑖 (𝜀C) · (𝑎 ⊗ 𝑐)) = 𝜇∨𝑚

(∑
𝑟

𝑠̃𝑟𝑎 ⊗ Φ̃𝑖 ( 𝑠̃
∨
𝑟 ) ∧ 𝑐

)
=
∑
𝑟

𝜇∨𝑚 ( 𝑠̃𝑟𝑎) ⊗ Φ̃𝑖 ( 𝑠̃
∨
𝑟 ) ∧ 𝑐

=
∑
𝑟

𝜇∨( 𝑠̃𝑟 )𝜇
∨
𝑚(𝑎) ⊗ Φ̃𝑖 ( 𝑠̃

∨
𝑟 ) ∧ 𝑐

=

(∑
𝑟

𝜇∨( 𝑠̃𝑟 ) ⊗ Φ̃𝑖 ( 𝑠̃
∨
𝑟 )

)
∧ (𝜇∨𝑚 (𝑎) ⊗ 𝑐).

Note that if {𝑠∨𝑙 } (resp. {𝑠̃∨𝑟 }) is a basis of V (resp, 𝑉), then∑
𝑟

𝜇∨( 𝑠̃𝑟 ) ⊗ Φ̃𝑖 ( 𝑠̃
∨
𝑟 ) =

∑
𝑙

𝑠𝑙 ⊗ Φ̃𝑖 (𝜇(𝑠
∨
𝑙 ))

which equals
∑
𝑙 𝑠𝑙 ⊗ Φ𝑖 (𝑠

∨
𝑙 ) by hypothesis. Applying this to the previous string of equalities yields

𝜇∨𝑚 (Φ̃𝑖 (𝜀C) · (𝑎 ⊗ 𝑐)) =

(∑
𝑙

𝑠𝑙 ⊗ Φ𝑖 (𝑠
∨
𝑙 )

)
∧ (𝜇∨𝑚 (𝑎) ⊗ 𝑐)

= Φ𝑖 (𝜀C) · (𝜇
∨
𝑚 (𝑎) ⊗ 𝑐).

This shows that 𝜇∨𝑚 ⊗C IdK•𝑖 commutes with the differentials of the form 𝑑 +Φ𝑖 (𝜀C) and 𝑑 + Φ̃𝑖 (𝜀̃C). The
proof follows the same steps for the other differentials appearing in the corresponding thickened mixed
Hodge complexes of sheaves, namely those of the form 𝑑 + 𝛼 𝑗Φ𝑖 (𝜀C). Hence, 𝜇∨𝑚 ⊗C IdK•𝑖 commutes
with the differentials for all 𝑚 ≥ 1.

The proof of the fact that Φ̃𝑖 (𝜀̃C) ◦ 𝜇𝑚 = 𝜇𝑚 ◦ Φ𝑖 (𝜀C) follows the same steps, this time using that
for all 𝑎∨ ∈ 𝑅−𝑚, and 𝑠̃ ∈ 𝑅𝑚, 𝑠̃ · 𝜇𝑚(𝑎∨) = 𝜇𝑚 (𝜇

∨
𝑚 ( 𝑠̃) · 𝑎

∨), so we omit it. This shows that 𝜇𝑚 ⊗C IdK•𝑖
commutes with the differentials of the form 𝑑 +Φ𝑖 (𝜀C) and 𝑑 + Φ̃𝑖 (𝜀̃C). As in the previous case for 𝜇∨𝑚,
the proof follows the same steps for the other differentials appearing in the corresponding thickened
mixed Hodge complexes of sheaves, so 𝜇𝑚 ⊗C IdK•𝑖 commutes with the differentials for all 𝑚 ≥ 1.

It remains to show that these morphisms between the complexes of sheaves commute with the pseudo-
morphisms at every degree. It is clear that they commute with the morphisms of the form Id ⊗𝛼𝑖 , since
these are the identity on the first factor. The commutation with the morphisms of the form 𝑒Ψ𝑖 (𝜀C) and
𝑒Ψ̃𝑖 (𝜀C) follows similar steps as the ones done for checking that these morphisms induced by 𝜇 between
the complexes of sheaves commute with the differentials, so we omit them. �

Proposition 3.16. Let 𝑚 ∈ Z \ {0}. Let V be a K-vector space, where K = Q,R,C. Let 𝑀 : (K•, 𝑑) →
(G•, 𝑑) be a quasi-isomorphism of complexes of sheaves over K on a topological space X. Let Φ : 𝑉 →
Γ(𝑋,K1,cl). Then,

𝑀# � Id𝑅𝑚 ⊗K𝑀 : (𝑅𝑚 ⊗K K•, 𝑑 +Φ(𝜀K)) → (𝑅𝑚 ⊗K G•, 𝑑 + (𝑀 ◦Φ) (𝜀K))

is a quasi-isomorphism.

Proof. Note that 𝑀# is a morphism of complexes (it commutes with the differentials)
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Suppose that 𝑚 > 0. Consider the decreasing filtration𝐺 � by subcomplexes of (𝑅𝑚⊗KK•, 𝑑+Φ(𝜀K))
given by

𝐺 𝑝𝑅𝑚 ⊗K K• =
(
⊕𝑝≤ 𝑗≤𝑚−1 Sym 𝑗 𝑉∨

)
⊗K K•.

Note that 𝐺0𝑅𝑚 ⊗KK• = 𝑅𝑚 ⊗KK• and 𝐺𝑚𝑅𝑚 ⊗KK• = 0. Similarly, we define the decreasing filtration
𝐺 � of 𝑅𝑚 ⊗K G•, 𝑑 + (𝑀 ◦Φ(𝜀K)). Note that 𝑀# preserves the filtration 𝐺 �, and multiplication by Φ(𝜀K)
or (𝑀 ◦Φ) (𝜀K) increases the filtration by 1. In particular, for 𝑝 ≥ 0 we have the following commutative
diagrams of short exact sequences:

𝐺 𝑝+1(𝑅𝑚 ⊗K K•, 𝑑 +Φ(𝜀K)) 𝐺 𝑝 (𝑅𝑚 ⊗K K•, 𝑑 +Φ(𝜀K)) Gr𝑝𝐺 (𝑅𝑚 ⊗K K•, 𝑑)

𝐺 𝑝+1(𝑅𝑚 ⊗K G•, 𝑑 + (𝑀 ◦Φ) (𝜀K)) 𝐺 𝑝 (𝑅𝑚 ⊗K G•, 𝑑 + (𝑀 ◦Φ) (𝜀K)) Gr𝑝𝐺 (𝑅𝑚 ⊗K G•, 𝑑)

𝑀# 𝑀# 𝑀#

If 𝑝 = 𝑚 − 1, the vertical arrow on the left is a morphism between two 0 complexes, and the vertical
arrow on the left is a quasi-isomorphism, so the central vertical arrow must also be a quasi-isomorphism.
The rest of the proof now follows from decreasing induction and the five lemma, ending at 𝑝 = 0, where
one can show that the central vertical arrow is a quasi-isomorphism.

The result for 𝑚 < 0 follows similarly by defining a decreasing filtration on 𝑅𝑚 ⊗K K• from the
dual decreasing filtration on 𝑅𝑚 defined as in Definition-Proposition 2.53 from the one in 𝑅−𝑚, namely
𝐺 𝑝𝑅−𝑚 � {ℎ : 𝑅𝑚 → C | ⊕−𝑝+1≤ 𝑗≤𝑚−1 Sym 𝑗 𝑉∨ ⊂ ker ℎ}. �

Proposition 3.17. Suppose that we have two pieces of data as in Assumption 3.1:

(K•, 𝑉,𝚽,𝚿), (K̃•, 𝑉, ˜𝚽, ˜𝚿)

Furthermore, suppose that they are connected by a morphism of multiplicative mixed Hodge complexes
of sheaves 𝑀 : K• → K̃•, that is compatible with the remaining data, in the sense that for every i,

Φ̃2𝑖 = 𝑀2𝑖 ◦Φ2𝑖;

Ψ̃2𝑖−1 = 𝑀2𝑖−1 ◦ Ψ2𝑖−1.

Then, Id𝑅𝑚 ⊗𝑀 is a morphism of mixed Hodge complexes of sheaves between the two thickenings
K•(𝑚,𝑉,𝚽,𝚿) and K̃•(𝑚,𝑉, ˜𝚽, ˜𝚿). Moreover,

◦ if M is a weak equivalence in the sense of [41, Lemma-Definition 3.19] (that is, a collection of
quasi-isomorphisms), so is Id𝑅𝑚 ⊗𝑀 , and

◦ if M is a filtered quasi-isomorphism between the respective components of the mixed Hodge complexes
of sheaves K• and K̃• (and bi-filtered in the last), so is Id𝑅𝑚 ⊗𝑀 .

Proof. Let 𝛼 and 𝛽 denote the pseudo-morphisms in K• and K̃•, respectively.
First of all, Id𝑅𝑚 ⊗C𝑀2𝑖 commutes with the differentials 𝑑 + Φ2𝑖 (𝜀C) and 𝑑 + Φ̃2𝑖 (𝜀C) because M

commutes with all Φ’s, and it commutes with differentials of the form 𝑑 + 𝛼 𝑗 ◦Φ2𝑖 and 𝑑 + 𝛽 𝑗Φ̃2𝑖 (𝜀C)
because M commutes with the 𝛼’s as well. Next, Id𝑅𝑚 ⊗𝑀 commutes with all the maps in the pseudo-
morphisms (3.10) (the 𝛼’s and the 𝛽’s): It commutes with maps of the form Id𝑅𝑚 ⊗𝛼𝑖 and Id𝑅𝑚 ⊗𝛽𝑖
because M, being a morphism of mixed Hodge complexes of sheaves, must commute with the 𝛼𝑖’s and
𝛽𝑖’s, and it commutes with maps of the form 𝑒Ψ𝑖 (𝜀) because M is required to preserve the multiplicative
structure and commute with the Ψ’s. Lastly, Id𝑅𝑚 ⊗𝑀 preserves all the filtrations because both Id𝑅𝑚
and M do. This concludes the proof of the fact that Id𝑅𝑚 ⊗𝑀 is a morphism of mixed Hodge complexes
of sheaves.

The first point in the “moreover” part of the statement follows from Proposition 3.16.
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Lastly, the proof of the second point for the weight filtration in the “moreover” part of the statement
follows from the fact that the differentials become untwisted after passing to the graded pieces, and from
the direct sum decomposition of the graded pieces in terms of graded pieces of the tensor appearing in
the proof of Lemma 3.6. For the Hodge filtration in the last component of both mixed Hodge complexes
of sheaves, one can again use the direct sum decomposition of the graded pieces in terms of graded
pieces of the tensor, and use an inductive argument similar to the one in the proof of Proposition 3.16,
defining the filtration that 𝐺 � induces on these graded pieces. �

4. The thickening of the logarithmic Dolbeault complex

In the previous section, we showed how to construct a thickened mixed Hodge complex of sheaves
from a multiplicative mixed Hodge complex of sheaves together with the extra data (𝑉,𝚽,𝚿) of
Assumption 3.1. In this section, we apply this construction in the case where the multiplicative mixed
Hodge complex of sheaves is the modified logarithmic Dolbeault mixed Hodge complex of sheaves
from Definition-Proposition 2.73 (based on Navarro Aznar’s mixed Hodge complex of sheaves from
Definition 2.69) and V is the first cohomology of a semiabelian variety G. The following result clarifies
which ingredients we will use in order to construct a thickening of the logarithmic Dolbeault complex.
In it, note that the mixed Hodge complex of Definition-Proposition 2.73 is extended by an extra term
(using the identity morphism) to fit Assumption 3.1.

Lemma 4.1. Let𝑈
𝑓
−→ 𝐺 be an algebraic morphism from a smooth variety to a semiabelian variety. Let

0→ 𝐺𝑇
𝑡
−→ 𝐺

𝑝𝐴
−−→ 𝐺𝐴→ 0

be the Chevalley decomposition of G.
Suppose that we have the ingredients (𝑋,𝑌,Φ𝑌

R
,Φ𝑌
C
,Ψ𝑌 ), satisfying the following properties:

1. X is a good compactification of U and Y is an allowed compactification of G (Definition 2.39) such
that X and Y are compatible with respect to f (Definition 2.40), that is, f extends to 𝑓 : 𝑋 → 𝑌 . Let
𝐸 � 𝑌 \ 𝐺 and let 𝐷 � 𝑋 \𝑈.

2. Let 𝑛 ≥ max{2, dimR𝑈}, and let N •𝑋,𝐷,𝑛 be the (multiplicative) mixed Hodge complex from [38]
(see Definition-Proposition 2.73):

N •𝑋,𝐷,𝑛 �
(
(A•𝑋,R (log 𝐷),𝑊𝑛

� ), (A•𝑋,C (log 𝐷),𝑊𝑛
� , 𝐹

�), 𝛼
)
,

where 𝛼 is the filtered pseudo-morphism such that 𝛼 ⊗ 1 is the filtered pseudo-isomorphism

(A•𝑋,C(log 𝐷),𝑊𝑛
� ) = (A•𝑋,R(log 𝐷) ⊗R C,𝑊

𝑛
� )

Id
−→ (A•𝑋,C (log 𝐷),𝑊𝑛

� )
Id
←− (A•𝑋,C (log 𝐷),𝑊𝑛

� ).

3. Let 𝐻 � 𝐻1(𝐺;R), together with its mixed Hodge structure.
4. Φ𝑌

R
,Φ𝑌
C

are linear maps which are a section of the cohomology map, with the following domain and
target:

Φ𝑌
R : 𝐻 → Γ(𝑌,A1,cl

𝑌 ,R (log 𝐸)),

Φ𝑌
C

: 𝐻C � 𝐻 ⊗R C→ Γ(𝑌,A1,cl
𝑌 ,C
(log 𝐸)).

Here, A1,cl
𝑌 ,K (log 𝐸) denotes the closed K-valued forms in A1

𝑌 ,K (log 𝐸). These maps satisfy the
following three conditions:
◦ For K = R,C, the image of Φ𝑌

K
is contained in Γ(𝑌,𝑊1A1,cl

𝑌 ,K (log 𝐸)), where 𝑊� is as in Defini-
tion 2.69.
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◦ Both Φ𝑌
R

and Φ𝑌
C

send classes that are pulled back from 𝐺𝐴 to forms whose restriction to G is in
the image of 𝑝∗𝐴 : Γ(𝐺𝐴,A1

𝐺𝐴,K
) → Γ(𝐺,A1

𝐺,𝑘 ) for K = R,C respectively.
◦ Φ𝑌

C
sends classes that are represented by holomorphic forms on G to (1, 0)-forms.

5. Ψ𝑌 is a linear map (a homotopy)

Ψ𝑌 : 𝐻C → Γ(𝑌,A0
𝑌 ,C(log 𝐸))

such that

𝑑 ◦ Ψ𝑌 = C ⊗ Φ𝑌
R −Φ

𝑌
C .

Then, (K•, 𝑉,Φ0,Φ2,Ψ1) � (N •𝑋,𝐷,𝑛, 𝐻, 𝑓
∗
◦Φ𝑌

R
, 𝑓
∗
◦Φ𝑌

C
, 𝑓
∗
◦ Ψ𝑌 ) satisfy Assumption 3.1.

Proof. We need to show that Φ0,Φ2,Ψ1 satisfy the conditions of Assumption 3.1. We do this in several
steps. Note that, since 𝑛 ≥ 2, the filtrations of the logarithmic Dolbeault complex 𝑊𝑛

𝑗 and 𝑊 𝑗 coincide
for 𝑗 = 0, 1, 2, so we can use 𝑊� in our arguments.

𝚽𝒀
𝑹 preserves the weight filtration, as follows:

Φ𝑌
R : (𝐻,𝑊� [1]) → Γ

(
𝑌,

(
A1,cl
𝑌 ,R (log 𝐸),𝑊𝑛

�

))
.

Since G is smooth, Gr𝑊𝑖 𝐻 = 0 when i is not contained in {1, 2}. Therefore, after the shift, the nontrivial
graded pieces correspond to indices contained in {0, 1}. The weight 1 is preserved by hypothesis.

For weight 0, note that

𝑊0 (𝐻
1 (𝐺,R) [1]) = 𝑊1𝐻

1(𝐺,R) = 𝐻1 (𝐺𝐴,R), and 𝑊0A1
𝑌 ,R (log 𝐸) = A1

𝑌 ,R.

Since Y is an allowed compactification of G, there exists a compactification 𝐺 as in Corollary 2.38 and
an algebraic map 𝑝 : 𝑌 → 𝐺 such that 𝑝 ◦ 𝑗𝑌 = 𝑗𝐺 , where 𝑗𝑍 : 𝐺 ↩→ 𝑍 is the inclusion for 𝑍 = 𝑌, 𝐺. In
particular, 𝑝𝐴 extends to a fibration 𝑝𝐴 : 𝐺 → 𝐺𝐴. Let 𝑎 ∈ 𝐻1(𝐺𝐴,R). By hypothesis,Φ𝑌

R
(𝑎) |𝐺 = 𝑝∗𝐴𝜔

for some 𝜔 ∈ Γ(𝐺𝐴,A1
𝐺𝐴,R
). Note that Φ𝑌

R
(𝑎) and 𝑝∗(𝑝𝐴

∗𝜔) have the same restriction to G, and since
G is dense in Y, they must coincide. In particular, Φ𝑌

R
(𝑎) ∈ Γ(𝑌,A1

𝑌 ,R) = Γ(𝑌,𝑊0A1
𝑌 ,R (log 𝐸)).

𝚽𝑌
C

preserves the weight filtration: Φ𝑌
C

: (𝐻C,𝑊� [1]) → Γ
(
𝑌,

(
A1,cl
𝑌 ,C
(log 𝐸),𝑊�

))
also respects

the weight filtration by the analogous argument over C.
𝚿𝒀 preserves the weight filtration: it maps (𝐻C,𝑊� [1]) to Γ

(
𝑌,

(
A0
𝑌 ,C
(log 𝐸),𝑊�

))
. Since Φ𝑌

R

and Φ𝑌
C

respect the filtrations (up to a shift), the relationship between Ψ𝑌 ,Φ𝑌
R

and Φ𝑌
C

implies that it
suffices to show that, for 𝑑 : A0

𝑌 ,C
(log 𝐸) → A1

𝑌 ,C (log 𝐸), 𝑑−1
(
𝑊 𝑗A1

𝑌 ,C(log 𝐸)
)
= 𝑊 𝑗A0

𝑌 ,C
(log 𝐸) for

all 𝑗 ≥ 0 (we only need to apply this fact for 𝑗 ∈ {0, 1}).
To do this, we will show that for all 𝑗 ≥ 1, 𝑑−1

(
𝑊 𝑗−1A1

𝑌 ,C (log 𝐸)
)
∩ 𝑊 𝑗A0

𝑌 ,C
(log 𝐸) =

𝑊 𝑗−1A0
𝑌 ,C
(log 𝐸). We apply Proposition 2.71, which ensures that

H0
(
Gr𝑊𝑗 A•𝑌 ,C(log 𝐸)

)
� H0

(
Gr𝜏𝑗 A•𝑌 ,C (log 𝐸)

)
𝑗>0
= 0.

Spelling out the definition of H0, this means that if 𝛼 ∈ 𝑊 𝑗A0
𝑌 ,C
(log 𝐸) is such that 𝑑𝛼 ∈

𝑊 𝑗−1A1
𝑌 ,C(log 𝐸), then 𝛼 ∈ 𝑊 𝑗−1A0

𝑌 ,C
(log 𝐸), as desired. By induction on j, we have that for any

𝑗 > 𝑗 ′ ≥ 0, if 𝛼 ∈ 𝑊 𝑗A0
𝑌 ,C
(log 𝐸) is such that 𝑑𝛼 ∈ 𝑊 𝑗′A1

𝑌 ,C (log 𝐸), then 𝛼 ∈ 𝑊 𝑗′A0
𝑌 ,C
(log 𝐸).

𝚽𝒀
C

respects the Hodge filtration (without any shifts): The relevant pieces are 𝐹0 = 𝐻1 (𝐺,C) and
𝐹1. For 𝐹0, we have that 𝐻1(𝐺,C) = 𝐹0𝐻1(𝐺,C). Automatically, its image lands in 𝐹0A1

𝑌 ,R(log 𝐸) =
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A1
𝑌 ,R (log 𝐸). Next, by Deligne’s theory of MHS, 𝐹1𝐻1(𝐺,C) is composed of the classes of holomorphic

forms, and ΦC maps these to (1, 0) forms by hypothesis, that is, to 𝐹1A1
𝑌 ,R(log 𝐸).

𝒇
∗

takes logarithmic forms to logarithmic forms and respects the filtrations 𝑊� and 𝐹 �, so in
particular it also respects 𝑊𝑛

0 and 𝑊𝑛
1 . Also, 𝑓

∗
commutes with the differential d. Hence, Φ0,Φ2,Ψ1

satisfy the conditions of Assumption 3.1. �

In order to apply Lemma 4.1, we need to make sure that such Φ𝑌
R
,Φ𝑌
C

and Ψ𝑌 satisfying the assump-
tions therein exist, which we achieve in Definition-Proposition 4.8 and in Corollary 4.9. Before that,
we start by recalling some general facts about abelian Lie groups in order to fix notation (Lemma 4.2).
Then, we will state the definitions of the maps Φ𝐺

R
,Φ𝐺
C

and Ψ𝐺 in Definition-Proposition 4.6, which
are a first approximation to the definitions of Φ𝑌

R
,Φ𝑌
C

and Ψ𝑌 . The images of the maps Φ𝐺
R
,Φ𝐺
C

and Ψ𝐺

consist of analytic forms on G. We later extend these to Φ𝑌
R
,Φ𝑌
C

and Ψ𝑌 in Definition-Proposition 4.8.

Lemma 4.2. Let G be a complex semiabelian variety. Let Λ be the kernel of the exponential map
𝑇𝐺 → 𝐺. Let the Chevalley decomposition of G be given by

0→ 𝐺𝑇
𝑡
−→ 𝐺

𝑝𝐴
−−→ 𝐺𝐴→ 0. (4.3)

Let Ω•𝑋 denote the holomorphic de Rham complex of sheaves on X for every smooth complex algebraic
variety X, and if X is a complex Lie group, let Ω1,inv

𝑋 (resp. A1,inv
𝑋,K for K = R,C) denote the sheaf of

holomorphic (resp. analytic) invariant 1-forms on X. Then,

1. For K = R,C, there are natural isomorphisms Γ(𝐺,A1,inv
𝐺,K ) � HomR(𝑇𝐺,K) and 𝐻1(𝐺,K) �

HomZ(Λ,K). The map that sends a form to its cohomology class corresponds to the restriction to Λ.
2. There is a natural isomorphism Γ(𝐺,Ω1,inv

𝐺 ) � HomC (𝑇𝐺,C).
3. The restriction Γ(𝐺,Ω1,inv

𝐺 ) → Γ(𝐺𝑇 ,Ω
1,inv
𝐺𝑇
) is surjective.

4. The projection of invariant forms onto their cohomology classes Γ(𝐺,A1,inv
𝐺,R ) → 𝐻1(𝐺,R) is

a surjection, and the same holds for 𝐺𝐴 and 𝐺𝑇 . The statement is also true for C-coefficients.
Furthermore, in the case of 𝐺𝐴 this projection is an isomorphism (both with R and C coefficients).

5. Γ(𝐺,Ω1,inv
𝐺 ) can be seen as a subspace of 𝐻1 (𝐺,C) through the projection of forms onto their

cohomology classes, which is an injective map. The same holds for 𝐺𝐴 and 𝐺𝑇 . Furthermore, in the
case of 𝐺𝑇 this injection is an isomorphism.

6. 𝐻1 (𝐺𝐴,C) can be seen as a subspace of 𝐻1(𝐺,C) via (𝑝𝐴)∗ : 𝐻1 (𝐺𝐴,C) → 𝐻1 (𝐺,C), which is
injective.

7. The cohomology class of every closed holomorphic 1-form is represented by an invariant holomorphic
form.

8. Γ(𝐺,Ω1,inv
𝐺 ) and 𝐻1(𝐺𝐴,C) generate 𝐻1(𝐺,C) as a complex vector space.

Proof. Note that all invariant forms appearing in the statement of this lemma are closed, since they
pull back to constant forms on the corresponding universal cover (a complex vector space), and the
differential commutes with the pullback. Hence, invariant forms do represent cohomology classes, and
the statements in parts (1), (4), (5) and (8) make sense.

Since 𝐺𝐴 and 𝐺𝑇 are semiabelian varieties, every statement that is proved for G applies to them as
well.

1. The isomorphism Γ(𝐺,A1,inv
𝐺,K ) � HomR(𝑇𝐺,K) comes from pulling back an invariant form through

the exponential map 𝑇𝐺 → 𝐺, which yields a constant form. Constant forms on a vector space are
identified with its dual. For the second isomorphism, note that 𝑇𝐺 is the universal cover of G, and
therefore Λ is canonically 𝜋1 (𝐺) and also 𝐻1 (𝐺,Z). Furthermore, since 𝑇𝐺 is a vector space, the
pairing between a constant form seen as an element of HomR(𝑇𝐺,K) and 𝑥 ∈ 𝑇𝐺 is the same as the
integral of the form on a path from 0 to x. If 𝑥 ∈ Λ, this path is the pullback of a loop in 𝜋1 (𝐺), and
the statement follows from de Rham’s theorem.
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2. The isomorphism Γ(𝐺,Ω1,inv
𝐺 ) � HomC(𝑇𝐺,C) is analogous to the real analytic setting.

3. The morphism 𝑝𝐴 in (4.3) is a fibration with fiber 𝐺𝑇 , so it induces a short exact sequence between
tangent spaces at the identity, and hence the restriction HomC(𝑇𝐺,C) → HomC(𝑇𝐺𝑇 ,C) is a
surjection. Now, use part (2).

4. Since𝐺 = 𝑇𝐺/Λ,Λ is discrete, and in particular anyZ-basis isR-linearly independent. The statement
for G follows from part (1). In the case of 𝐺𝐴, the fact that the projection is an isomorphism now
follows from the fact that both spaces have the same real dimension, namely 2 dimC𝐺𝐴.

5. From above, we have a natural isomorphismΓ(𝐺,Ω1,inv
𝐺 ) � HomC(𝑇𝐺,C), and𝐻1(𝐺,C) is naturally

identified with HomZ(Λ,C). Since Λ generates 𝑇𝐺 as a C-vector space, this restriction is injective.
In the case of 𝐺𝑇 , Λ is a C-basis of 𝑇𝐺𝑇 , and the injection is an isomorphism.

6. Consider the long exact sequence of the fibration 𝑝𝐴 on homotopy groups. Since the universal covers
of all the spaces involved are contractible and their fundamental groups are all abelian, we get a short
exact sequence in homology

0→ 𝐻1 (𝐺𝑇 ,Z)
𝑡∗
−→ 𝐻1(𝐺,Z)

(𝑝𝐴)∗
−−−−→ 𝐻1 (𝐺𝐴,Z) → 0,

and in particular, a short exact sequence in cohomology

0→ 𝐻1(𝐴,C)
(𝑝𝐴)

∗

−−−−→ 𝐻1(𝐺,C)
𝑡∗

−→ 𝐻1(𝐺𝑇 ,C) → 0. (4.4)

7. Let us consider first the cases where G is an algebraic torus and an abelian variety. If G is a torus,
then every cohomology class is represented by an invariant holomorphic form, by part (5). If G is an
abelian variety, the Hodge decomposition tells us that the space of classes of holomorphic forms has
complex dimension equal to dim𝐺, so it suffices to compare dimensions.

For a general G, consider a closed form 𝛼 ∈ Γ(𝐺,Ω1
𝐺). By the torus case, its restriction to

𝐺𝑇 is represented by an invariant holomorphic form 𝛼̃𝑇 on 𝐺𝑇 which, by (3), is the restriction of
some 𝛼𝑇 ∈ Γ(𝐺,Ω1,inv

𝐺 ). Then, 𝛼 − 𝛼𝑇 is a holomorphic form that vanishes on 𝐺𝑇 . By the short
exact sequence (4.4), its cohomology class comes from 𝐺𝐴, and by the abelian variety case, it is
represented by an invariant holomorphic form 𝛼𝐴. Then, in cohomology, 𝛼 = 𝛼𝑇 + (𝑝𝐴)

∗𝛼𝐴, which
is the class of an invariant holomorphic form, as desired.

8. Using the short exact sequence (4.4), 𝐻1(𝐺𝐴,C) together with the image of any section of 𝑡∗

generate 𝐻1(𝐺,C). Combining parts (5) and (3), such a section can be constructed from a section of
Γ(𝐺,Ω1,inv

𝐺 ) → Γ(𝐺𝑇 ,Ω
1,inv
𝐺𝑇
). �

Remark 4.5. Consider the Chevalley decomposition (4.3) and Λ as in Lemma 4.2. Since 𝐺𝑇 is an
algebraic torus, Λ∩𝑇𝐺𝑇 � 𝜋1 (𝐺𝑇 ) is freely generated by a C-basis of 𝑇𝐺𝑇 , and since 𝐺𝐴 is an abelian
variety, the image of Λ in 𝑇𝐺𝐴 is a full rank lattice in 𝐺𝐴.

We can choose a way of extending Λ to a full rank lattice in G. Let Λ′ � 𝑖 · (Λ ∩ 𝑇𝐺𝑇 ). Then,
Λ′ ⊕ (Λ ∩ 𝑇𝐺𝑇 ) is a full rank lattice in 𝑇𝐺𝑇 , and Λ ⊕ Λ′ is a full rank lattice in 𝑇𝐺.

Definition-Proposition 4.6 (Definition of Φ𝐺
R

, Φ𝐺
C

and Ψ𝐺). Let Y be an allowed compactification of
a complex semiabelian variety G, let 𝑗𝑌 : 𝐺 → 𝑌 be the inclusion and let 𝐸 � 𝑌 \ 𝐺. Let

0→ 𝐺𝑇
𝑡
−→ 𝐺

𝑝𝐴
−−→ 𝐺𝐴→ 0

be the Chevalley decomposition of G.

◦ We define Φ𝐺
C

as the unique C-linear map whose restrictions to 𝐻1(𝐺𝐴,C) and the cohomology
classes of Γ(𝐺,Ω1,inv

𝐺 ) are as follows:
1.

(Φ𝐺
C
) |
𝐻 1 (𝐺𝐴,C)

: 𝐻1 (𝐺𝐴,C) → Γ(𝐺,A1,inv
𝐺,C
)
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is given by the composition of the isomorphism found in Lemma 4.2(4) 𝐻1 (𝐺𝐴;C) �
Γ(𝐺𝐴,A1,inv

𝐺𝐴,C
) and the pullback by 𝑝𝐴.

2.

(Φ𝐺
C
) |Γ(𝐺,Ω1,inv

𝐺
)

: Γ(𝐺,Ω1,inv
𝐺 ) → Γ(𝐺,A1,inv

𝐺,C
)

is the map given by the inclusion of sheaves.
◦ We define Φ𝐺

R
as the composition

𝐻1 (𝐺,R) ↩→ 𝐻1 (𝐺,C)
Φ𝐺
C
−−−→ Γ(𝐺,A1

𝐺,C)
�
−→ Γ(𝐺,A1

𝐺,R).

where� is the real part.
◦ We define Ψ𝐺 : 𝐻1(𝐺,C) → Γ(𝐺,A0

𝐺,C
) as the unique linear map satisfying that 𝑑Ψ𝐺 = C ⊗Φ𝐺

R
−

Φ𝐺
C

whose image lies in HomR-Lie groups(𝐺,C).

Proof. To see that Φ𝐺
C

is well defined, we need to see that (Φ𝐺
C
) |Γ(𝐺,Ω1,inv

𝐺
)

and (Φ𝐺
C
) |𝐻 1 (𝐺𝐴,C) agree

on Γ(𝐺,Ω1,inv
𝐺 ) ∩ 𝐻1(𝐺𝐴,C). We are going to use the notation for Λ and Λ′ from Remark 4.5. We will

give a global definition of Φ𝐺
C

and we will check that it agrees with the definition that we gave on each
of the subspaces. The uniqueness follows from Lemma 4.2, part (8).

Consider the natural isomorphism

HomZ(Λ,C) ⊕ HomZ(Λ′,C) � HomR(𝑇𝐺,C) � Γ(𝐺,A1,inv
𝐺,C
),

and let (𝛼, 𝛼′) ∈ HomZ(Λ,C) ⊕HomZ(Λ′,C). Seeing this inside of Γ(𝐺,A1,inv
𝐺,C
), we have that 𝑡∗(𝛼, 𝛼′)

is the restriction to HomZ(Λ∩𝑇𝐺𝑇 ,C) ⊕HomZ(Λ′,C) � Γ(𝐺𝑇 ,A1,inv
𝐺𝑇 ,C
). The elements of HomZ(Λ∩

𝑇𝐺𝑇 ,C) ⊕ HomZ(Λ′,C) which correspond to elements of Γ(𝐺𝑇 ,Ω1inv
𝐺𝑇
) � HomZ(Λ ∩ 𝑇𝐺𝑇 ,C) �

HomC (𝑇𝐺𝑇 ,C) are the ones satisfying that 𝛼′ = −𝑖 ◦ 𝛼 |Λ∩𝑇𝐺𝑇 ◦ 𝑖. Consider the following chain of
isomorphisms:

𝐻1 (𝐺,C) � HomZ(Λ,C) �
{
(𝛼, 𝛼′) ∈ HomZ(Λ,C) ⊕ HomZ(Λ′,C) � HomR(𝑇𝐺,C) � Γ(𝐺,A1,inv

𝐺,C
)

where 𝛼′ = −𝑖 ◦ 𝛼 |Λ∩𝑇𝐺𝑇 ◦ 𝑖

}
� {(𝛼, 𝛼′) ∈ Γ(𝐺,A1,inv

𝐺,C
) | 𝑡∗(𝛼, 𝛼′) ∈ Γ(𝐺𝑇 ,Ω

1,inv
𝐺𝑇
)} ⊂ Γ(𝐺,A1,inv

𝐺,C
).

(4.7)

We claim that the composition above coincides with the definition that we have given of Φ𝐺
C

: We
start by showing that both definitions agree on 𝐻1(𝐺𝐴,C). Let 𝛽 ∈ 𝐻1 (𝐺𝐴,C) � Γ(𝐺𝐴,A1,inv

𝐺𝐴,C
) �

HomR (𝑇𝐺𝐴,C) � HomZ(Λ/(Λ ∩ 𝑇𝐺𝑇 ),C), where the first of these isomorphisms is the one in part
(4) of Lemma 4.2. Let q be the quotient 𝑞 : 𝑇𝐺 → 𝑇𝐺𝐴. By our definition, (Φ𝐺

C
) |
𝐻 1 (𝐺𝐴,C)

(𝛽) =

𝛽 ◦ 𝑞 ∈ HomR(𝑇𝐺,C) � Γ(𝐺,A1,inv
𝐺,C
) for all 𝛽 ∈ HomR (𝑇𝐺𝐴,C). Note that 𝛽 ◦ 𝑞 ◦ 𝜄Λ is just

𝛽 ∈ 𝐻1 (𝐺𝐴,C) seen inside of 𝐻1 (𝐺,C) � HomZ(Λ,C), where 𝜄Λ : Λ → 𝑇𝐺 is the inclusion. The
chain of isomorphisms in (4.7) sends 𝛽 ◦ 𝑞 ◦ 𝜄Λ to (𝛽 ◦ 𝑞 ◦ 𝜄Λ, 0), which corresponds to 𝛽 ◦ 𝑞 under the
isomorphism HomR (𝑇𝐺,C) � HomZ(Λ,C) ⊕ HomZ(Λ′,C).

Let us now see that both definitions agree on Γ(𝐺,Ω1,inv
𝐺 ) � HomC(𝑇𝐺,C). Let 𝛽 ∈ HomC(𝑇𝐺,C).

By our definition, (Φ𝐺
C
) |
Γ(𝐺,Ω1,inv

𝐺
)
(𝛽) equals 𝛽 itself, but seen inside of HomR(𝑇𝐺,C). In Lemma 4.2

(4), we see 𝛽 in 𝐻1 (𝐺,C) � HomZ (Λ,C) as 𝛽 ◦ 𝜄Λ. The chain of isomorphisms (4.7) sends 𝛽 ◦ 𝜄Λ to
(𝛽 ◦ 𝜄Λ, 𝛽 ◦ 𝜄Λ′ ), where 𝜄Λ′ : Λ′ ↩→ 𝑇𝐺 is the inclusion. This equals 𝛽 itself. Hence, we have seen that
Φ𝑌
C

is well defined.
Let us now construct Ψ𝐺 . Suppose 𝛼 ∈ 𝐻1 (𝐺,C) � HomZ(Λ,C). We will see 𝛼 as an element of

HomZ(Λ,C). Then, by our construction, (C⊗ΦR) (𝛼) vanishes onΛ′, whileΦC(𝛼) |Λ′ = −𝑖◦𝛼 |Λ∩𝑇𝐺𝑇 ◦𝑖.
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They both agree on Λ, so their difference is the element 𝛽 ∈ HomZ(Λ ⊕ Λ′,C) that vanishes on
Λ and agrees with 𝑖 ◦ 𝛼 |Λ∩𝑇𝐺𝑇 ◦ 𝑖 on Λ′. Going back through the isomorphism HomZ(Λ ⊕ Λ′,C) �
HomR (𝑇𝐺,C), 𝛽 corresponds to a linear map vanishing on theR-span of Λ. The pullback of an invariant
form to the universal cover𝑇𝐺 yields a constant 1-form. Let us pull back the form 𝛽 = (C⊗ΦR−ΦC) (𝛼)
to a form in 𝑇𝐺. Note that this pulled back 1-form on 𝑇𝐺 is exact: a linear function on a vector space
seen as an invariant 1-form is the differential of itself, seen as a function (in coordinates,

∑
𝑎𝑖𝑑𝑧𝑖 is the

differential of
∑
𝑎𝑖𝑧𝑖). In other words, it is the differential of the linear function h vanishing on the span

of Λ and agreeing with 𝑖 ◦ 𝛼 |Λ∩𝑇𝐺𝑇 ◦ 𝑖 on Λ′ (i.e., 𝛽 seen as a function). Lastly, note that ℎ : 𝑇𝐺 → C
descends to G, since it is Λ-invariant (it vanishes on Λ and it is R-linear). This function can be defined
to be Ψ𝐺 (𝛼) (it is uniquely defined up to constants amongst the functions Ψ𝐺 (𝛼) that satisfy that
𝑑Ψ𝐺 (𝛼) = C ⊗Φ𝐺

R
(𝛼) −Φ𝐺

C
(𝛼)). Note that we have defined Ψ𝐺 as a linear map, and furthermore, it is

a homomorphism 𝐻1(𝐺,C) → HomR−Lie groups(𝐺,C). In fact, since Ψ𝐺 (𝛼) is uniquely defined up to
adding a constant function, our choice ofΨ𝐺 such that its image is in HomR−Lie groups(𝐺,C) is unique. �

Definition-Proposition 4.8 (Definition of Φ𝑌
C

, Φ𝑌
R

and Ψ𝑌 ). Let Y be an allowed compactification of a
complex semiabelian variety G, let 𝑗𝑌 : 𝐺 → 𝑌 be the inclusion and let 𝐸 � 𝑌 \ 𝐺.

The images of the maps Φ𝐺
C

, Φ𝐺
R

and Ψ𝐺 consist of logarithmic forms in Γ(𝑌,A1,cl
𝑌 ,C
(log 𝐸)),

Γ(𝑌,A1,cl
𝑌 ,R (log 𝐸)) and Γ(𝑌,A0

𝑌 ,R (log 𝐸)) respectively, where Γ(𝑌,A𝑙
𝑌 ,K (log 𝐸)) is seen as a subspace

of Γ(𝐺,A𝑙
𝑌 ,K) through

Γ(𝑌,A𝑙
𝑌 ,K (log 𝐸)) ⊂ Γ(𝑌, ( 𝑗𝑌 )∗A𝑙

𝐺,K) � Γ(𝐺,A𝑙
𝐺,K),

for K = R,C and 𝑙 = 0, 1. Hence we can define

Φ𝑌
C : 𝐻1(𝐺,C) → Γ(𝑌,𝑊1A1,cl

𝑌 ,C
(log 𝐸)) ⊆ Γ(𝑌,A1,cl

𝑌 ,C
(log 𝐸)),

Φ𝑌
R : 𝐻1(𝐺,R) → Γ(𝑌,𝑊1A1,cl

𝑌 ,R(log 𝐸)) ⊆ Γ(𝑌,A1,cl
𝑌 ,R (log 𝐸)), and

Ψ𝑌 : 𝐻1(𝐺,C) → Γ(𝑌,A0
𝑌 ,R (log 𝐸))

as the maps Φ𝐺
C

, Φ𝐺
R

and Ψ𝐺 of Definition-Proposition 4.6 respectively.

Proof. Since the images of Φ𝐺
C

, Φ𝐺
R

and Ψ𝐺 consist of invariant forms and those are closed, any form
on Y that extends them must also be closed.

Let us check that the image of Φ𝐺
C

: 𝐻1(𝐺,C) → Γ(𝐺,A1,inv
𝐺,C
) ⊂ Γ(𝐺,A1

𝐺,C) lies in the space
Γ(𝑌,𝑊1A1,cl

𝑌 ,C
(log 𝐸)). Since Y is an allowed compactification of G, there exists a compactification 𝐺

of G as in Corollary 2.38 and an algebraic map 𝑝 : 𝑌 → 𝐺 such that 𝑝 ◦ 𝑗𝑌 = 𝑗𝐺 , where 𝑗𝐺 : 𝐺 → 𝐺 is
the inclusion. Let 𝐸 ′ = 𝐺 \ 𝐺. First of all, the image of Φ𝐺

C
is contained in Γ(𝐺,𝑊1A𝐺,C(log 𝐸 ′)1,cl),

in fact, all invariant forms are logarithmic of weight 𝑊� equal to 1 (recall that we already know that
invariant forms are closed). This can be verified over an open cover of 𝐺𝐴: over a small enough open set
𝑈𝐴 of 𝐺𝐴, 𝐺 is isomorphic to (P1)𝑚 ×𝑈𝐴, and an explicit basis of the space of invariant forms can be
written down using local coordinates. By pulling back through p, we see that the elements in the image
of Φ𝐺

C
all extend (necessarily uniquely) to elements of Γ(𝑌,𝑊1A1,cl

𝑌 ,C
(log 𝐸)).

The fact that the image of Φ𝐺
R

: 𝐻1(𝐺,R) → Γ(𝐺,A1,inv
𝐺,R ) ⊂ Γ(𝐺,𝑊1A1

𝐺,R) lies in
Γ(𝑌,A1,cl

𝑌 ,R (log 𝐸)) follows from the definition of Φ𝐺
R

as the real part of Φ𝐺
C

and from the previous
paragraph.

Let us show that the elements in the image of Ψ𝐺 extend to globally defined elements in the space
Γ(𝑌,A0

𝑌 ,C
(log 𝐸)). It suffices to see that they extend to globally defined elements inΓ(𝐺,A0

𝐺,C
(log 𝐸 ′)),

and then pull those back through 𝑝 : 𝑌 → 𝐺. This can be verified over an open cover of𝐺𝐴 as before: over
a small enough open set𝑈𝐴 of𝐺𝐴, G is isomorphic to (C∗)𝑛×𝑈𝐴, and𝐺 is isomorphic to (P1)𝑚×𝑈𝐴. Let
(𝑧1, . . . , 𝑧𝑛) be (complex) coordinates of the (C∗)𝑛 factor. One can check that the elements in the image
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of Ψ𝐺 (as defined explicitly in the proof of Definition-Proposition 4.6) are the functions (C∗)𝑛×𝑈𝐴→ C

of the form
∑𝑛
𝑖=1 𝑎𝑖 log(|𝑧𝑖 |) for 𝑎1, . . . , 𝑎𝑛 ∈ C. Hence, these all lie in Γ(𝐺,A0

𝐺,C
(log 𝐸 ′)). �

Corollary 4.9. Let Y be an allowed compactification of a complex semiabelian variety G, let 𝑗𝑌 : 𝐺 → 𝑌
be the inclusion and let 𝐸 � 𝑌 \ 𝐺. Then, the maps Φ𝑌

C
and Φ𝑌

R
satisfy the assumptions of part (4) in

Lemma 4.1.

Proof. Let 0 → 𝐺𝑇
𝑡
−→ 𝐺

𝑝𝐴
−−→ 𝐺𝐴 → 0 be the Chevalley decomposition of G. Let K = R,C. The

first condition (the image of Φ𝑌
K

is contained in weight 1) is part of Definition-Proposition 4.8. The fact
that Φ𝑌

C
and Φ𝑌

R
are sections of the cohomology map follows immediately from the definition of Φ𝐺

K

(Definition-Proposition 4.6).
The fact that Φ𝑌

K
maps forms which are pulled back from 𝐻1(𝐺𝐴,C) to forms whose restriction to

G is in the image of 𝑝∗𝐴 : Γ(𝐺𝐴,A1
𝐺𝐴,K
) → Γ(𝐺,A1

𝐺,K) also follows by Definition-Proposition 4.6.
Lastly, by Lemma 4.2 (7), classes of holomorphic forms are represented by invariant holomorphic

forms. By definition, Φ𝑌
C

maps these to holomorphic forms, which in particular are (1, 0)-forms. �

Applying Definition-Proposition 3.9 to the objects (N •𝑋,𝐷,𝑛, 𝐻
1(𝐺,R), 𝑓

∗
◦Φ𝑌
R
, 𝑓
∗
◦Φ𝑌
C
, 𝑓
∗
◦Ψ𝑌 ),

which satisfy the assumptions of Lemma 4.1 by Corollary 4.9, we get a thickened mixed Hodge complex
of sheaves. We describe this mixed Hodge complex of sheaves explicitly in the following definition.

Definition 4.10 (The thickened logarithmic Dolbeault mixed Hodge complex of sheaves). Let U be a
smooth connected complex algebraic variety, let G be a complex semiabelian variety, and let 𝑓 : 𝑈 → 𝐺
be an algebraic morphism, which extends to 𝑓 : 𝑋 → 𝑌 , where 𝑋,𝑌 are compatible compactifications

of 𝑈,𝐺 with respect to f as in Definition 2.40. Let 𝑅𝑚 �

∏∞
𝑗=0 Sym 𝑗 𝐻1(𝐺,K)∏∞
𝑗=𝑚 Sym 𝑗 𝐻1 (𝐺,K)

and let 𝑅−𝑚 �

HomK (𝑅𝑚,K) for all 𝑚 ≥ 1, and K = R,C.
Let 𝑚 ∈ Z \ {0}, and let 𝑛 ≥ max{2, dimR𝑈}. We denote by (𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦ Φ𝑌 (𝜀)) the

thickened mixed Hodge complex with real part((
𝑅𝑚 ⊗R A•𝑋,R (log 𝐷), 𝑑 + 𝑓

∗
◦Φ𝑌

R (𝜀R)
)
,𝑊𝑛
�

)
,

complex part
((
𝑅𝑚 ⊗C A•𝑋,C(log 𝐷), 𝑑 + 𝑓

∗
◦Φ𝑌

C
(𝜀C)

)
,𝑊𝑛
� , 𝐹

�
)
, and a filtered isomorphism

𝛼 = 𝑒 𝑓
∗
◦Ψ𝑌 (𝜀C) :

((
𝑅𝑚 ⊗R A•𝑋,R (log 𝐷), 𝑑 + 𝑓

∗
◦Φ𝑌

R (𝜀R)
)
⊗R C,𝑊

𝑛
�

)
∼
−→((

𝑅𝑚 ⊗C A•𝑋,C (log 𝐷), 𝑑 + 𝑓
∗
◦Φ𝑌

C (𝜀C)
)
,𝑊𝑛
�

)
.

Here,𝑊𝑛
� denotes the tensor filtration of the weight filtration in 𝑅𝑚 and the filtration𝑊𝑛

� of A•𝑋,K (log 𝐷)
from Definition-Proposition 2.73, and 𝐹 � denotes the tensor filtration of the Hodge filtration in 𝑅𝑚 and
the filtration 𝐹 � from Definition-Proposition 2.73.

Remark 4.11. Note that technically, applying Definition-Proposition 3.9 to the objects

(N •𝑋,𝐷,𝑛, 𝐻
1 (𝐺,R), 𝑓

∗
◦Φ𝑌

R , 𝑓
∗
◦Φ𝑌

C , 𝑓
∗
◦ Ψ𝑌 )

yields a thickened mixed Hodge complex with four terms (K•0,K•1,K•2,K•3), but since two of the maps
between them are the identity (K•0 = K•1, K•2 = K•3), we have simplified the notation in the definition
above.

The maps defined in Definition-Proposition 4.8 satisfy the following functoriality property.

Corollary 4.12. Suppose that we have a map of semiabelian varieties 𝑔 : 𝐺1 → 𝐺2. Let 𝑌2 be an
allowed compactification of 𝐺2. Then, there exists an allowed compactification 𝑌1 of 𝐺1 such that g
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extends to 𝑔 : 𝑌1 → 𝑌2. Moreover, for every such allowed compactification 𝑌1, the maps (Φ𝑌1
R
,Φ𝑌1
C
,Ψ𝑌1)

and (Φ𝑌2
R
,Φ𝑌2
C
,Ψ𝑌2) are compatible in the sense that 𝑔∗ ◦ Φ𝑌1

R
= Φ𝑌2

R
◦ 𝑔∗, 𝑔∗ ◦ Φ𝑌1

C
= Φ𝑌2

C
◦ 𝑔∗ and

𝑔∗ ◦ Ψ𝑌1 = Ψ𝑌2 ◦ 𝑔∗.

Proof. Let 𝐺1 be a compactification of 𝐺1 as in Corollary 2.38. We can obtain 𝑌1 as a resolution of
singularities of the closure of the graph of g inside of 𝐺1 × 𝑌2.

Recall that by Proposition 2.4, g must preserve the Chevalley decomposition. By Lemma 4.2, Φ𝑌𝑖
C

is completely determined by its restriction to Γ(𝐺𝑖 ,Ω
1,inv
𝐺𝑖
) and 𝐻1 ((𝐺𝑖)𝐴,C), both seen as subspaces

of 𝐻1 (𝐺𝑖 ,C). With the definition of Φ𝐺𝑖
C

from Definition-Proposition 4.6, it is straightforward to see
that 𝑔∗ ◦Φ𝐺1

C
= Φ𝐺2

C
◦ 𝑔∗. Hence, 𝑔∗ ◦Φ𝑌1

C
= Φ𝑌2

C
◦ 𝑔∗. In Definition-Proposition 4.8, Φ𝑌𝑖

R
is defined as

the real part of Φ𝑌𝑖
C

, so these are compatible as well. Finally, Ψ𝑌𝑖 is determined up to constants by the
condition that it is a homotopy between Φ𝑌𝑖

R
and Φ𝑌𝑖

C
, so it is uniquely determined if one requires that its

image is composed of homomorphisms of R-Lie groups 𝐺𝑖 → C, and compatible with g. �

Example 4.13 (The case 𝐺 = C∗). Let 𝑚 ≥ 1, and let 𝑛 ≥ max{2, dimR𝑈}. If 𝐺 = C∗, the 𝑅∞-linear
isomorphism of MHS 𝐴𝑚 : 𝑅𝑚(1 − 𝑚) → 𝑅−𝑚 from Example 2.62 lifts to an isomorphism of mixed
Hodge complexes of sheaves:

𝐴𝑚 ⊗ Id : (𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓
∗
◦Φ𝑌 (𝜀)) (1 − 𝑚) −→ (𝑅−𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦Φ𝑌 (𝜀)),

where (1 − 𝑚) denotes a Tate twist. Indeed, the commutativity with the differentials is immediate: d
leaves the first factor of the tensor product unchanged, and 𝑓

∗
◦Φ𝑌 (𝜀) acts on the first factor of the tensor

product by multiplication by elements of 𝑅∞, which commutes with 𝐴𝑚. The commutativity with the
pseudo-morphism is also immediate because it leaves the first factor of the tensor product unchanged.

5. Thickened logarithmic Dolbeault complexes and local systems

Let 𝑓 : 𝑈 → 𝐺 be an algebraic morphism from a smooth variety to a semiabelian variety. Let Φ𝐺
R

be
as in Definition-Proposition 4.6, let 𝑚 ∈ Z \ {0} and let 𝑅𝑚 as in Definition 2.20 (with R-coefficients
throughout this section). Recall the definition of the twisted differential from Definition-Proposition 3.9.
This section is devoted to showing that (𝑅𝑚 ⊗RA•𝑈,R, 𝑑 + 𝑓 ∗ ◦Φ𝐺

R
(𝜀R)) is a resolution of 𝑅𝑚 ⊗𝑅 L (see

Lemmas 5.8 and 5.9), explicitly defining the morphism that makes the former a resolution of the latter
(namely the one defined in Construction 5.4 below). Recall that the definition of L and L can be found
in Definition 2.12.

Construction 5.1 (Definition of (Φ𝐺
R
)∨). Recall that Φ𝐺

R
is a map from 𝐻1(𝐺,R) to Γ(𝐺,A1,inv

𝐺,R ) (ex-
tended in a unique way by Φ𝑌

R
to logarithmic forms on Y), and recall that Γ(𝐺,A1,inv

𝐺,R ) � HomR (𝑇𝐺,R)

by Lemma 4.2(1). Under this identification, we can consider its dual (Φ𝐺
R
)∨ as a morphism

(Φ𝐺
R )
∨ : 𝑇𝐺 → 𝐻1(𝐺,R). (5.2)

Note that since Φ𝐺
R

is a section of the cohomology map, (Φ𝐺
R
)∨ fixes 𝐻1(𝐺,R) ⊂ 𝑇𝐺. Furthermore,

we will also use the notation (Φ𝐺
R
)∨ to denote the map

(Φ𝐺
R )
∨ : 𝑇𝐺 ⊗R A0

𝑈,R → 𝐻1 (𝐺,R) ⊗R A0
𝑈,R (5.3)

induced by (Φ𝐺
R
)∨ in (5.2).

Recall from Remark 2.15 that a local R-basis of L at any point of U is given by lifts 𝜄 of f to 𝑇𝐺,
that is, maps 𝜄 : 𝑈 → 𝑇𝐺 such that exp ◦𝜄 = 𝑓 . The sheaf L is a local system of rank 1 free R[𝜋1 (𝐺)]-
modules. Recall from Notation 2.16 that L and L are identified through the identity map L → L that
maps 𝜄 to 𝜄, which is an R-antilinear isomorphism.
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Recall that 𝑅∞ =
∏∞

𝑗=0 Sym 𝑗 𝐻1(𝐺,R) and 𝑅 � R[𝜋1 (𝐺)]. Moreover, recall Notation 2.21 and
Definition 2.22.

Construction 5.4 (Definition of 𝑒−(Φ𝐺R )∨ ). Let 𝑚 ∈ Z\{0}. Let {𝛾𝑖} be a basis of 𝜋1 (𝐺), so that {log 𝛾𝑖}
is a Z-basis of Λ = 𝐻1(𝐺,Z) ⊂ 𝑇𝐺, and let {𝑒 𝑗 } be chosen so that {log 𝛾𝑖 , 𝑒 𝑗 } form an R-basis of
𝑇𝐺 ⊃ 𝐻1(𝐺,Z). Since they form a basis, any lift 𝜄 : 𝑈 → 𝑇𝐺 may be written as 𝜄 =

∑
log 𝛾𝑖⊗𝑔𝑖+𝑒 𝑗⊗ℎ 𝑗

for some 𝑔𝑖 , ℎ 𝑗 ∈ A0
𝑈,R, so

𝜄 =
∑

log 𝛾𝑖 ⊗ 𝑔𝑖 + 𝑒 𝑗 ⊗ ℎ 𝑗 .

Hence, we can see L as a subsheaf of 𝑇𝐺 ⊗R A0
𝑈,R, and restrict (Φ𝐺

R
)∨ as in (5.3) to L.

Up to a sign, we postcompose (Φ𝐺
R
)∨ as in (5.3) with the exponential map, to obtain the following:

𝑒−(Φ
𝐺
R
)∨ : 𝑅𝑚 ⊗𝑅 L ⊂ 𝑅𝑚 ⊗𝑅 (𝑇𝐺 ⊗R A0

𝑈,R) −→ 𝑅𝑚 ⊗R A0
𝑈,R = 𝑅𝑚 ⊗𝑅∞ (𝑅∞ ⊗R A0

𝑈,R)

𝛼 ⊗ 𝜄 = 𝛼
(∑

log 𝛾𝑖 ⊗ 𝑔𝑖 + 𝑒 𝑗 ⊗ ℎ 𝑗

)
↦−→ 𝛼𝑒−(Φ

𝐺
R
)∨ ( 𝜄)

= 𝛼
∞∑
𝑘=0

1
𝑘!

(
−
∑
𝑖

log 𝛾𝑖 ⊗ 𝑔𝑖 −
∑
𝑗

(Φ𝐺
R )
∨(𝑒 𝑗 ) ⊗ ℎ 𝑗

) 𝑘
.

Note that the product of k many elements in𝐻1 (𝐺,R)⊗A0
𝑈,R is an element of Sym𝑘 𝐻1(𝐺,R)⊗RA0

𝑈,R ⊂

𝑅∞ ⊗R A0
𝑈,R, so, since 𝑅𝑚 is an 𝑅∞-module, it makes sense to multiply 𝛼 ∈ 𝑅𝑚 by the elements in the

first factor of the tensor product of 1
𝑘!

(
−
∑
𝑖 log 𝛾𝑖 ⊗ 𝑔𝑖 −

∑
𝑗 (Φ

𝐺
R
)∨(𝑒 𝑗 ) ⊗ ℎ 𝑗

) 𝑘
for all K.

Proposition 5.5. The map 𝑒−(Φ
𝐺
R
)∨ defined in Construction 5.4 is well-defined on the tensor product

(over R), and is R-linear.

Proof. Let us show that the above formula is well-defined on the tensor product (over R). The same
reasoning will show us that 𝑒−(Φ𝐺R )∨ is R-linear.

Recall that R acts on L by letting 𝛾0 ∈ 𝜋1 (𝐺) act by translation by 𝛾−1
0 , that is, 𝛾0 · 𝜄 = 𝛾−1

0 · 𝜄,
which corresponds with postcomposing 𝜄 with translation by − log 𝛾0 = log 𝛾−1

0 (namely the element
in 𝐻1(𝐺,Z) ⊂ 𝑇𝐺 corresponding to 𝛾0 ∈ 𝜋1 (𝐺)). Furthermore, R is embedded in 𝑅∞ by the ring
𝛾 ↦→ 𝑒log 𝛾 of Definition 2.22. Hence, we need to show that for any 𝛾 ∈ 𝑅, the image of 𝑒log 𝛾𝛼 ⊗ 𝜄
equals the image of 𝛼 ⊗ 𝛾 · 𝜄. It is enough to check this for 𝛾0 ∈ 𝜋1 (𝐺), since R is generated by 𝜋1 (𝐺).
With the above notations:

𝛼𝑒−(Φ
𝐺
R
)∨ (𝛾0 · 𝜄) = 𝛼𝑒

−(Φ𝐺
R )
∨
(
− log 𝛾0 ⊗ 1 +

∑
log 𝛾𝑖 ⊗ 𝑔𝑖 + 𝑒 𝑗 ⊗ ℎ 𝑗

)
= 𝛼 exp

(
log 𝛾0 ⊗ 1 −

∑
𝑖

log 𝛾𝑖 ⊗ 𝑔𝑖 −
∑
𝑗

(Φ𝐺
R )
∨(𝑒 𝑗 ) ⊗ ℎ 𝑗

)
= 𝛼𝑒log 𝛾0𝑒−(Φ

𝐺
R
)∨ 𝜄 .

(5.6)

�

Proposition 5.7. Let {log 𝛾𝑖 , 𝑒 𝑗 } be an R-basis of 𝑇𝐺, where {log 𝛾𝑖} is the Z-basis of 𝐻1 (𝐺,Z)
corresponding to a basis {𝛾𝑖} of 𝜋1 (𝐺). Let {log 𝛾∨𝑖 , 𝑒

∨
𝑗 } be its dual basis. Suppose a locally defined

𝜄 ∈ L is given by 𝜄 =
∑
𝑖 log 𝛾𝑖 ⊗ 𝑔𝑖 +

∑
𝑗 𝑒 𝑗 ⊗ ℎ 𝑗 ∈ 𝑇𝐺 ⊗R A0

𝑈,R. Then,

◦ All the 1-forms 𝑑𝑔𝑖 and 𝑑ℎ 𝑗 are the pullback of invariant 1-forms on G, namely:

𝑑𝑔𝑖 = 𝑓 ∗ log 𝛾∨𝑖 , 𝑑ℎ 𝑗 = 𝑓 ∗𝑒∨𝑗 ,
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where log 𝛾∨𝑖 , 𝑒
∨
𝑗 : 𝑇𝐺 → R are seen in Γ(𝐺,A1,inv

𝐺,R ) through the isomorphism described in
Lemma 4.2, part (1).

◦ For every j, the function ℎ 𝑗 is the composition of f with the (globally defined) unique differentiable
homomorphism 𝐺 → R mapping exp(𝑒 𝑗 ) to 1 and the rest of the elements of {exp(𝑒𝑙)} to 0.

Proof. Let us start with the first statement. Let V be the open set in U such that 𝜄 is a map from V to
𝑇𝐺. By definition of the dual basis, for all 𝑥 ∈ 𝑉 we have that

𝑔𝑖 (𝑥) = 〈(log 𝛾𝑖)∨, 𝜄(𝑥)〉; ℎ 𝑗 (𝑥) = 〈(𝑒 𝑗 )
∨, 𝜄(𝑥)〉.

In any small neighborhood of exp(𝜄(𝑥)) in G, we can define 𝑎𝑖 , 𝑏 𝑗 : 𝐺 → R such that 𝑎𝑖◦exp = (log 𝛾𝑖)∨
and 𝑏 𝑗 ◦ exp = 𝑒∨𝑗 . Hence, locally we have that 𝑔𝑖 = 𝑓 ∗(𝑎𝑖), and ℎ 𝑗 = 𝑓 ∗(𝑏 𝑗 ) in a neighborhood of x.
Thus, 𝑑𝑔𝑖 = 𝑓 ∗(𝑑𝑎𝑖), and 𝑑ℎ 𝑗 = 𝑓 ∗(𝑑𝑏 𝑗 ). Note that exp∗ 𝑑𝑎𝑖 = 𝑑 ((log 𝛾𝑖)∨) is a constant 1-form on
𝑇𝐺. The identification HomR(𝑇𝐺,R) � A1,inv

𝐺,R from Lemma 4.2(1) implies that 𝑑𝑎𝑖 = (log 𝛾𝑖)∨ (seen
as an element of A1,inv

𝐺,R ) and similarly, 𝑑𝑏 𝑗 = 𝑒∨𝑗 . This concludes the proof of the first statement.
For the second statement, we just need to see that 𝑏 𝑗 is defined globally, and that it coincides

with the homomorphism 𝐺 → R described. Note that 𝑏 𝑗 is defined globally because 𝑒∨𝑗 is invariant
by the action of log 𝛾𝑖 . Since 𝑏 𝑗 ◦ exp = 𝑒∨𝑗 and exp is a surjective homomorphism, 𝑏 𝑗 is a group
homomorphism which takes exp(𝑒 𝑗 ) to 1 and the image by exp of the rest of the elements of the basis
{log 𝛾𝑖 , 𝑒𝑙} to 0. �

Lemma 5.8. For any 𝑚 ∈ Z\{0}, the complex (𝑅𝑚⊗RA•𝑈,R, 𝑑+ 𝑓
∗ ◦Φ𝐺

R
(𝜀R)) has nonzero cohomology

only in degree 0. The kernel of the differential in degree 0 is a local system of 𝑅∞-modules whose stalks
are isomorphic to 𝑅𝑚.

Proof. We will show that locally there is an isomorphism between (𝑅𝑚 ⊗RA•𝑈,R, 𝑑 + 𝑓 ∗ ◦Φ𝐺
R
(𝜀R)) and

(𝑅𝑚⊗RA•𝑈,R, 𝑑). Let us consider a simply connected open set V of U. Over such an open set, all closed 1-
forms are exact, and in particular the restriction to V of the image of 𝑓 ∗ ◦Φ𝐺

R
: 𝐻1(𝐺,R) → Γ(𝑈,A1

𝑈,R)

consists of exact forms. Let ℎ : 𝐻1 (𝐺,R) → Γ(𝑉,A0
𝑉 ,R) be a linear map such that 𝑑 ◦ ℎ = ( 𝑓 ∗ ◦Φ𝐺

R
) |𝑉 .

Applying Lemma 2.50, multiplication by 𝑒ℎ (𝜀R) is an isomorphism:

(𝑅𝑚 ⊗R A•𝑉 ,R, 𝑑 + 𝑓 ∗ ◦Φ𝐺
R (𝜀R))

� (𝑅𝑚 ⊗R A•𝑉 ,R, 𝑑 + 𝑓 ∗ ◦Φ𝐺
R (𝜀R) − (𝑑 ◦ ℎ) (𝜀R) + [ℎ(𝜀R), 𝑓

∗ ◦Φ𝐺
R (𝜀R)]).

Note that ℎ(𝜀R) and 𝑓 ∗ ◦Φ𝐺
R
(𝜀R) commute because they are elements of a cdga, so the differential on

the right-hand side above is simply d. Note that (A•𝑉 ,R, 𝑑) is a complex of acyclic sheaves (with respect
to the global sections functor) which resolves the trivial local system R𝑉 (see [27, p. 127], for example).
This shows that (𝑅𝑚 ⊗RA•𝑉 ,R, 𝑑 + 𝑓 ∗ ◦Φ𝐺

R
(𝜀R)) is isomorphic to the resolution of a trivial local system

with stalk 𝑅𝑚, which is exact in all places except for degree 0, as desired. �

Lemma 5.9. The morphism 𝑒−(Φ
𝐺
R
)∨ defined as in Construction 5.4 is an isomorphism onto the kernel of

𝑑 + 𝑓 ∗ ◦Φ𝐺
R (𝜀R) : 𝑅𝑚 ⊗R A0

𝑈,R → 𝑅𝑚 ⊗R A1
𝑈,R

Proof. Let us start by proving that 𝑑 ◦ 𝑒−(Φ𝐺R )∨ = −( 𝑓 ∗ ◦Φ𝐺
R
(𝜀R)) ◦ 𝑒

−(Φ𝐺
R
)∨ , which will show that the

image of 𝑒−(Φ𝐺R )∨ is contained in the kernel of 𝑑+ 𝑓 ∗ ◦Φ𝐺
R
(𝜀R). Let {𝑒𝑖} be anR-basis of𝑇𝐺 and let {𝑒∨𝑖 }
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be its dual basis. Let 𝜄 =
∑
𝑒𝑖 ⊗ ℎ𝑖 be a local generator of L. We must compute 𝑑 (𝑒−(Φ

𝐺
R
)∨ (𝜄)), that is,

𝑑 (𝑒−(Φ
𝐺
R
)∨ (𝜄)) = 𝑑

(
𝑒−(Φ

𝐺
R
)∨ ( 𝜄)

)
= 𝑑

���
∞∑
𝑘=0

1
𝑘!

(
−
∑
𝑖

(Φ𝐺
R )
∨(𝑒𝑖) ⊗ ℎ𝑖

) 𝑘���
=
∞∑
𝑘=1

1
(𝑘 − 1)!

(
−
∑
𝑖

(Φ𝐺
R )
∨(𝑒𝑖) ⊗ ℎ𝑖

) 𝑘−1 (
−
∑
𝑖

(Φ𝐺
R )
∨(𝑒𝑖) ⊗ 𝑑ℎ𝑖

)
=

(
−
∑
𝑖

(Φ𝐺
R )
∨(𝑒𝑖) ⊗ 𝑑ℎ𝑖

)
· 𝑒−(Φ

𝐺
R
)∨ (𝜄)

Using Proposition 5.7, 𝑑ℎ𝑖 = 𝑓 ∗(𝑒∨𝑖 ). Finally, note that if {𝑠 𝑗 } is an R-basis of 𝐻1 (𝐺,R), and {𝑠∨𝑗 } is
its dual basis, then

−
∑
𝑖

(Φ𝐺
R )
∨(𝑒𝑖) ⊗ 𝑓 ∗(𝑒∨𝑖 ) = − Id ⊗ 𝑓 ∗

(∑
𝑖

(Φ𝐺
R )
∨(𝑒𝑖) ⊗ 𝑒∨𝑖

)
= − Id ⊗ 𝑓 ∗

(∑
𝑗

𝑠 𝑗 ⊗ Φ𝐺
R (𝑠

∨
𝑗 )

)
= − 𝑓 ∗ ◦Φ𝐺

R (𝜀R).

So indeed the image of 𝑒−(Φ𝐺R )∨ is contained in the desired kernel.
Using Lemma 5.8, we know that the kernel of d is a local system, of the same real dimension as

𝑅𝑚. To show 𝑒−(Φ
𝐺
R
)∨ is an isomorphism onto the kernel, we only need to prove that 𝑒−(Φ𝐺R )∨ is either

injective or surjective on stalks, since we know the dimensions agree.
The stalks of ker 𝑑 + 𝑓 ∗ ◦ Φ𝐺

R
(𝜀R) ⊂ 𝑅𝑚 ⊗R A0

𝑈,R are finitely generated 𝑅 |𝑚 |-modules. If 𝑚 > 0,
Nakayama’s Lemma implies that one can show that 𝑒−(Φ𝐺R )∨ is surjective on stalks by taking the quotient
by the maximal ideal of 𝑅𝑚, reducing to the case 𝑚 = 1 (which is clear, the complex is just (A•𝑈,R, 𝑑)). If
𝑚 < 0, we can show that 𝑒−(Φ𝐺R )∨ is injective by noting that 𝑅−1 ⊂ 𝑅𝑚 is contained in every nonzero sub
𝑅−𝑚-module of 𝑅𝑚. Therefore, to show that 𝑒−(Φ𝐺R )∨ is injective, it is enough to show that, identifying
the stalk with 𝑅𝑚, the kernel of 𝑒−(Φ𝐺R )∨ intersects 𝑅−1 trivially, which is again clear. �

Remark 5.10. Let 𝑚 ≥ 1 and suppose that 𝐺 = C∗. The isomorphism 𝐴𝑚 : 𝑅𝑚 → 𝑅−𝑚 from
Example 2.62 extends to an 𝑅∞-linear isomorphism

𝐴𝑚 ⊗R IdL : 𝑅𝑚 ⊗𝑅 L→ 𝑅−𝑚 ⊗𝑅 L.

Moreover, it is immediate from the definition of 𝑒−(ΦC
∗

R
)∨ that(

𝐴𝑚 ⊗R IdA0
𝑈,R

)
◦ 𝑒−(Φ

C∗

R
)∨ : 𝑅𝑚 ⊗𝑅 L→ 𝑅−𝑚 ⊗R A0

𝑈,R

coincides with

𝑒−(Φ
C∗

R
)∨ ◦

(
𝐴𝑚 ⊗R IdL

)
.
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6. Mixed Hodge structures

6.1. The MHS on 𝐻 𝑗 (𝑈, 𝑅𝑚 ⊗𝑅 L)
Let 𝑓 : 𝑈 → 𝐺 be an algebraic morphism between a smooth complex connected algebraic variety U
and a semiabelian variety G. Let X and Y be compatible compactifications of U and G with respect to f
as in Definition 2.40, let 𝑗 : 𝑈 → 𝑋 be the inclusion, and let 𝐷 � 𝑋 \𝑈. Note that

(𝑅𝑚 ⊗R A•𝑈,R, 𝑑 + 𝑓 ∗ ◦Φ𝐺
R (𝜀R)) = 𝑗−1

(
𝑅𝑚 ⊗R A•𝑋,R(log 𝐷), 𝑑 + 𝑓

∗
◦Φ𝑌

R (𝜀R)
)
,

where 𝑓 : 𝑋 → 𝑌 extends f and Φ𝑌
R

is as in Definition-Proposition 4.8. Hence,

𝑅 𝑗∗(𝑅𝑚 ⊗𝑅 L) � 𝑅 𝑗∗ 𝑗
−1
(
𝑅𝑚 ⊗R A•𝑋,R(log 𝐷), 𝑑 + 𝑓

∗
◦Φ𝑌

R (𝜀R)
)
.

In this case, the adjunction Id→ 𝑅 𝑗∗ 𝑗
−1 applied to the complex of sheaves(

𝑅𝑚 ⊗R A•𝑋,R (log 𝐷), 𝑑 + 𝑓
∗
◦ΦR(𝜀R)

)
is the real part of the thickened logarithmic Dolbeault mixed Hodge complex of sheaves (𝑅𝑚 ⊗
N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦Φ𝑌 (𝜀)) from Definition 4.10. It is an isomorphism in the derived category by Propo-

sition 2.71 and Proposition 3.16 (see Remark 2.67).
In Section 5 we saw that the morphism

𝑒−(Φ
𝐺
R
)∨ : 𝑅𝑚 ⊗𝑅 L→

(
𝑅𝑚 ⊗R A•𝑈,R, 𝑑 + 𝑓 ∗ ◦Φ𝐺

R (𝜀R)
)

is a quasi-isomorphism. The first goal of this section is to show that the mixed Hodge complex of sheaves
(𝑅𝑚 ⊗N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦Φ𝑌 (𝜀)) endows 𝐻𝑖 (𝑈, 𝑅𝑚 ⊗𝑅 L) with an R-MHS for all i, and to describe the

map via which these MHS are induced.

Definition 6.1 (MHS on 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L)). Let 𝑓 : 𝑈 → 𝐺 be an algebraic morphism between a
smooth complex connected algebraic variety U and a semiabelian variety G. Let Y be an allowed
compactification of G, and let X be a good compactification of U such that f extends to 𝑓 : 𝑋 → 𝑌 . Let
𝐷 = 𝑋 \𝑈, let 𝑚 ∈ Z \ {0} and let 𝑛 ≥ max{2, dimR𝑈}.

◦ Suppose that 𝑚 < 0. The thickened logarithmic Dolbeault mixed Hodge complex of sheaves
(𝑅𝑚 ⊗N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦Φ𝑌 (𝜀)) from Definition 4.10 endows 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) with a mixed Hodge

structure via this sequence of isomorphisms in the derived category.

𝑅 𝑗∗(𝑅𝑚 ⊗𝑅 L) 𝑅 𝑗∗(𝑅𝑚 ⊗R A•𝑈,R, 𝑑 + 𝑓 ∗ ◦Φ𝐺
R
(𝜀R))

(𝑅𝑚 ⊗R A•𝑋,R (log 𝐷), 𝑑 + 𝑓
∗
◦Φ𝑌

R
(𝜀R)) 𝑅 𝑗∗ 𝑗

−1 (𝑅𝑚 ⊗R A•𝑋,R (log 𝐷), 𝑑 + 𝑓
∗
◦Φ𝑌

R
(𝜀R))

𝑅 𝑗∗𝑒
−(Φ𝐺
R
)∨

adjunction

(6.2)

◦ Suppose that 𝑚 > 0. Let 𝑟 = dimC 𝐻1(𝐺,C). The Tate twisted thickened logarithmic Dolbeault
mixed Hodge complex of sheaves (𝑅𝑚 ⊗N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦Φ𝑌 (𝜀)) (𝑟) endows 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) with
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a mixed Hodge structure via the same sequence of isomorphisms as in (3.12), namely

𝑅 𝑗∗(𝑅𝑚 ⊗𝑅 L) 𝑅 𝑗∗(𝑅𝑚 ⊗R A•𝑈,R, 𝑑 + 𝑓 ∗ ◦Φ𝐺
R
(𝜀R))

(𝑅𝑚 ⊗R A•𝑋,R (log 𝐷), 𝑑 + 𝑓
∗
◦Φ𝑌

R
(𝜀R)) (𝑟) 𝑅 𝑗∗ 𝑗

−1(𝑅𝑚 ⊗R A•𝑋,R(log 𝐷), 𝑑 + 𝑓
∗
◦Φ𝑌

R
(𝜀R))

𝑅 𝑗∗𝑒
−(Φ𝐺
R
)∨

adjunction

Remark 6.3. The Tate twist when m is positive but not when m is negative might seem arbitrary in the
previous definition, but it is not. Indeed, the case m negative will be used to endow quotients of the
homology Alexander modules with MHSs, and those MHSs will be functorial (see Section 7) without
the need for any twists. However, the case when m is positive is related to the MHS on the torsion part
of the cohomology Alexander modules defined in [16] in the case when 𝐺 = C∗ (see Remark 10.12),
where the twist was needed to enjoy good functoriality properties (see [16, Theorem 6.1]). In any case,
the focus of this paper is the case where m is negative.

Example 6.4 (The case𝐺 = C∗). If𝐺 = C∗, and𝑚 ≥ 1, the MHS on𝐻∗ (𝑈, 𝑅𝑚⊗𝑅L) and𝐻∗ (𝑈, 𝑅−𝑚⊗𝑅
L) from Definition 6.1 are related as follows: Let 𝐴𝑚 : 𝑅𝑚 → 𝑅−𝑚 be the 𝑅∞-linear identification
from Example 2.62. The isomorphism 𝐴𝑚 ⊗ IdL : 𝑅𝑚 ⊗𝑅 L→ 𝑅−𝑚 ⊗𝑅 L from Remark 5.10 lifts (by
the commutativity with 𝑒−(Φ

C∗

R
)∨ explained therein) to the isomorphism of mixed Hodge complexes of

sheaves

𝐴𝑚 ⊗ Id : (𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓
∗
◦Φ𝑌 (𝜀)) (1 − 𝑚) −→ (𝑅−𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦Φ𝑌 (𝜀))

from Example 4.13. By Remarks 2.61 and 2.64, 𝐴𝑚 induces the following isomorphism of MHS

𝐻 𝑗 (𝐴𝑚 ⊗ IdL) : 𝐻 𝑗 (𝑈, 𝑅𝑚 ⊗𝑅 L) (2 − 𝑚) → 𝐻 𝑗 (𝑈, 𝑅−𝑚 ⊗𝑅 L),

where (2 − 𝑚) denotes the (2 − 𝑚)-th Tate twist.

In Section 6.2 we will see that the previous definition is independent of the choice of n and the
choice of compatible compactifications. Before that, let us show some properties of the MHS from
Definition 6.1 while assuming the independence of those choices.

Remark 6.5 (The pro-MHS on 𝐻∗(𝑈, 𝑅∞ ⊗𝑅 L)). Let 𝑚′ > 𝑚 > 0. In that case, the projection
morphism 𝑝𝑚′,𝑚 : 𝑅𝑚′ → 𝑅𝑚 is an 𝑅∞-linear mixed Hodge structure morphism, and it induces a
projection 𝑝𝑚′,𝑚 ⊗ Id : 𝑅𝑚′ ⊗𝑅 L→ 𝑅𝑚 ⊗𝑅 L. This morphism extends via 𝑒−(Φ

𝐺
R
)∨ and the morphisms

in Definition 6.1 to a morphism of mixed Hodge complexes of sheaves (that is, a morphism between the
corresponding complexes of sheaves respecting the filtrations and the pseudo-morphism):

𝑝𝑚′,𝑚 ⊗ Id : (𝑅𝑚′ ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓
∗
◦Φ𝑌 (𝜀)) → (𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦Φ𝑌 (𝜀)).

In particular, 𝑝𝑚′,𝑚 induces an MHS morphism

𝐻∗(𝑈, 𝑅𝑚′ ⊗𝑅 L) → 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L).

By Proposition 2.28, taking the inverse limit for 𝑚 > 0, one obtains a pro-MHS on 𝐻∗(𝑈, 𝑅∞ ⊗𝑅 L).
Remark 6.6 (The pro-MHS on 𝑅∞⊗𝑅𝐻∗(𝑈,L)). Let𝑚′ > 𝑚 > 0. In that case, the dual 𝑝∨𝑚′,𝑚 : 𝑅−𝑚 ↩→
𝑅−𝑚′ of the projection morphism 𝑝𝑚′,𝑚 from Remark 6.5 is also a mixed Hodge structure morphism
which is 𝑅∞-linear, and it induces an inclusion 𝑝∨𝑚′,𝑚 ⊗ Id : 𝑅−𝑚 ⊗𝑅 L → 𝑅−𝑚′ ⊗𝑅 L. Note that, by
Remark 2.26, dualizing this inclusion (over R) yields the projection

𝑝𝑚′,𝑚 ⊗ Id : 𝑅𝑚′ ⊗𝑅 L→ 𝑅𝑚 ⊗𝑅 L.
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The morphism 𝑝∨𝑚′,𝑚 ⊗ Id extends via 𝑒−(Φ
𝐺
R
)∨ and the morphisms in Definition 6.1 to a morphism of

mixed Hodge complexes of sheaves:

𝑝∨𝑚′,𝑚 ⊗ Id : (𝑅−𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓
∗
◦Φ𝑌 (𝜀)) → (𝑅−𝑚′ ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦Φ𝑌 (𝜀)).

In particular, 𝑝∨𝑚′,𝑚 induces an MHS morphism

𝐻∗(𝑈, 𝑅−𝑚 ⊗𝑅 L) → 𝐻∗(𝑈, 𝑅−𝑚′ ⊗𝑅 L).

If HomR(𝐻∗(𝑈, 𝑅−𝑚 ⊗𝑅 L,R) is endowed with the dual MHS, these morphisms endow their limit
lim
←−−𝑚

HomR(𝐻∗(𝑈, 𝑅−𝑚 ⊗𝑅 L,R) with a pro-MHS. By Corollary 2.30, this endows 𝑅∞ ⊗𝑅 𝐻∗(𝑈,L)
with a pro-MHS. In fact, using the isomorphism HomR (𝐻∗(𝑈, 𝑅−𝑚 ⊗𝑅 L),R) � 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L)
from Remark 2.26, we see that the dual of the MHS morphism induced by 𝑝∨𝑚′,𝑚 in cohomology is the
morphism induced in homology by 𝑝𝑚′,𝑚 ⊗ Id : 𝑅𝑚′ ⊗𝑅 L → 𝑅𝑚 ⊗𝑅 L. With this interpretation, the
pro-MHS on 𝑅∞ ⊗𝑅 𝐻∗(𝑈,L) is given by the isomorphism 𝑅∞ ⊗𝑅 𝐻∗(𝑈,L) � lim

←−−𝑚
𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L)

and the morphisms induced in homology by the projections 𝑝𝑚′,𝑚 ⊗ Id : 𝑅𝑚′ ⊗𝑅 L→ 𝑅𝑚 ⊗𝑅 L.

Remark 6.7. Let 𝑚 ∈ Z\ {0}. The action of 𝐻1 (𝐺,R) ⊂ 𝑅∞ on 𝑅𝑚 induces a multiplication morphism

𝐻1(𝐺,R) ⊗R (𝑅𝑚 ⊗𝑅 L) → 𝑅𝑚 ⊗𝑅 L. (6.8)

Since the morphism 𝑒−(Φ
𝐺
R
)∨ : 𝑅𝑚 ⊗𝑅L→ ker(𝑑+ 𝑓 ∗ ◦Φ𝐺

R
(𝜀R)) ⊂ 𝑅𝑚 ⊗RA0

𝑈,R from Construction 5.4
is 𝑅∞-linear, the multiplication morphism from (6.8) extends to a morphism of mixed Hodge complexes
of sheaves

𝐻1 (𝐺,R) ⊗ (𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓
∗
◦Φ𝑌 (𝜀)) → (𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦Φ𝑌 (𝜀))

for any 𝑛 ≥ max{2, dimR𝑈} by Proposition 3.13. Therefore, the multiplication morphism (6.8) induces
an MHS morphism for every 𝑚 ∈ Z \ {0}:

𝐻1 (𝐺,R) ⊗ 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) → 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L).

By Proposition 2.28 and Remark 6.5, taking the inverse limit for 𝑚 > 0, one obtains a pro-MHS
morphism replacing m by∞.

Remark 6.9. Let 𝑚 > 0. Since the R-dual of multiplication by elements of 𝐻1 (𝐺,R) in an 𝑅∞-module
is multiplication by elements of 𝐻1(𝐺,R), the fact that the multiplication map

𝐻1 (𝐺,R) ⊗R 𝐻
∗(𝑈, 𝑅−𝑚 ⊗𝑅 L) → 𝐻∗(𝑈, 𝑅−𝑚 ⊗𝑅 L)

from Remark 6.7 is an MHS morphism implies that the multiplication map

𝐻1 (𝐺,R) ⊗R HomR(𝐻∗(𝑈, 𝑅−𝑚 ⊗𝑅 L),R) → HomR(𝐻∗(𝑈, 𝑅−𝑚 ⊗𝑅 L),R)

is also an MHS morphism, where HomR (𝐻∗(𝑈, 𝑅−𝑚⊗𝑅L),R) is endowed with the dual MHS. This can
be easily checked using the definition of the tensor and dual MHSs from Definition-Proposition 2.53.
By Remark 6.6, taking the inverse limit for 𝑚 > 0 one obtains a pro-MHS morphism

𝐻1(𝐺,R) ⊗R (𝑅∞ ⊗𝑅 𝐻∗(𝑈,L)) → 𝑅∞ ⊗𝑅 𝐻∗(𝑈,L).

Remark 6.10 (Multiplication by elements of 𝐻1 (𝐺,R) if 𝐺 � (C∗)𝑛). Suppose that 𝐺 � (C∗)𝑛, in
which case 𝐻1 (𝐺,R) is pure of type (−1,−1). Let 𝑎 ∈ 𝐻1 (𝐺,R) be a nonzero element. Since the span
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of a is a sub-MHS of 𝐻1 (𝐺,R), Remark 6.7 implies that multiplication by a is an MHS morphism

𝑎 : 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) → 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) (−1)

for every 𝑚 ∈ Z \ {0}, where (−1) denotes the Tate twist. By Proposition 2.28 and Remark 6.5, taking
the inverse limit for 𝑚 > 0, one obtains a pro-MHS morphism replacing m by∞. Similarly, Remarks 6.6
and 6.9 imply that

𝑎 : 𝑅∞ ⊗𝑅 𝐻∗(𝑈,L) → 𝑅∞ ⊗𝑅 𝐻∗(𝑈,L) (−1)

is a pro-MHS morphism.

6.2. Independence of the choices

Note that there are some choices involved in Definition 6.1, namely the choice of compactifications, the
number 𝑛 ≥ max{2, dimR𝑈} and the choice of the maps Φ𝐺

R
, Φ𝐺
C

and Ψ𝐺 . Note that the choice of the
maps Φ𝐺

R
, Φ𝐺
C

and Ψ𝐺 was canonical, so we will not attempt to modify those. However, it is important
that the MHS in Definition 6.1 does not depend on compactifications or on n. This section shows this.

Lemma 6.11 (Independence of n). Under the same notation as in Definition 6.1, the MHS on
𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) endowed by the mixed Hodge complex of sheaves (𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦ Φ𝑌 (𝜀))

does not depend on the choice of 𝑛 ≥ max{2, dimR𝑈}.

Proof. Let 𝑛′ ≥ 𝑛 ≥ max{2, dimR𝑈}. The identity map induces a morphism of complexes of sheaves
(as in [41, Definition 3.16])

(𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛′ , 𝑑 + 𝑓
∗
◦Φ𝑌 (𝜀)) → (𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓

∗
◦Φ𝑌 (𝜀)).

Since the identity is a quasi-isomorphism, this is what is called a weak equivalence, which induces
isomorphisms of MHS in hypercohomology (see [41, Lemma-Definition 3.19]). �

Lemma 6.12 (Independence of the compactification of U, fixing the compactification of G). Let Y be an
allowed compactification of G. Let 𝑋1 and 𝑋2 be two good compactifications of U such that 𝑓 : 𝑈 → 𝐺
extends to algebraic maps 𝑓 1 : 𝑋1 → 𝑌 and 𝑓 2 : 𝑋2 → 𝑌 . Let 𝐷𝑖 be the simple normal crossings divisor
𝑋𝑖 \𝑈 for 𝑖 = 1, 2. Then, the MHS on 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) induced by (𝑅𝑚 ⊗N •𝑋1 ,𝐷1 ,𝑛

, 𝑑 + ( 𝑓 1)
∗ ◦Φ𝑌 (𝜀))

coincides with the MHS induced by (𝑅𝑚 ⊗ N •𝑋2 ,𝐷2 ,𝑛
, 𝑑 + ( 𝑓 2)

∗ ◦Φ𝑌 (𝜀)) for all 𝑚 ∈ Z \ {0}.

Proof. Let Z be a good compactification of U obtained as a resolution of singularities of the closure of the
diagonal𝑈 → 𝑈×𝑈 in 𝑋1×𝑋2. Then, there exist algebraic maps 𝜋𝑖 : 𝑍 → 𝑋𝑖 for 𝑖 = 1, 2. Let 𝐷 = 𝑍 \𝑈.
It is enough to show that the MHS on 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) induced by (𝑅𝑚 ⊗N •𝑋1 ,𝐷1 ,𝑛

, 𝑑 + ( 𝑓 1)
∗ ◦Φ𝑌 (𝜀))

coincides with the MHS induced by (𝑅𝑚 ⊗ N •𝑍,𝐷,𝑛, 𝑑 + ( 𝑓 1 ◦ 𝜋
1)∗ ◦Φ𝑌 (𝜀)).

The proof follows the same steps as [16, Theorem 5.21], so we omit some details. The pullback of
forms through 𝜋1 induces a morphism

N •𝑋1 ,𝐷1 ,𝑛
→ (𝜋1)∗N •𝑍,𝐷,𝑛

which respects the filtrations. Although (𝜋1)∗N •𝑍,𝐷,𝑛 is not a mixed Hodge complex of sheaves, the proof
of Proposition 3.17 implies that the morphism N •𝑋1 ,𝐷1 ,𝑛

→ (𝜋1)∗N •𝑍,𝐷,𝑛 extends to the thickenings by
( 𝑓 1)

∗ ◦Φ𝑌 (𝜀) and ( 𝑓 1 ◦𝜋
1)∗ ◦Φ𝑌 (𝜀), respecting the filtrations. Composing with (𝜋1)∗ of the canonical

map from the mixed Hodge complex of sheaves (𝑅𝑚 ⊗N •𝑍,𝐷,𝑛, 𝑑 + ( 𝑓 1 ◦𝜋
1)∗ ◦Φ(𝜀)) into its Godement

resolution, we obtain a morphism of mixed Hodge complexes of sheaves

(𝑅𝑚 ⊗ N •𝑋1 ,𝐷1 ,𝑛
, 𝑑 + ( 𝑓 1)

∗ ◦Φ(𝜀)) → 𝑅(𝜋1)∗(𝑅𝑚 ⊗ N •𝑍,𝐷,𝑛, 𝑑 + ( 𝑓 1 ◦ 𝜋
1)∗ ◦Φ(𝜀)),
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where the latter is a mixed Hodge complex of sheaves (see Definition 2.65). If we restrict to U, the map
between these mixed Hodge complexes of sheaves is just the map from the analytic forms on U (real or
complex) to its Godement resolution. Hence, this map induces the identity between the cohomology of
𝑅𝑚 ⊗𝑅 L itself, which concludes the proof. �

Lemma 6.13 (Independence of the compactification of G, fixing the compactification of U). Let 𝑌𝑖 be
an allowed compactification of G for 𝑖 = 1, 2. Suppose that X is a good compactification of U such that
𝑓 : 𝑈 → 𝐺 extends to algebraic maps 𝑓 1 : 𝑋 → 𝑌1 and 𝑓 2 : 𝑋 → 𝑌2. Let D be the simple normal
crossings divisor 𝑋\𝑈. Then, the MHS on 𝐻∗(𝑈, 𝑅𝑚⊗𝑅L) induced by (𝑅𝑚⊗N •𝑋,𝐷,𝑛, 𝑑+( 𝑓 1)

∗◦Φ𝑌1 (𝜀))

coincides with the MHS induced by (𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + ( 𝑓 2)
∗ ◦Φ𝑌2 (𝜀)).

Proof. First, we find an allowed compactification Y of G such that there exist algebraic maps 𝜋𝑖 : 𝑌 → 𝑌1,
as in the first sentence of the proof of Lemma 6.12. Now, take Z to be a good compactification of U
obtained by doing a resolution of singularities of the closure of the graph of 𝑓 : 𝑈 → 𝐺 inside of 𝑋 ×𝑌 .
Let 𝐷 � 𝑍 \𝑈. We get an algebraic map 𝑝 : 𝑍 → 𝑋 , and f extends to 𝑓 : 𝑍 → 𝑌 . Hence, it suffices to
show that the MHS on 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) induced by (𝑅𝑚 ⊗N •𝑋,𝐷,𝑛, 𝑑 + ( 𝑓 1)

∗ ◦Φ𝑌1 (𝜀)) coincides with
the MHS induced by (𝑅𝑚 ⊗ N •

𝑍,𝐷̂,𝑛
, 𝑑 + 𝑓

∗
◦Φ𝑌 (𝜀)).

Note that (𝜋1 ◦ 𝑓 )∗ ◦Φ𝑌1
K

= ( 𝑓 )∗ ◦Φ𝑌
K

forK = R,C (both are extensions of 𝑓 ∗ ◦Φ𝐺
K

). By Lemma 6.12,
the mixed Hodge complex of sheaves (𝑅𝑚 ⊗ N •

𝑍,𝐷̂,𝑛
, 𝑑 + (𝜋1 ◦ 𝑓 )∗ ◦ Φ𝑌1 (𝜀)) induces the same MHS

on 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) as (𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + ( 𝑓 1)
∗ ◦Φ𝑌1 (𝜀)). �

Theorem 6.14 (Independence of the compactifications of G and U). Let 𝑌𝑖 be an allowed compactifi-
cation of G, and let 𝑋𝑖 be a good compactification of U such that f extends to 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 , for 𝑖 = 1, 2.
Let 𝐷𝑖 = 𝑋𝑖 \𝑈. Then, the MHS on 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) endowed by (𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + ( 𝑓𝑖)

∗ ◦ Φ𝑌𝑖 (𝜀))
is the same for 𝑖 = 1, 2.

Proof. This follows from Lemmas 6.12 and 6.13 by finding suitable compactifications lying above the
ones given, using the same methods for doing so as in the proof of these two lemmas (resolution of
singularities of the closure of the diagonal of U or of G). �

6.3. The MHS on quotients of Alexander modules

In this section, we obtain other MHSs from the MHS on 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) given in Definition 6.1.

Corollary 6.15. Let 𝔞 be the maximal ideal of 𝑅∞. For every 𝑚 ∈ Z \ {0} and every 𝑚′ ∈ Z ≥ 0,
𝔞𝑚

′
𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) is a sub-MHS of 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L), and similarly replacing m by ∞ and “MHS”

by “pro-MHS.” Therefore, the quotients

𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L)
𝔞𝑚′𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L)

are quotient MHSs as well.

Proof. Note that 𝔞𝑚′𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) is the image of the map in Remark 6.7 composed with itself 𝑚′
times:

(𝐻1 (𝐺,R))⊗𝑚
′

⊗ 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) → (𝐻1 (𝐺,R))⊗(𝑚
′−1) ⊗ 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) → · · ·

The proof for 𝑚 = ∞ follows from Remark 6.7 and Remark 2.57. �

Corollary 6.16. The MHS in Definition 6.1 induces the following two sequences of MHS for 𝑚 ∈ Z≥1:

𝑅𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L); 𝑅𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L).
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The latter MHS induces through the R-module isomorphism 𝐻𝑖 (𝑈
𝑓 ,R) � 𝐻𝑖 (𝑈,L) from Remark 2.13

an MHS on 𝑅𝑚 ⊗𝑅 𝐻𝑖 (𝑈
𝑓 ,R).

Moreover, the quotient maps induced by 𝑅𝑚′ � 𝑅𝑚 for all 𝑚′ ≥ 𝑚 between these are MHS
morphisms.

Proof. By Remarks 2.23, 2.24 and 2.26, and Corollaries 2.29 and 2.30, we have the following 𝑅∞-
module isomorphisms:

𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L) � lim
←−−
𝑚

𝐻𝑖 (𝑈, 𝑅𝑚 ⊗𝑅 L);

𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L) � lim
←−−
𝑚

𝐻𝑖 (𝑈, 𝑅𝑚 ⊗𝑅 L) � lim
←−−
𝑚

HomR(𝐻𝑖 (𝑈, 𝑅−𝑚 ⊗𝑅 L),R).

These isomorphisms endow the right-hand side spaces with pro-MHS by Remarks 6.5 and 6.6. Further-
more, by Remarks 6.7 and 6.9, the multiplication maps

𝐻1(𝐺,R) ⊗R (𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L)) → 𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L)
𝐻1(𝐺,R) ⊗R (𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L)) → 𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L)

are pro-MHS morphisms. By Remark 2.57, the images and cokernels of the composition of pro-MHS
morphisms are pro-MHSs as well. In particular, 𝑅𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L) and 𝑅𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L) are pro-MHSs,
but they are also finite dimensional vector spaces, so they must be MHSs.

For the “moreover” part of the statement, note that the quotient maps

𝑅𝑚′ ⊗𝑅 𝐻𝑖 (𝑈,L) → 𝑅𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L)
𝑅𝑚′ ⊗𝑅 𝐻𝑖 (𝑈,L) → 𝑅𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L)

induced by 𝑅𝑚′ � 𝑅𝑚 for all 𝑚′ ≥ 𝑚 are induced in the quotients by the identity morphisms in
𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L) and 𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L), respectively, so they are MHS morphisms. �

Definition 6.17 (MHS on quotients of the Alexander modules by powers of the augmentation ideal).
Let 𝑚 ≥ 1, and let 𝔪 be the augmentation ideal of 𝑅 = K[𝜋1 (𝐺)].

◦ The R-module isomorphism 𝑅/𝔪𝑚 � 𝑅𝑚 from Remark 2.23 induces isomorphisms

𝐻𝑖 (𝑈,L)
𝔪𝑚𝐻𝑖 (𝑈,L)

� 𝑅/𝔪𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L) � 𝑅𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L),

𝐻𝑖 (𝑈,L)
𝔪𝑚𝐻𝑖 (𝑈,L) � 𝑅/𝔪𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L) � 𝑅𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L),

The right-hand sides of these isomorphisms are MHS by Corollary 6.16, which we use to define
MHS on 𝐻 𝑖 (𝑈,L)

𝔪𝑚𝐻 𝑖 (𝑈,L) and 𝐻𝑖 (𝑈,L)
𝔪𝑚𝐻𝑖 (𝑈,L) for all 𝑖 ≥ 0 and for all 𝑚 ≥ 1.

◦ The R-module isomorphism 𝐻𝑖 (𝑈
𝑓 ,R) � 𝐻𝑖 (𝑈,L) from Remark 2.13 (where R acts on 𝐻𝑖 (𝑈

𝑓 ,R)

by deck transformations) endows 𝐻𝑖 (𝑈
𝑓 ,R)

𝔪𝑚𝐻𝑖 (𝑈 𝑓 ,R)
with an MHS.

Remark 6.18. Since the isomorphisms 𝑅/𝔪𝑚′ � 𝑅𝑚′ and 𝑅/𝔪𝑚 � 𝑅𝑚 from Remark 2.23 form a
commutative diagram with the projections 𝑅/𝔪𝑚′ � 𝑅/𝔪𝑚 and 𝑅𝑚′ � 𝑅𝑚 for all 𝑚′ ≥ 𝑚 ≥ 1, the
projection morphisms

𝐻𝑖 (𝑈,L)
𝔪𝑚′𝐻𝑖 (𝑈,L)

→
𝐻𝑖 (𝑈,L)

𝔪𝑚𝐻𝑖 (𝑈,L)
,

𝐻𝑖 (𝑈,L)
𝔪𝑚′𝐻𝑖 (𝑈,L) →

𝐻𝑖 (𝑈,L)
𝔪𝑚𝐻𝑖 (𝑈,L)

are MHS morphisms.
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Recall that 𝜋1 (𝐺) acts on 𝐻𝑖 (𝑈,L) � 𝐻𝑖 (𝑈
𝑓 ,R) by deck transformations. The following result

states that the nilpotent logarithm of deck transformations respects the MHS on quotients of Alexander
modules.

Corollary 6.19. For all 𝛾 ∈ 𝜋1 (𝐺), let log 𝛾 ∈ 𝐻1 (𝐺,Z) be the element corresponding to 𝛾 via the
abelianization map. Let 𝔪 be the augmentation ideal of 𝑅 � R[𝜋1 (𝐺)], and let 𝑚 ≥ 1.

Then, the multiplication map defined as the only R-linear map satisfying that

𝐻1 (𝐺,R) ⊗R
𝐻 𝑖 (𝑈,L)

𝔪𝑚𝐻 𝑖 (𝑈,L)
−→

𝐻 𝑖 (𝑈,L)
𝔪𝑚𝐻 𝑖 (𝑈,L)

log 𝛾 ⊗ 𝑣 ↦−→ log(𝛾) · 𝑣

for all 𝛾 ∈ 𝜋1 (𝐺) and all 𝑣 ∈ 𝐻 𝑖 (𝑈,L)
𝔪𝑚𝐻 𝑖 (𝑈,L) is an MHS morphism, where log(𝛾)·𝑣 denotes the multiplication

by log(𝛾) � log(1 + (𝛾 − 1)), seen as a power series in 𝛾 − 1 ∈ 𝔪.
Moreover, if 𝐺 � (C∗)𝑛 for some 𝑛 ≥ 1, then for all 𝛾 ∈ 𝜋1 (𝐺), multiplication by log(𝛾) is an MHS

morphism from 𝐻 𝑖 (𝑈,L)
𝔪𝑚𝐻 𝑖 (𝑈,L)

to its (−1)-st Tate twist.

Furthermore, the same results hold if we replace 𝐻𝑖 (𝑈,L) by 𝐻𝑖 (𝑈,L) or 𝐻𝑖 (𝑈
𝑓 ,R) everywhere.

Proof. Note that the multiplication morphisms

𝐻1 (𝐺,R) ⊗R (𝑅𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L)) → 𝐻𝑖 (𝑈,L), 𝐻1(𝐺,R) ⊗R (𝑅𝑚 ⊗𝑅 𝐻𝑖 (𝑈,L)) → 𝐻𝑖 (𝑈,L)

are MHS morphisms because they are induced by the multiplication morphisms on 𝑅∞⊗𝑅𝐻
𝑖 (𝑈,L) and

𝑅∞ ⊗𝑅 𝐻𝑖 (𝑈,L), respectively, which are pro-MHS morphism by the proof of Corollary 6.16. Also note
that the isomorphism 𝑅/𝔪𝑚 � 𝑅𝑚 from Remark 2.23 takes log(𝛾) ∈ 𝑅/𝔪𝑚 to log 𝛾 ∈ 𝑅𝑚. The result
now follows from Remarks 6.7 and 6.10, and from the way the MHS of Definition 6.17 are constructed.
Note that the dual MHS of a j-th Tate twist corresponds to the (− 𝑗)-th Tate twist of the dual MHS. �

7. Functoriality

In this section we prove the following theorem, which is stated in terms of the homology of covers
instead of the homology of local systems (recall Remark 2.13) due to the geometric meaning of the
morphisms to which it applies.

Theorem 7.1 (Functoriality). Let 𝑈1,𝑈2 be smooth connected complex algebraic varieties, and let
𝐺1, 𝐺2 be semiabelian varieties. Consider a commutative diagram of algebraic morphisms

𝑈1 𝑈2

𝐺1 𝐺2

𝑓1

𝑔

𝑓2

𝜌

(7.2)

where 𝜌 is a group homomorphism. Let

𝑈
𝑓1

1 𝑈
𝑓2

2

𝑇𝐺1 𝑇𝐺2

𝑓̃1

𝑔

𝑓2

𝜌

(7.3)

be a commutative diagram which is the unique lift of (7.2) satisfying that 𝜌̃ is an additive group
homomorphism, and such that 𝑓̃1 and 𝑓̃2 are defined from the pullback diagrams as in (1.1).
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For 𝑖 = 1, 2, let 𝑅𝑖 = R[𝜋1 (𝐺𝑖)] and let 𝔪𝑖 be the augmentation ideal of 𝑅𝑖 . For 𝑚 ∈ Z≥1, let
𝑅𝑖𝑚 =

∏∞
𝑗=0 Sym 𝑗 𝐻1 (𝐺𝑖 ,R)∏∞
𝑗=𝑚 Sym 𝑗 𝐻1 (𝐺𝑖 ,R)

. Then, the following statements hold for the morphisms induced in homology

by 𝑔̃ : 𝑈 𝑓1
1 → 𝑈

𝑓2
1 :

1.

𝑔̃∗,𝑚 : 𝑅1
𝑚 ⊗𝑅1 𝐻 𝑗 (𝑈

𝑓1
1 ,R) → 𝑅2

𝑚 ⊗𝑅2 𝐻 𝑗 (𝑈
𝑓2

2 ,R)

is an MHS morphism for all 𝑗 ≥ 0 and for all 𝑚 ≥ 1, where the domain and the target have the MHS
from Corollary 6.16.

2. Equivalently,

𝑔̃∗,𝑚 :
𝐻 𝑗 (𝑈

𝑓1
1 ,R)

𝔪𝑚
1 𝐻 𝑗 (𝑈

𝑓1
1 ,R)

→
𝐻 𝑗 (𝑈

𝑓2
2 ,R)

𝔪𝑚
2 𝐻 𝑗 (𝑈

𝑓2
2 ,R)

is an MHS morphism for all 𝑗 ≥ 0 and for all 𝑚 ≥ 1, where the domain and the target have the MHS
from Definition 6.17.
Before we prove Theorem 7.1, let us interpret its statement in more detail: the commutative diagram

(7.2) induces a commutative cube

𝑈
𝑓1

1 𝑈
𝑓2

2

𝑇𝐺1 𝑇𝐺2

𝑈1 𝑈

𝐺1 𝐺2

𝑔

𝑓̃1

𝜋1

𝜋2
𝑓̃2

𝜌

exp
𝑔

𝑓1 𝑓2
𝜌

exp
(7.4)

as follows: the left and right sides of the cube are pullback diagrams, 𝜌̃ is the unique lift of 𝜌 to the
universal covers that is a group homomorphism, and 𝑔̃ is determined uniquely by g and 𝜌̃. The top of
this cube is the commutative diagram (7.3).

Also note that the morphism

𝑔̃∗ : 𝐻 𝑗 (𝑈
𝑓1

1 ,R) → 𝐻 𝑗 (𝑈
𝑓2

2 ,R)

induced in homology by 𝑔̃ for all 𝑗 ≥ 0 satisfies that 𝑔̃∗(𝛾 · −) = 𝜌∗(𝛾) · 𝑔̃∗(−) for all 𝛾 ∈ 𝜋1 (𝐺1), which
justifies that the maps 𝑔̃∗,𝑚 are well defined for all 𝑗 ≥ 0 and all 𝑚 ≥ 1.

7.1. Proof of Theorem 7.1

Remark 7.5. In the setting of Theorem 7.1, the commutative diagram (7.2) factors as

𝑈1 𝑈1 𝑈2

𝐺1 𝐺2 𝐺2,

𝑓1

Id

𝜌◦ 𝑓1

𝑔

𝑓2

𝜌 Id

(7.6)
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so the map 𝑈
𝑓1

1 → 𝑈
𝑓2

2 factors through 𝑈
𝜌◦ 𝑓1
1 . Therefore, it is enough to consider the cases where 𝜌 = Id

and 𝑔 = Id, which we will do in Theorems 7.14 and 7.15 respectively.

Let L1 � 𝑓 −1
1 exp! R𝑇𝐺1

, and let L2 � 𝑓 −1
2 exp! R𝑇𝐺2

. Let L1 (resp. L2) be L1 (resp. L2) with
the conjugate 𝑅1 (resp. 𝑅2)-module structure, as in Definition 2.12. Before we prove Theorem 7.1, we
need to recall how the MHS on 𝑅𝑖𝑚 ⊗𝑅𝑖 𝐻 𝑗 (𝑈

𝑓𝑖
𝑖 ,R) was defined (Definition 6.17) using mixed Hodge

complexes of sheaves, since the proof will need to realize the morphism 𝑔̃∗ as a morphism at the level
of the corresponding complexes of sheaves. The MHS on 𝑅𝑖𝑚 ⊗𝑅𝑖 𝐻 𝑗 (𝑈

𝑓𝑖
𝑖 ,R) is induced from the MHS

on 𝐻 𝑗 (𝑈𝑖 , 𝑅
𝑖
−𝑚′ ⊗𝑅𝑖 L𝑖) for all 𝑚′ ≥ 1 (from Definition 6.1) as follows:

1. The isomorphism 𝐻 𝑗 (𝑈𝑖 , 𝑅
𝑖
𝑚′ ⊗𝑅𝑖 L𝑖) � HomR(𝐻 𝑗 (𝑈𝑖 , 𝑅

𝑖
−𝑚′ ⊗𝑅𝑖 L𝑖),R) from Remark 2.26 endows

𝐻 𝑗 (𝑈𝑖 , 𝑅
𝑖
𝑚′ ⊗𝑅𝑖 L𝑖) with the dual MHS of 𝐻 𝑗 (𝑈𝑖 , 𝑅

𝑖
−𝑚′ ⊗𝑅𝑖 L𝑖) for all 𝑚′ ≥ 1.

2. The isomorphism 𝑅𝑖∞ ⊗𝑅𝑖 𝐻 𝑗 (𝑈𝑖 ,L𝑖) � lim
←−−𝑚′

𝐻 𝑗 (𝑈𝑖 , 𝑅
𝑖
𝑚′ ⊗𝑅𝑖 L𝑖) from Corollary 2.30 endows

𝑅𝑖∞ ⊗𝑅𝑖 𝐻 𝑗 (𝑈𝑖 ,L𝑖) with a pro-MHS, where the morphisms in the inverse limits are the ones induced
by the projections 𝑅𝑖𝑚′′ � 𝑅𝑖𝑚′ for all 𝑚′′ > 𝑚′ (Remark 6.6).

3. 𝑅𝑖𝑚 ⊗𝑅𝑖 𝐻 𝑗 (𝑈𝑖 ,L𝑖) is endowed with an MHS in Corollary 6.16 as the cokernels of the multiplication
map

𝐻1(𝐺1,R) ⊗R . . . ⊗R 𝐻1(𝐺1,R)︸�������������������������������������︷︷�������������������������������������︸
𝑚

⊗R
(
𝑅𝑖∞ ⊗𝑅𝑖 𝐻 𝑗 (𝑈𝑖 ,L𝑖)

)
→

(
𝑅𝑖∞ ⊗𝑅𝑖 𝐻 𝑗 (𝑈𝑖 ,L𝑖)

)
,

which is a morphism of pro-MHS (Remark 6.9).
4. 𝑅𝑖𝑚 ⊗𝑅𝑖 𝐻 𝑗 (𝑈

𝑓𝑖
𝑖 ,R) is endowed with the MHS from 𝑅𝑖𝑚 ⊗𝑅𝑖 𝐻 𝑗 (𝑈𝑖 ,L𝑖) through the natural isomor-

phism 𝐻 𝑗 (𝑈
𝑓𝑖
𝑖 ,R) � 𝐻 𝑗 (𝑈𝑖 ,L𝑖) from Remark 2.13, which comes from an isomorphism at the level

of chain complexes (Corollary 6.16).

The following two lemmas address the question of how to realize the morphism 𝑔̃∗ as a morphism
between complexes of sheaves.

Lemma 7.7. Suppose that 𝜌 = Id in the setting from Theorem 7.1. Let us denote 𝐺 � 𝐺1 = 𝐺2,
𝑅 = R[𝜋1 (𝐺)] and 𝑅𝑚 � 𝑅1

𝑚 = 𝑅2
𝑚 for all 𝑚 ≥ 1. Then, L1 = 𝑔−1L2, and the map 𝑔̃∗ : 𝐻 𝑗 (𝑈

𝑓1
1 ,R) →

𝐻 𝑗 (𝑈
𝑓2

2 ,R) is induced through steps (1)–(4) above for all 𝑗 ≥ 0 by the adjunction Id→ 𝑅𝑔∗𝑔
−1 applied

to the sheaves 𝑅−𝑚′ ⊗ L2 for all 𝑚′ > 1.

Proof. Following [35, p.60], let

𝑆 𝑗 (𝑈𝑖 ,L𝑖) �

{∑
𝜎

𝑙𝜎𝜎 (finite linear combination)
!!!! 𝜎 : Δ 𝑗 → 𝑈𝑖 is a singular 𝑗-simplex, and

𝑙𝜎 ∈ Γ(Δ 𝑗 , 𝜎−1L𝑖)

}
.

Through the usual differential of singular homology and restrictions of 𝑙𝜎 to the faces of 𝜎, we obtain
𝑆•(𝑈𝑖 ,L𝑖), the singular chain complex that computes 𝐻 𝑗 (𝑈𝑖 ,L𝑖) for all j. The morphism in homology
induced by 𝑔̃∗ through the isomorphism in Step (4) above comes from the following map of chain
complexes.

𝑔̂ : 𝑆 𝑗 (𝑈1,L1) −→ 𝑆 𝑗 (𝑈2,L2)∑
𝜎 𝑙𝜎𝜎 ↦−→

∑
𝜎 𝑙𝜎𝑔 ◦ 𝜎

Since L1 = 𝑔−1L2, we have that Γ(Δ 𝑗 , 𝜎−1L1) = Γ(Δ 𝑗 , (𝑔 ◦ 𝜎)−1L2), so this definition makes sense.
A similar definition can be given for a map between the chain complexes corresponding to truncated
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local systems, namely

𝑔̂𝑚′ : 𝑆 𝑗 (𝑈1, 𝑅𝑚′ ⊗𝑅 L1) −→ 𝑆 𝑗 (𝑈2, 𝑅𝑚′ ⊗𝑅 L2)∑
𝜎 (𝑎 ⊗ 𝑙𝜎)𝜎 ↦−→

∑
𝜎 (𝑎 ⊗ 𝑙𝜎)𝑔 ◦ 𝜎

where 𝑎 ∈ 𝑅𝑚′ and 𝑙𝜎 ∈ Γ(Δ 𝑗 , 𝜎−1L1). Note that Γ(Δ 𝑗 , 𝜎−1𝑅𝑚′ ⊗𝑅 L1) = 𝑅𝑚′ ⊗𝑅 Γ(Δ 𝑗 , 𝜎−1L1), so
this is well defined. Analogously, we may define 𝑔̂∞. If we pass to the inverse limit, these morphisms
𝑆•(𝑈1, 𝑅𝑚′ ⊗𝑅 L1) → 𝑆•(𝑈2, 𝑅𝑚′ ⊗𝑅 L2) for all 𝑚′ induce through the isomorphism in Step (2) the
same morphism in homology as 𝑔̂∞ (note that 𝑅∞ is a flat R-module). The multiplication map in Step
(3) above can be lifted to a morphism of chain complexes

𝐻1(𝐺1,R) ⊗R . . . ⊗R 𝐻1(𝐺1,R)︸�������������������������������������︷︷�������������������������������������︸
𝑚

⊗R (𝑆•(𝑈𝑖 , 𝑅∞ ⊗𝑅 L𝑖)) → 𝑆•(𝑈𝑖 , 𝑅∞ ⊗𝑅 L𝑖),

inducing a multiplication map

𝐻1(𝐺1,R) ⊗R . . . ⊗R 𝐻1(𝐺1,R)︸�������������������������������������︷︷�������������������������������������︸
𝑚

⊗R𝐻 𝑗 (𝑈𝑖 , 𝑅∞ ⊗𝑅 L𝑖) → 𝐻 𝑗 (𝑈𝑖 , 𝑅∞ ⊗𝑅 L𝑖)

for 𝑖 = 1, 2, and for all 𝑗 ≥ 0. For a fixed j, the morphism that 𝑔̂∞ induces in the cokernel of these
multiplication maps coincides with 𝑅𝑚 ⊗ 𝐻 𝑗 (𝑔̃). All that is left to see is that the morphisms induced
by 𝑔̂𝑚′ in homology agree with the dual of the morphisms induced in cohomology by adjunction
Id→ 𝑅𝑔∗𝑔

−1 applied to the sheaf 𝑅−𝑚 ⊗𝑅 L2 through the isomorphism in Step (1) above.
The isomorphism in Step (1) can be realized at the level of chains as follows: Let 𝑆•(𝑈𝑖 , 𝑅−𝑚′ ⊗𝑅 L𝑖)

the complex obtained by taking the R-dual of 𝑆•(𝑈𝑖 , 𝑅𝑚′ ⊗𝑅 L𝑖). The dual of 𝑔̂𝑚′ is

(𝑔̂𝑚′ )
∨ : 𝑆 𝑗 (𝑈2, 𝑅−𝑚′ ⊗𝑅 L2) −→ 𝑆 𝑗 (𝑈1, 𝑅−𝑚′ ⊗𝑅 L1)

𝐻 ↦−→ 𝐻 ◦ 𝑔̂𝑚′ .

Note that 𝑆 𝑗 (−, 𝑅−𝑚′ ⊗𝑅 L𝑖) is a presheaf. Let 𝑆 𝑗 (−, 𝑅−𝑚′ ⊗𝑅 L𝑖) be its sheafification. We will use
facts stated in [43, p.360, section F]. 𝑆•(−, 𝑅−𝑚′ ⊗𝑅 L𝑖) is a complex of fine presheaves which is a
resolution (in the category of presheaves on𝑈𝑖) of 𝑅−𝑚′ ⊗𝑅 L𝑖 , where the resolution map 𝑅−𝑚 ⊗𝑅 L𝑖 →

𝑆0 (−, 𝑅−𝑚′ ⊗𝑅 L𝑖) is given locally on 𝑉𝑖 ⊂ 𝑈𝑖 by

𝑏 ↦→

(
𝑆0 (𝑉𝑖 , 𝑅𝑚 ⊗𝑅 L𝑖) −→ R∑

𝑥∈𝑉𝑖 𝑙𝜎𝑥𝜎𝑥 ↦−→
∑

𝜎 𝑏𝑥 (𝑙𝜎𝑥 ),

)
where 𝜎𝑥 is the map from Δ0 to 𝑥 ∈ 𝑉𝑖 , 𝑙𝜎𝑥 is in the stalk of 𝑅𝑚 ⊗𝑅 L𝑖 at the point x, and we are using
that 𝑅𝑚 ⊗𝑅 L𝑖 and 𝑅−𝑚 ⊗𝑅 L𝑖 are R-dual local systems. Hence, 𝑆•(−, 𝑅−𝑚′ ⊗𝑅 L𝑖) is a resolution of
𝑅−𝑚′ ⊗𝑅L𝑖 (in the category of sheaves on𝑈𝑖) of fine sheaves. In particular 𝑆• (−, 𝑅−𝑚′ ⊗𝑅L𝑖) is a complex
of acyclic sheaves with respect to pushforwards, so it can be used to compute 𝐻 𝑗 (𝑈𝑖 , 𝑅−𝑚′ ⊗𝑅 L𝑖).
Moreover, the sheafification morphism induces an isomorphism

𝐻 𝑗 (𝑆 𝑗 (𝑈𝑖 , 𝑅−𝑚′ ⊗𝑅 L𝑖))
�
−→ 𝐻 𝑗 (𝑈𝑖 , 𝑅−𝑚′ ⊗𝑅 L𝑖)

for all j. It suffices to show that the morphism induced by (𝑔̂𝑚′ )∨ in cohomology coincides through this
isomorphism with the map 𝑅−𝑚′ ⊗𝑅 L2 → 𝑅𝑔∗(𝑅−𝑚′ ⊗𝑅 L1) induced by the adjunction Id→ 𝑅𝑔∗𝑔

−1

in sheaf cohomology. Consider the morphism

𝑎𝑚′ : 𝑅−𝑚 ⊗𝑅 L2 −→ 𝑔∗(𝑅−𝑚 ⊗𝑅 L1)
𝛼 ⊗ 𝜄 ↦−→ 𝛼 ⊗ 𝜄 ◦ 𝑔,
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where 𝜄 : 𝑉 → 𝑇𝐺 satisfies that exp ◦𝜄 = 𝑓2. Note that (𝑔̂𝑚′ )∨ can be easily extended to a morphism of
complexes of presheaves (𝑔̂𝑚′ )∨ : 𝑆•(−, 𝑅−𝑚 ⊗𝑅 L2) → 𝑔∗𝑆

•(−, 𝑅−𝑚 ⊗𝑅 L2). The result follows from
the commutativity of this diagram and the fact that the complexes of (pre)sheaves that appear are fine.

𝑅−𝑚′ ⊗𝑅 L2

𝑔∗

(
𝑅−𝑚′ ⊗𝑅 L1

)
𝑆•(−, 𝑅−𝑚′ ⊗𝑅 L2) 𝑔∗𝑆

•(−, 𝑅−𝑚′ ⊗𝑅 L1)

𝑆•(−, 𝑅−𝑚′ ⊗𝑅 L2) 𝑔∗𝑆
•(−, 𝑅−𝑚′ ⊗𝑅 L1)

𝑎𝑚′

resolution

adjunction Id→𝑅𝑔∗𝑔
−1

𝑔∗ of resolution

(𝑔𝑚′ )
∨

sheafification 𝑔∗ of sheafification

�

Lemma 7.8. Suppose that 𝑔 = Id in the setting of Theorem 7.1, and let 𝑈 � 𝑈1 = 𝑈2. Let 𝜌∗ denote
the induced map in homology, which generates a map 𝑅1

𝑚′ → 𝑅2
𝑚′ for all 𝑚′ ≥ 1. After applying the

isomorphisms in Steps (1)–(4) above, the map 𝑔̃∗,𝑚 in Theorem 7.1 is induced by the following maps of
sheaves for all 𝑚′ ≥ 1:

𝑅2
−𝑚′ ⊗𝑅2 L2 −→ 𝑅1

−𝑚′ ⊗𝑅1 L1
𝜙 ⊗ 𝜌̃ ◦ 𝜄0 ↦→ 𝜙 ◦ 𝜌∗ ⊗ 𝜄0.

Here 𝜙 is any element of 𝑅2
−𝑚′ = HomR(𝑅2

𝑚′ ,R) and 𝜄0 is a local generator of L1, that is, a local lift
𝑈 → 𝑇𝐺1 satisfying that exp ◦𝜄0 = 𝑓1.
Proof. Seeing𝑈 𝑓𝑖 as subsets of𝑈×𝑇𝐺𝑖 , we have that 𝑔̃(𝑢, 𝑧) = (𝑢, 𝜌̃(𝑧)), so the map 𝑔̃∗ : 𝐻 𝑗 (𝑈

𝑓1 ,R) →
𝐻 𝑗 (𝑈

𝑓2 ,R) coincides through the identifications in Step (4) with the map that the morphism

L1 −→ L2
𝜄 ↦−→ 𝜌 ◦ 𝜄.

(7.9)

induces in homology, where the morphism above is described in terms of local sections (local lifts of 𝑓𝑖
to 𝑈 → 𝑇𝐺𝑖). Notice that the morphism (7.9) descends to the truncated local systems as

𝑅1
𝑚′ ⊗𝑅1 L1 −→ 𝑅2

𝑚′ ⊗𝑅2 L2
𝑎 ⊗ 𝜄0 ↦−→ 𝜌∗(𝑎) ⊗ 𝜌̃ ◦ 𝜄0

(7.10)

for all 𝑚′ ≥ 0. By Step (2), the inverse limit of the maps in homology induced by these morphisms
coincides with the map in homology induced by

𝑅1
∞ ⊗𝑅1 L1 −→ 𝑅2

∞ ⊗𝑅2 L2
𝑎 ⊗ 𝜄0 ↦−→ 𝜌∗(𝑎) ⊗ 𝜌̃ ◦ 𝜄0,

(7.11)

which makes the following diagram commute, where the horizontal arrows are multiplication.

𝐻1(𝐺1,R) ⊗R
(
𝑅∞ ⊗ 𝐻 𝑗 (𝑈,L1)

)
𝑅∞ ⊗ 𝐻 𝑗 (𝑈,L1)

𝐻1(𝐺2,R) ⊗R
(
𝑅∞ ⊗ 𝐻 𝑗 (𝑈,L2)

)
𝑅∞ ⊗ 𝐻 𝑗 (𝑈,L2).

𝜌∗ ⊗(𝜌∗ ⊗𝐻 𝑗 ( (7.9))) 𝜌∗ ⊗𝐻 𝑗 ( (7.9))=𝐻 𝑗 ( (7.11))=lim
←−𝑚′

𝐻 𝑗 ( (7.10))
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The equality 𝜌∗ ⊗ 𝐻 𝑗 ((7.9)) = 𝐻 𝑗 ((7.11)) follows because 𝑅𝑖∞ is a flat 𝑅𝑖-module. In light of Step
(3), the commutativity of the diagram above tells us that we just need to identify what the morphism
𝑅2
−𝑚′ ⊗𝑅2 L2 → 𝑅1

−𝑚′ ⊗𝑅1 L1 corresponding to (7.10) is through the chain of isomorphisms at the
level of sheaves from Remark 2.8 (see Step (1)), and check that it agrees with the one described in the
statement of this Lemma.

Let 𝑚′ ≥ 1, let 𝜙 ∈ 𝑅2
−𝑚′ = HomR(𝑅2

𝑚′ ,R), and let 𝜄0 be a local section of L1. Note that 𝜌̃ ◦ 𝜄0
generates L2 locally over 𝑅2, so any element of 𝑅2

−𝑚′ ⊗𝑅2 L2 can be written as 𝜙 ⊗ 𝜌̃ ◦ 𝜄0 for some
𝜙 ∈ 𝑅2

−𝑚′ . For two lifts 𝜄, 𝜄′ : 𝑈 → 𝐺𝑖 , let us use 〈𝜄′, 𝜄〉 ∈ 𝜋1 (𝐺𝑖) ⊂ 𝑅𝑖 the pairing between L𝑖 and L𝑖

from Remark 2.17, which is defined by 〈𝜄, 𝜄〉 = 1. We have the following chain of isomorphisms from
Remark 2.26:

𝑅2
−𝑚′ ⊗𝑅2 L2 � 𝑅2

−𝑚′ ⊗Hom𝑅2 (L2, 𝑅
2) � Hom𝑅2 (L2,HomR(𝑅2

𝑚′ ,R))

𝜙 ⊗ 𝜌̃ ◦ 𝜄0 ↔ 𝜙 ⊗ (𝜄 ↦→ 〈𝜌̃ ◦ 𝜄0, 𝜄〉) ↔ 𝜄 ↦→ (𝑏 ↦→ 𝜙(〈𝜌̃ ◦ 𝜄0, 𝜄〉 · 𝑏))

� HomR(𝑅2
𝑚′ ⊗𝑅2 L2,R)

↔ (𝑏 ⊗ 𝜄) ↦→ 𝜙(〈𝜌̃ ◦ 𝜄0, 𝜄〉 · 𝑏).

Now, we have the following morphism

HomR (𝑅2
𝑚′ ⊗𝑅2 L2,R) −→ HomR(𝑅1

𝑚′ ⊗𝑅1 L1,R)
𝐻 ↦−→ (𝑎 ⊗ 𝜄0 → 𝐻 (𝜌∗(𝑎) ⊗ 𝜌̃ ◦ 𝜄0)),

(7.12)

which is the R-dual of (7.10). Hence, the composition of the chain of isomorphisms above with (7.12)
takes 𝜙 ⊗ 𝜌̃ ◦ 𝜄0 to (𝑎 ⊗ 𝜄0 ↦→ 𝜙(𝜌∗(𝑎))). Going backwards through the chain of isomorphisms of
Remark 2.26, we have:

HomR(𝑅1
𝑚′ ⊗𝑅1 L1,R) � Hom𝑅1 (L1,HomR (𝑅1

𝑚′ ,R)) � 𝑅1
−𝑚′ ⊗Hom𝑅1 (L1, 𝑅

1)

(𝑎 ⊗ 𝜄0) ↦→ 𝜙(𝜌∗(𝑎)) ↔ 𝜄0 ↦→ 𝜙 ◦ 𝜌∗ ↔ 𝜙 ◦ 𝜌∗ ⊗ (𝜄0 ↦→ 〈𝜄0, 𝜄0〉)

� 𝑅1
−𝑚′ ⊗ L1

↔ 𝜙 ◦ 𝜌∗ ⊗ 𝜄0

In conclusion, the map of sheaves is the one we claimed. �

Remark 7.13. Suppose that 𝜌 is an algebraic morphism, but not a group homomorphism. In that case,
one cannot pick a canonical lift 𝜌̃ to the universal covers, so there are many choices of 𝜌̃ (each of which
determines a choice of 𝑔̃) that make the cube (7.4) commutative. However, notice that the hypothesis
that 𝜌 is a group homomorphism was not used in the proof of Lemma 7.8. Hence, if 𝑔 = Id, the map

𝑔̃∗,𝑚 : 𝑅1
𝑚 ⊗𝑅1 𝐻 𝑗 (𝑈

𝑓1 ,R) → 𝑅2
𝑚 ⊗𝑅2 𝐻 𝑗 (𝑈

𝑓2 ,R)

induced by the choice of 𝑔̃ determined by the choice of 𝜌̃ is induced by the morphisms 𝑅2
−𝑚′ ⊗𝑅2 L2 →

𝑅1
−𝑚′ ⊗𝑅1 L1 through Steps (1)–(4). Note that if 𝜌 is a homeomorphism (for example, a translation in a

semiabelian variety G) and 𝑔 = Id, then 𝑔̃∗,𝑚 is an isomorphism.

Theorem 7.14 (Functoriality, 𝜌 = Id). Theorem 7.1 holds if 𝜌 = Id.

Proof. Let us denote 𝐺 � 𝐺1 = 𝐺2, 𝑅 = R[𝜋1 (𝐺)] and 𝑅𝑚 � 𝑅1
𝑚 = 𝑅2

𝑚 for all 𝑚 ≥ 1. By Lemma 7.7
it suffices to show that the adjunction morphism Id→ 𝑅𝑔∗𝑔

−1 applied to the sheaves 𝑅−𝑚′ ⊗L2 induces
MHS isomorphisms in cohomology for all 𝑚′ ≥ 1.
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Let 𝑌1, 𝑌2 be compactifications of G and 𝑋1, 𝑋2 be compactifications of 𝑈1 and 𝑈2 such that

𝑋1 𝑋2

𝑌1 𝑌2

𝑔

𝑓1 𝑓2

Id

forms a compatible compactification with respect to the commutative diagram (7.2), where 𝜌 = Id. Let
𝑗𝑖 : 𝑈𝑖 → 𝑋𝑖 be the inclusion for 𝑖 = 1, 2. We have that 𝑅( 𝑗2)∗ of the adjunction morphism yields
𝑅( 𝑗2)∗(𝑅−𝑚′ ⊗𝑅 L2) → 𝑅(𝑔)∗𝑅( 𝑗1)∗(𝑅−𝑚′ ⊗𝑅 L1). At the level of the thickened logarithmic Dolbeault
complexes which are quasi-isomorphic to 𝑅( 𝑗𝑖)∗(𝑅−𝑚′ ⊗𝑅 L𝑖) for 𝑖 = 1, 2, this is the composition of(

𝑅−𝑚′ ⊗R A•𝑋2 ,R
(log 𝐷2), 𝑑 + ( 𝑓2)

∗ ◦Φ𝑌2
R
(𝜀R)

)
→

(𝑔)∗

(
𝑅−𝑚′ ⊗R A•𝑋1 ,R

(log 𝐷1), 𝑑 + ( 𝑓1)
∗ ◦Φ𝑌1

R
(𝜀R)

)
,

given by the pullback of forms through 𝑔 (which is a morphism of complexes of sheaves by the proof of
Proposition 3.17 and the fact that Φ𝑌1

R
= Id

∗
◦Φ𝑌2

R
) with (𝑔)∗ of the inclusion of(

𝑅−𝑚′ ⊗R A•𝑋1 ,R
(log 𝐷1), 𝑑 + ( 𝑓1)

∗ ◦Φ𝑌1
R
(𝜀R)

)
into its Godement resolution. Since 𝑔 is algebraic, the first of these morphisms respects the weight
filtrations 𝑊�. Hence, picking 𝑛 ≥ max{2, dimR𝑈1, dimR𝑈2}, both of these morphisms will respect the
weight filtrations 𝑊𝑛

� , which are biregular. Recall the definition of the derived direct image of a mixed
Hodge complex of sheaves (Definition 2.65). Using Proposition 3.17, we see that composition above
extends to a morphism of mixed Hodge complexes of sheaves(

𝑅−𝑚′ ⊗ N •𝑋2 ,𝐷2 ,𝑛
, 𝑑 + 𝑓2

∗
◦Φ𝑌2 (𝜀)

)
→ 𝑅(𝑔)∗

(
𝑅−𝑚′ ⊗ N •𝑋1 ,𝐷1 ,𝑛

, 𝑑 + 𝑓1
∗
◦Φ𝑌1 (𝜀)

)
,

where the morphism between the complex part is also given by the pullback by 𝑔. Indeed, pullback
by 𝑔 respects both the weight and Hodge filtrations there, and it is straightforward to check that
𝑅(𝑔)∗

(
𝑒 𝑓1
∗
◦Ψ𝑌1 (𝜀C)

)
composed with the real part of the morphism (tensored by ⊗RC) coincides with

the composition of the complex part of this morphism and 𝑒 𝑓2
∗
◦Ψ𝑌2 (𝜀C) . This proves that the morphism

induced by adjunction Id→ 𝑅𝑔∗𝑔
−1 applied to 𝑅−𝑚 ⊗𝑅 L2 yields MHS morphisms in cohomology

𝐻 𝑗 (𝑈2, 𝑅−𝑚′ ⊗𝑅 L2) → 𝐻 𝑗 (𝑈1, 𝑅−𝑚′ ⊗𝑅 L1)

for all 𝑚′ ≥ 1 and for all 𝑗 ≥ 1. �

Theorem 7.15 (Functoriality, 𝑔 = Id). Theorem 7.1 holds if 𝑔 = Id.
Proof. Let us denote 𝑈 � 𝑈1 = 𝑈2. By Lemma 7.8 it suffices to show that the maps of sheaves
𝑅2
−𝑚′ ⊗𝑅2 L2 → 𝑅1

−𝑚′ ⊗𝑅1 L1 given by 𝜙 ⊗ 𝜌̃ ◦ 𝜄0 ↦→ 𝜙 ◦ 𝜌∗ ⊗ 𝜄0 induces MHS isomorphisms in
cohomology for all 𝑚′ ≥ 1, where 𝜙 ∈ 𝑅2

−𝑚′ and 𝜄0 is a local generator of L1.
Let 𝑌1, 𝑌2 be compactifications of 𝐺1 and 𝐺2, and let X be a compactification of U such that

𝑋 𝑋

𝑌1 𝑌2

Id

𝑓1 𝑓2
𝜌
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forms a compatible compactification with respect to the commutative diagram (7.2), where 𝑔 = Id. Let
𝑗 : 𝑈 → 𝑋 be the inclusion, and let 𝐷 = 𝑋 \ 𝑈. Now, we consider the thickened complexes from
Definition 4.10. (

𝑅𝑖−𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓
∗

𝑖 ◦Φ
𝑌𝑖 (𝜀)

)
,

where 𝑛 ≥ max{2, dimR𝑈}.
Let 𝜌𝑚 : 𝑅2

−𝑚 → 𝑅1
−𝑚 be the dual of the morphism 𝑅1

𝑚 → 𝑅2
𝑚 induced by 𝜌∗ : 𝐻1 (𝐺1,R) →

𝐻1 (𝐺2,R). By Proposition 3.15, since 𝜌∗ : 𝐻1 (𝐺2,R) → 𝐻1(𝐺1,R) is an MHS morphism, 𝜌𝑚 ⊗ Id
induces a morphism of mixed Hodge complexes (taking into account Corollary 4.12, which ensures that
the Φ’s and Ψ’s we have defined commute with 𝜌∗).

The resulting morphism of mixed Hodge complexes of sheaves induces a morphism of MHSs, as
desired. It remains to show that it agrees with the one in Lemma 7.8. First, note that it results, up to
natural quasi-isomorphism (see Definition 6.1) from applying 𝑅 𝑗∗ to

𝑅2
−𝑚 ⊗R A•𝑈,R

𝜌𝑚⊗Id
−−−−−→ 𝑅1

−𝑚 ⊗R A•𝑈,R

so we just need to show that the following diagram commutes:

𝑅2
−𝑚 ⊗𝑅2 L2 𝑅2

−𝑚 ⊗R A•𝑈,R

𝑅1
−𝑚 ⊗𝑅1 L1 𝑅1

−𝑚 ⊗R A•𝑈,R

𝑒
−(Φ

𝐺2
R
)∨

𝜙⊗𝜌◦ 𝜄0 ↦→𝜙◦𝜌∗ ⊗ 𝜄0 𝜌𝑚⊗Id

𝑒
−(Φ

𝐺1
R
)∨

The proof is done via direct computation. A generator of L2 can be given as 𝜌̃ ◦ 𝜄, where 𝜄 is a
generator of L1. Let us write 𝜄 =

∑
𝑗 𝑒 𝑗 ⊗ ℎ 𝑗 , where ℎ 𝑗 are analytic functions on U and {𝑒 𝑗 } is an

R-basis of 𝑇𝐺1. Applying 𝜌̃ results in the element 𝜌̃ ◦ 𝜄 =
∑

𝑗 𝜌̃(𝑒 𝑗 ) ⊗ ℎ 𝑗 . If 𝛼 ∈ 𝑅2
−𝑚, then

(𝜌𝑚 ⊗ Id) (𝑒−(Φ
𝐺2
R
)∨ )

(
𝛼 ⊗ 𝜌̃ ◦ 𝜄

)
= (𝜌𝑚 ⊗ Id)

(
𝛼 · exp

(
−
∑
𝑗

(Φ𝐺2
R
)∨( 𝜌̃(𝑒 𝑗 )) ⊗ ℎ 𝑗

))
= (𝜌𝑚 ⊗ Id)

(
𝛼 · exp

(
−
∑
𝑗

𝜌∗(Φ
𝐺1
R
)∨(𝑒 𝑗 ) ⊗ ℎ 𝑗

)) (
Corollary 4.12, taking duals, using

that 𝜌 is a homomorphism

)
Going through the other path, the generator 𝛼⊗

∑
𝑗 𝜌̃(𝑒 𝑗 ) ⊗ ℎ 𝑗 is mapped to 𝛼 ◦ 𝜌∗ ⊗

∑
𝑗 𝑒 𝑗 ⊗ ℎ 𝑗 through

the vertical arrow. Therefore, we have:

𝑒−(Φ
𝐺1
R
)∨

(
𝛼 ◦ 𝜌∗ ⊗

∑
𝑗

𝑒 𝑗 ⊗ ℎ 𝑗

)
= 𝜌𝑚(𝛼) · exp

(
−
∑
𝑗

(Φ𝐺1
R
)∨(𝑒 𝑗 ) ⊗ ℎ 𝑗

)
.

To show that the above two expressions coincide, we just need to show that for any 𝛽 ∈ 𝐻1(𝐺1,R) and
any 𝛼 ∈ Hom(Sym 𝑗 𝐻1 (𝐺2,R),R),

(𝜌∗𝛽 · 𝛼) ◦ 𝜌∗ = 𝛽 · (𝛼 ◦ 𝜌∗).

The proof is a computation: we use the fact that the product

𝐻1(𝐺𝑖 ,R) ⊗ (Sym 𝑗 𝐻1 (𝐺𝑖 ,R))
∨ → (Sym 𝑗−1 𝐻1 (𝐺𝑖 ,R))

∨
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is the dual of 𝐻1(𝐺𝑖 ,R) ⊗ Sym 𝑗−1 𝐻1(𝐺𝑖 ,R) → Sym 𝑗 𝐻1(𝐺𝑖 ,R). For any 𝛾 ∈ Sym 𝑗−1 𝐻1 (𝐺1,R),

〈(𝜌∗𝛽 · 𝛼) ◦ 𝜌∗, 𝛾〉 = 〈𝜌∗𝛽 · 𝛼, 𝜌∗𝛾〉 = 〈𝛼, 𝜌∗𝛽 · 𝜌∗𝛾〉 =

〈𝛼, 𝜌∗(𝛽 · 𝛾)〉 = 〈𝛼 ◦ 𝜌∗, 𝛽 · 𝛾〉 = 〈𝛽 · 𝛼 ◦ 𝜌∗, 𝛾〉. �

7.2. A more general statement

Suppose that 𝜌 : 𝐺1 → 𝐺2 in the statement of Theorem 7.1 is an algebraic morphism but not a group
homomorphism. In that case, Remark 2.8 says that there exists a group homomorphism 𝜌1 : 𝐺1 → 𝐺2
and a translation 𝜌2 : 𝐺2 → 𝐺2 such that 𝜌 = 𝜌2 ◦ 𝜌1, and the commutative diagram (7.2) can be
decomposed as

𝑈1 𝑈2 𝑈2

𝐺1 𝐺2 𝐺2.

𝑓1

𝑔

𝜌−1
2 ◦ 𝑓2

Id

𝑓2

𝜌1 𝜌2

Theorem 7.1 says that the commutative square on the left induces an MHS homomorphism between the
quotients of Alexander modules of (𝑈1, 𝑓1) and (𝑈2, 𝜌

−1
2 ◦ 𝑓2) by powers of the respective augmentation

ideals. Hence, in this more general setting, it suffices to understand what happens for the commutative
square on the right. This is done in the following result. The main issue is that, while any group
homomorphism between semiabelian varieties lifts to a unique group homomorphism between its
universal covers, algebraic morphisms between semiabelian varieties don’t have a canonical lift to their
universal covers in general. To avoid this dependence on the base points, we will compose it with another
map in (co)homology in a way that the composition does not depend on the choice of base points used
to construct the lift.

Theorem 7.16. Consider the commutative diagram

𝑈 𝑈

𝐺 𝐺

Id

𝑓 𝜌◦ 𝑓

𝜌

where 𝜌 : 𝐺 → 𝐺 is a translation, that is, multiplication by an element 𝑥 ∈ 𝐺. Let 𝑦 ∈ 𝑇𝐺 such that
exp(𝑦) = 𝑥. Let L1 � 𝑓 −1 exp! R𝑇𝐺 and L2 � (𝜌 ◦ 𝑓 )−1 exp! R𝑇𝐺 . Then, the following hold:

◦ If 𝜌̃ : 𝑇𝐺 → 𝑇𝐺 is addition by y, then exp ◦𝜌̃ = 𝜌 ◦ exp.
◦ Let 𝜁 𝑦𝑚 : 𝑅−𝑚⊗𝑅L2 → 𝑅−𝑚⊗𝑅L1 be the morphism from Remark 7.13 given by 𝜙⊗ 𝜌̃ ◦ 𝜄 ↦→ 𝜙◦𝜌∗ ⊗ 𝜄.

The composition 𝑒−(Φ
𝐺
R
)∨ (𝑦) ◦ 𝜁

𝑦
𝑚 induces through Steps (1)–(4) the morphism

𝑒−(Φ
𝐺
R
)∨ (𝑦) ◦ Ĩd∗,𝑚 : 𝑅𝑚 ⊗𝑅 𝐻 𝑗 (𝑈

𝑓 ,R) → 𝑅𝑚 ⊗𝑅 𝐻 𝑗 (𝑈
𝜌◦ 𝑓 ,R),

where 𝑒−(Φ
𝐺
R
)∨ (𝑦) denotes the multiplication by 𝑒−(Φ

𝐺
R
)∨ (𝑦) ∈ 𝑅∞, and Ĩd∗,𝑚 is the map induced by

the lift Ĩd : 𝑈 𝑓 → 𝑈𝜌◦ 𝑓 of Id which is determined by 𝜌̃ as in Theorem 7.1.
◦ The morphism 𝑒−(Φ

𝐺
R
)∨ (𝑦) ◦ 𝜁

𝑦
𝑚 is independent of the choice of 𝑦 ∈ 𝑇𝐺 such that exp(𝑦) = 𝑥.

◦ 𝑒−(Φ
𝐺
R
)∨ (𝑦) ◦ Ĩd∗,𝑚 is an isomorphism of MHS.

In particular, 𝐻 𝑗 (𝑈
𝑓 ,R)

𝔪𝑚𝐻 𝑗 (𝑈 𝑓 ,R)
and 𝐻 𝑗 (𝑈

𝜌◦ 𝑓 ,R)

𝔪𝑚𝐻 𝑗 (𝑈𝜌◦ 𝑓 ,R)
are canonically isomorphic, although not through the

map Ĩd in general.
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Proof. The proof of the first point is immediate. The second point is a consequence of Remark 7.13 and
the fact that theR-dual of multiplication by an element of 𝑅∞ is also multiplication by an element of 𝑅∞.

For the third point, notice that, since G is path connected, 𝜌 is homotopic to the identity in G. In
particular, 𝜁 𝑦𝑚(−𝜙 ⊗ 𝜌̃ ◦ 𝜄) = 𝜙 ⊗ 𝜄. Notice also that for all 𝑦, 𝑦′ ∈ 𝑇𝐺 such that exp(𝑦) = exp(𝑦′) one
has that 𝑦 − 𝑦′ ∈ 𝐻1(𝐺,Z) ⊂ 𝑇𝐺. In particular, 𝑦 − 𝑦′ is fixed by (Φ𝐺

R
)∨, so

(Φ𝐺
R )
∨(𝑦) − (Φ𝐺

R )
∨(𝑦′) = (Φ𝐺

R )
∨(𝑦 − 𝑦′) = 𝑦 − 𝑦′ ∈ 𝐻1(𝐺,Z).

Hence,

𝑒−(Φ
𝐺
R
)∨ (𝑦) ◦ 𝜁

𝑦
𝑚 (𝜙 ⊗ 𝜄 + 𝑦) = 𝑒−(Φ

𝐺
R
)∨ (𝑦) ◦ (𝜙 ⊗ 𝜄) =

(
𝑒−(Φ

𝐺
R
)∨ (𝑦) · 𝜙

)
⊗ 𝜄,

and, if we let 𝛾 ∈ 𝜋1 (𝐺) be the element corresponding to 𝑦 − 𝑦′ ∈ 𝐻1 (𝐺,Z) (i.e., log 𝛾 = 𝑦 − 𝑦′ using
the notation of Remark 2.23), then

𝑒−(Φ
𝐺
R
)∨ ◦ 𝜁

𝑦′

𝑚 (𝜙 ⊗ 𝜄 + 𝑦) = 𝑒−(Φ
𝐺
R
)∨ (𝑦′) ◦ (𝜙 ⊗ 𝜄 + 𝑦 − 𝑦′) = (𝑒−(Φ

𝐺
R
)∨ (𝑦′) · 𝜙) ⊗ 𝛾−1𝜄

= 𝑒−(𝑦−𝑦
′) (𝑒−(Φ

𝐺
R
)∨ (𝑦′) · 𝜙) ⊗ 𝜄 = (𝑒−(Φ

𝐺
R
)∨ (𝑦) · 𝜙) ⊗ 𝜄,

which concludes the proof of the third point.
For the fourth point a similar computation to that of (5.6) yields that the morphism 𝜁

𝑦
𝑚 : 𝑅−𝑚⊗𝑅L2 →

𝑅−𝑚 ⊗𝑅L1 lifts through the morphisms 𝑒−(Φ𝐺R )∨ from Construction 5.4 to a morphism 𝑅−𝑚 ⊗RA0
𝑈,R →

𝑅−𝑚 ⊗R A0
𝑈,R given by multiplication by 𝑒 (Φ

𝐺
R
)∨ (𝑦) ∈ 𝑅∞ in the first factor. This is done using that

𝜌∗ : 𝑅𝑚 → 𝑅𝑚 is the identity. Hence, 𝑒−(Φ𝐺R )∨ (𝑦) ◦ 𝜁 𝑦𝑚 lifts through the morphisms 𝑒−(Φ
𝐺
R
)∨ from

Construction 5.4 to the identity morphism in 𝑅−𝑚 ⊗RA0
𝑈,R, which in turn lifts to the identity morphism

in 𝑅−𝑚 ⊗R A•𝑈,R. Finding compatible compactifications of U and G with respect to the commutative
diagram in the statement of this lemma, it is clear that the identity morphism can be realized at the
level of mixed Hodge complexes of sheaves from Definition-Proposition 2.73, and hence it induces a
morphism of MHS in hypercohomology. In particular, 𝑒−(Φ𝐺R )∨ (𝑦) ◦ Ĩd∗,𝑚 is a morphism of MHS which
is an isomorphism of vector spaces, so it is an isomorphism of MHS. �

The following example conveys that the MHS defined in this paper have the potential of distinguishing
(up to algebraic isomorphism) algebraic varieties whose cohomology groups have isomorphic MHS.
This could be interesting in the case of affine hypersurface complements (Example 2.36).

Example 7.17. Let U be a smooth connected complex algebraic variety. By Remark 2.32, its Albanese
map 𝛼𝑈 : 𝑈 → 𝐺 is completely determined up to translation in the target. By Remark 2.35, 𝑈𝛼𝑈 is the
universal (torsion-free) abelian cover of U, which is a topological invariant (i.e., it does not depend on
𝛼𝑈 , just on U). Let 𝔪 be the augmentation ideal of R[𝜋1 (𝐺)]. By Theorem 7.16, the isomorphism class
of the mixed Hodge structure on 𝐻 𝑗 (𝑈

𝛼𝑈 ,R)
𝔪𝑚𝐻 𝑗 (𝑈 𝛼𝑈 ,R) is an algebraic invariant of (𝑈, 𝑚), that is, it depends on

the algebraic structure of U and on the value of 𝑚 ≥ 1, but not on the choice of Albanese map 𝛼𝑈 .

7.3. Compatibility with Deligne’s MHS

We end this section by showing the compatibility of the MHS defined in this paper with Deligne’s MHS,
as a consequence of functoriality.

Corollary 7.18. Let U be a smooth connected complex algebraic variety, let G be a semiabelian variety,
and let 𝑓 : 𝑈 → 𝐺 be an algebraic morphism. Let 𝜋 : 𝑈 𝑓 → 𝑈 be the pullback of exp : 𝑇𝐺 → 𝐺 by
f. Let 𝑅 = R[𝜋1 (𝐺)], and let 𝔪 be its augmentation ideal. Then, the map that 𝜋 induces in homology

https://doi.org/10.1017/fms.2025.10102 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10102


Forum of Mathematics, Sigma 65

factors through the MHS morphism

𝐻 𝑗 (𝑈
𝑓 ,R)

𝔪𝑚𝐻 𝑗 (𝑈 𝑓 ,R)
→ 𝐻 𝑗 (𝑈,R)

for all 𝑗 ≥ 0 and all 𝑚 ≥ 1, where 𝐻 𝑗 (𝑈,R) is endowed with Deligne’s MHS.

Proof. The statement follows from applying Theorem 7.1 in the case where 𝑈1 = 𝑈2 = 𝑈, 𝐺1 = 𝐺, 𝐺2
is a point, 𝑓1 = 𝑓 and g is the identity. Indeed, in this case 𝑅2 = R = 𝑅2

𝑚, 𝑈 𝑓2 = 𝑈 and 𝑔̃ = 𝜋, so in
particular the augmentation ideal 𝔪2 of 𝑅2 is (0). The thickened logarithmic Dolbeault mixed Hodge
complex of sheaves (𝑅2

𝑚 ⊗ N •𝑋,𝐷,𝑛, 𝑑 + 𝑓2
∗
◦ Φ𝑌 ) from Definition 4.10 constructed form (𝑈, 𝑓2, 𝑚)

coincides with the mixed Hodge complex of sheaves (N •𝑋,𝐷,𝑛, 𝑑) from Definition-Proposition 2.73, so
by Remark 2.74, the pro-MHS on 𝑅2

∞ ⊗𝑅2 𝐻 𝑗 (𝑈
𝑓2 ,R) = 𝐻 𝑗 (𝑈

𝑓2 ,R) from Corollary 6.16 coincides with
Deligne’s MHS on 𝐻 𝑗 (𝑈,R). Hence, the MHS on 𝐻 𝑗 (𝑈

𝑓2 ,R) � 𝐻 𝑗 (𝑈
𝑓2 ,R)

𝔪𝑚2 𝐻 𝑗 (𝑈
𝑓2 ,R)

from Definition 6.17
coincides with Deligne’s MHS on 𝐻 𝑗 (𝑈,R). �

8. Completion with respect to other ideals

Let U be a smooth connected complex algebraic variety, let G be a complex semiabelian variety and
let 𝑓 : 𝑈 → 𝐺 be an algebraic map. Let H be a finite index subgroup of 𝜋1 (𝐺), and let 𝔪𝐻 be the
augmentation ideal of 𝑅𝐻 � R[𝐻] ⊂ R[𝜋1 (𝐺)] = 𝑅. Note that 𝔪𝐻𝑅 is the ideal of R given by

𝔪𝐻𝑅 = (𝛾 − 1 | 𝛾 ∈ 𝐻).

The goal of this section is to endow 𝐻𝑖 (𝑈
𝑓 ,K)

(𝔪𝐻 )𝑚𝐻𝑖 (𝑈 𝑓 ,K)
with a canonical MHS for all 𝑖 ≥ 0 and for all

𝑚 ≥ 1. Here, (𝔪𝐻 )
𝑚𝐻𝑖 (𝑈

𝑓 ,K), which in principle is an 𝑅𝐻 -submodule of 𝐻𝑖 (𝑈
𝑓 ,K), can also be

seen as an R-submodule by identifying it with (𝔪𝐻𝑅)𝑚𝐻𝑖 (𝑈
𝑓 ,K).

For this, we start by passing to the finite cover induced by H as follows: let 𝑝𝐻 : 𝐺𝐻 → 𝐺 be
the covering space corresponding to H, where 𝐺𝐻 is a semiabelian variety and 𝑝𝐻 is morphism of
algebraic groups (see Remark 2.27). Note that this determines 𝑝𝐻 : 𝐺𝐻 → 𝐺 up to unique isomorphism
of semiabelian varieties on the domain.

The pair ( 𝑓 , 𝑝𝐻 ) determines the following pullback diagram:

𝑈𝐻 ⊂ 𝑈 × 𝐺𝐻 𝐺𝐻

𝑈 𝐺.

𝑓𝐻

𝜋𝐻
�

𝑝𝐻

𝑓

(8.1)

Note that 𝜋𝐻 : 𝑈𝐻 → 𝑈 is a finite cover of U, with deck transformation group H (the same as
𝑝𝐻 : 𝐺𝐻 → 𝐺). Note also that 𝑝𝐻 induces a unique isomorphism of vector spaces 𝑝̃𝐻 : 𝑇𝐺𝐻 → 𝑇𝐺,
such that exp ◦𝑝̃𝐻 = 𝑝𝐻 ◦ exp.

We define the following map, which is easily seen to be an isomorphism of complex analytic varieties,
where𝑈 𝑓𝐻

𝐻 is constructed from the pullback diagram of ( 𝑓𝐻 , exp) as𝑈 𝑓 is constructed from the pullback
diagram of ( 𝑓 , exp):

𝜃𝐻 : 𝑈 𝑓 −→ 𝑈
𝑓𝐻
𝐻

(𝑢, 𝑧) ↦−→
((
𝑢, exp( 𝑝̃𝐻 −1(𝑧))

)
, 𝑝̃𝐻

−1 (𝑧)
)
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It fits into the following commutative cube:

𝑈
𝑓𝐻
𝐻 𝑈 𝑓

𝑇𝐺𝐻 𝑇𝐺

𝑈𝐻 𝑈

𝐺𝐻 𝐺

𝜃−1
𝐻

𝑓̃𝐻

𝜋′

𝜋
𝑓

𝑝̃𝐻

exp𝜋𝐻

𝑓𝐻 𝑓

𝑝𝐻

exp
(8.2)

Here, the bottom face of the cube is the pullback diagram above, and the left and right faces are also
pullback diagrams.

A straightforward computation shows that 𝜋𝐻 ◦ 𝜋′ ◦ 𝜃𝐻 = 𝜋, so 𝜋′ ◦ 𝜃𝐻 : 𝑈 𝑓 → 𝑈𝐻 is a covering
space and 𝜃𝐻 is an isomorphism of covering spaces over 𝑈𝐻 . Hence, 𝜃𝐻 induces an isomorphism
(𝜃𝐻 )∗ : 𝐻 𝑗 (𝑈

𝑓 ,K) → 𝐻 𝑗 (𝑈
𝑓𝐻
𝐻 ,K) of R[𝐻]-modules for all 𝑗 ≥ 0. Note that 𝛾 ∈ 𝐻 ≤ 𝜋1 (𝐺) acts on

𝐻 𝑗 (𝑈
𝑓 ,K) by (𝑝𝐻 )∗(𝛾), where the latter is seen as a deck transformation of 𝜋 : 𝑈 𝑓 → 𝑈. In particular,

𝜃𝐻 induces isomorphisms of R[𝐻] = R[𝜋1 (𝐺𝐻 )]-modules

𝐻 𝑗 (𝑈
𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
�

𝐻 𝑗 (𝑈
𝑓𝐻
𝐻 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈
𝑓𝐻
𝐻 ,K)

.

Proposition 8.3. Let H be a finite index subgroup of 𝜋1 (𝐺). Let 𝔪 be the augmentation ideal of
𝑅 = R[𝜋1 (𝐺)], and let 𝔪𝐻 be the augmentation ideal of 𝑅𝐻 = R[𝐻] ⊂ 𝑅. Let 𝑓 : 𝑈 → 𝐺 be an
algebraic map, where U is a smooth connected complex algebraic variety, and let 𝜋 : 𝑈 𝑓 → 𝐺 be the
corresponding abelian cover corresponding to f as in (1.1). Then,

𝐻 𝑗 (𝑈
𝑓 ,R)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,R)

has a canonical MHS for all 𝑗 ≥ 0 and for all 𝑚 ≥ 1 such that the natural projection morphism

𝐻 𝑗 (𝑈
𝑓 ,R)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,R)
�

𝐻 𝑗 (𝑈
𝑓 ,R)

𝔪𝑚𝐻 𝑗 (𝑈 𝑓 ,R)

is a morphism of mixed Hodge structures.

Proof. Using the notation in the discussion above, the isomorphism induced by 𝜃𝐻 can be used to

endow 𝐻 𝑗 (𝑈
𝑓 ,R)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,R)
with an MHS from the canonical MHS of 𝐻 𝑗 (𝑈

𝑓𝐻
𝐻 ,R)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈
𝑓𝐻
𝐻 ,R)

from Definition 6.17.

For this MHS on 𝐻 𝑗 (𝑈
𝑓 ,R)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,R)
to be canonical it must not depend on the choice of 𝐺𝐻 , which

is determined up to unique isomorphism of semiabelian varieties, but this follows from functoriality
(Theorem 7.1). The statement about the projection map follows from functoriality (Theorem 7.1) applied
to the commutative diagram (8.1). �

Proposition 8.4. Let 𝜋1 (𝐺) = 𝐾0 ≥ 𝐾1 ≥ 𝐾2 . . . a sequence such that 𝐾𝑖 is a finite index subgroup of
𝐾𝑖−1 for all 𝑖 ≥ 1. Then, the following is a diagram of MHS morphisms, where all the maps involved are
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the natural projections and the MHS are the ones from Proposition 8.3.

. . .
...

...
...

. . .
𝐻 𝑗 (𝑈

𝑓 ,R)

(𝔪𝐾2 )
3𝐻 𝑗 (𝑈 𝑓 ,R)

𝐻 𝑗 (𝑈
𝑓 ,R)

(𝔪𝐾2 )
2𝐻 𝑗 (𝑈 𝑓 ,R)

𝐻 𝑗 (𝑈
𝑓 ,R)

𝔪𝐾2𝐻 𝑗 (𝑈
𝑓 ,R)

. . .
𝐻 𝑗 (𝑈

𝑓 ,R)

(𝔪𝐾1 )
3𝐻 𝑗 (𝑈 𝑓 ,R)

𝐻 𝑗 (𝑈
𝑓 ,R)

(𝔪𝐾1 )
2𝐻 𝑗 (𝑈 𝑓 ,R)

𝐻 𝑗 (𝑈
𝑓 ,R)

𝔪𝐾1𝐻 𝑗 (𝑈
𝑓 ,R)

. . .
𝐻 𝑗 (𝑈

𝑓 ,R)

𝔪3𝐻 𝑗 (𝑈 𝑓 ,R)

𝐻 𝑗 (𝑈
𝑓 ,R)

𝔪2𝐻 𝑗 (𝑈 𝑓 ,R)

𝐻 𝑗 (𝑈
𝑓 ,R)

𝔪𝐻 𝑗 (𝑈 𝑓 ,R)

(8.5)

Proof. Construct a chain of covering spaces

. . .→ 𝐺𝐾2 → 𝐺𝐾1 → 𝐺

and use those semiabelian varieties to endow the different modules in the diagram with canonical MHS
as in the proof of Proposition 8.3. The vertical projections are morphisms of MHS by Proposition 8.3.
The horizontal projections are morphism of MHS by Remark 6.18. �

Example 8.6. Suppose that 𝐺 = C∗. In this case, 𝑅 = R[𝜋1 (𝐺)] is isomorphic to R[𝑡±1], where t
is a generator of 𝜋1 (𝐺). The map 𝑝 : C∗ → C∗ that sends z to 𝑧𝑁 is a finite cover. In this setting,
Proposition 8.4 applied to the chain of subgroups 𝜋1 (𝐺) = 〈𝑡〉 ≥ 〈𝑡𝑁 〉 ≥ 〈𝑡2𝑁 〉 ≥ 〈𝑡4𝑁 〉 yields
the commutative diagram (8.5), where (𝔪𝐾𝑙 )

𝑚 = (𝑡2
𝑙−1𝑁 − 1)𝑚 for all 𝑙 ≥ 1 and all 𝑚 ≥ 1, and

(𝔪)𝑚 = (𝑡 − 1)𝑚.

9. Eigenspace decomposition

In this section, U, G, f,𝐺𝐻 , 𝑝𝐻 ,𝑈𝐻 , 𝑓𝐻 , 𝜋, 𝜋𝐻 , 𝜋′, 𝜃𝐻 , and the augmentation ideals𝔪 ⊂ 𝑅 = R[𝜋1 (𝐺)],
and 𝔪𝐻 ⊂ 𝑅𝐻 = R[𝐻] will be as in Section 8. Let L (resp. L𝐻 ) be the local system of R[𝜋1 (𝐺)]-
modules given by ( 𝑓 )−1 exp! R𝑇𝐺 (resp. ( 𝑓𝐻 )−1 exp! R𝑇𝐺𝐻 ), and let L (resp. L𝐻 ) be the corresponding
local system endowed with its conjugate R[𝜋1 (𝐺)]-module (resp. R[𝐻]-module) structure.

The rings 𝑅𝐻
∞ and 𝑅𝐻

𝑚 for 𝑚 > 0 will be defined from 𝐺𝐻 , that is, 𝑅𝐻
∞ �

∏∞
𝑗=0 Sym 𝑗 𝐻1(𝐺𝐻 ,R),

𝑅𝐻
𝑚 �

𝑅𝐻∞∏∞
𝑗=𝑚 Sym 𝑗 𝐻1 (𝐺𝐻 ,R)

. Similarly, for all 𝑚 > 0, 𝑅𝐻
−𝑚 � HomR (𝑅𝐻

𝑚 ,R). The same construction can
be carried out for C coefficients, and, abusing notation, will be denoted equally, as in Section 3.

The goal of this section is to prove the following theorem, which provides a generalization of Theorem
[17, Theorem 1.3].

Theorem 9.1. Let 𝛾 ∈ 𝜋1 (𝐺), which acts on 𝐻 𝑗 (𝑈
𝑓 ,R) by a deck transformation of 𝜋 : 𝑈 𝑓 → 𝑈. Let

H be a finite index subgroup of 𝜋1 (𝐺), and let 𝔪𝐻 be the augmentation ideal of R[𝐻]. Let 𝛾 = 𝛾𝑠𝑠𝛾𝑢

be the Jordan-Chevalley decomposition of 𝛾 acting on 𝐻 𝑗 (𝑈
𝑓 ,R)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,R)
as the product of a semisimple

(i.e., diagonalizable) operator and a unipotent (i.e., 𝛾𝑢 − Id is nilpotent) operator that commute with
each other. Then,

𝛾𝑠𝑠 :
𝐻 𝑗 (𝑈

𝑓 ,R)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,R)
→

𝐻 𝑗 (𝑈
𝑓 ,R)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,R)

is an MHS isomorphism for all 𝑗 ≥ 0 and all 𝑚 ≥ 1.
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Since 𝛾 acts quasi-unipotently on 𝐻 𝑗 (𝑈
𝑓 ,R)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,R)
(i.e., 𝛾𝑁 − Id is a nilpotent operator, where N is the

order of the class of 𝛾 in 𝜋1 (𝐺)/𝐻) and 𝜋1 (𝐺) is an abelian group, Theorem 9.1 immediately implies
the following result. It uses the terminology of the lesser-known C-MHSs; see cf. [17, Definition 2.1]
for a definition.

Corollary 9.2 (Eigenspace decomposition). Let 𝛾 ∈ 𝜋1 (𝐺), let N be the order of the class of 𝛾 in the
quotient 𝜋1 (𝐺)/𝐻 and letK = R,C. Let 𝑔(𝑥) ∈ K[𝑥] be a monic irreducible factor of 𝑥𝑁 −1, and let 𝐸𝛾

𝑔

be the kernel of 𝑔(𝛾𝑠𝑠) : 𝐻 𝑗 (𝑈
𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
→

𝐻 𝑗 (𝑈
𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
for 𝑚 � 0, so in particular, if 𝑔(𝑥) = 𝑥 −𝜆

for some N-th root of unity 𝜆 ∈ K, 𝐸𝛾
𝑔 is the generalized eigenspace of eigenvalue 𝜆.

Then, the inclusion 𝐸
𝛾
𝑔 ↩→

𝐻 𝑗 (𝑈
𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
endows 𝐸𝛾

𝑔 with a K-MHS, and the direct sum decompo-
sition

𝐻 𝑗 (𝑈
𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
=
⊕
𝑔

𝐸
𝛾
𝑔

is an MHS decomposition, that is, the MHS on the right-hand side is a direct sum of MHS as in the
left-hand side.

Moreover, let n be the rank of 𝜋1 (𝐺), and let {𝛾1, . . . , 𝛾𝑛} be a basis of 𝜋1 (𝐺) as a Z-module.
Consider all the n-tuples 𝑔 = (𝑔1, . . . , 𝑔𝑛) such that 𝑔𝑖 (𝑥) ∈ K[𝑥] is a monic irreducible factor of
𝑥𝑁𝑖 − 1, where 𝑁𝑖 is the order of the class of 𝛾𝑖 in the quotient 𝜋1 (𝐺)/𝐻. Denote 𝐸𝑔 �

𝑛⋂
𝑖=1

𝐸
𝛾𝑖
𝑔𝑖 . Then,

𝐻 𝑗 (𝑈
𝑓 ,K)

(𝔪𝐻 )𝑚𝐻 𝑗 (𝑈 𝑓 ,K)
=
⊕
𝑔

𝐸𝑔

is a finer K-MHS decomposition.

Theorem 9.1 will be proved by passing to the finite cover𝑈𝐻 of U, so first, we need to specify certain
identifications between local systems on U and 𝑈𝐻 . Let L𝐻 � 𝑓 −1

𝐻 exp! R𝑇𝐺 and L � 𝑓 −1 exp! R𝑇𝐺 .
From the commutative cube (8.2), we deduce the following chain of canonical identifications:

(𝜋𝐻 )∗L𝐻 = (𝜋𝐻 )∗( 𝑓𝐻 )
−1 exp! R𝑇𝐺𝐻 = (𝜋𝐻 )!( 𝑓𝐻 )

−1 exp! R𝑇𝐺𝐻 = (𝜋𝐻 )!(𝜋
′)!( 𝑓̃𝐻 )

−1R𝑇𝐺𝐻 =

𝜋! (𝜃
−1
𝐻 )!( 𝑓̃𝐻 )

−1R𝑇𝐺𝐻 = 𝜋! (𝜃𝐻 )
−1( 𝑓̃𝐻 )

−1R𝑇𝐺𝐻 = 𝜋! ( 𝑓̃ )
−1( 𝑝̃𝐻

−1)−1R𝑇𝐺 = 𝜋! ( 𝑓̃ )
−1R𝑇𝐺 = L.

Here, the superscript−1 is used to describe the inverse image functor when the function is in parentheses,
and the inverse of a bijective map when there are no parentheses, we hope that the use is clear from the
context. Recall that the R[𝐻]-module structure on L𝐻 side is by deck transformations of 𝜋′ : 𝑈 𝑓𝐻

𝐻 →

𝑈𝐻 , and the R[𝐻]-module structure on L is by seeing H inside of 𝜋1 (𝐺) and thus considering the
elements of H as deck transformations of 𝜋 : 𝑈 𝑓 → 𝑈. Hence, the chain of identifications above
induces an isomorphism of R[𝐻]-modules between the (conjugate) local systems

𝜃L𝐻 : (𝜋𝐻 )∗L𝐻 → L.

Let 𝛾 ∈ 𝜋1 (𝐺), and let T𝛾 : 𝑈 𝑓 → 𝑈 𝑓 be the corresponding deck transformation of 𝜋. By definition,
𝛾 ∈ R[𝜋1 (𝐺)] has an action on L induced by T𝛾 , that is, if 𝜄 is a local section of L seen as a map
𝜄 : 𝑈 → 𝑇𝐺 such that exp ◦𝜄 = 𝑓 , 𝛾 · 𝜄 = 𝜄 + log 𝛾. The action of T𝛾 descends to the deck transformation
of 𝜋𝐻 , which we will also denote T𝛾 : 𝑈𝐻 → 𝑈𝐻 .

Now, note that for all (𝑢, 𝑧) ∈ 𝑈 𝑓 ⊂ 𝑈 × 𝑇𝐺, 𝛾 · (𝑢, 𝑧) = (𝑢, 𝑧 + log 𝛾), where log 𝛾 is the element
of 𝐻1(𝐺,Z) corresponding to 𝛾 through the abelianization. In that sense, we can think of 𝛾 ∈ 𝜋1 (𝐺)
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as acting on 𝑈
𝑓𝐻
𝐻 through the isomorphism 𝜃𝐻 as follows: for every ((𝑢, 𝑠), 𝑤) ∈ 𝑈 𝑓𝐻

𝐻 ⊂ 𝑈𝐻 × 𝑇𝐺𝐻 ⊂

𝑈 × 𝐺𝐻 × 𝑇𝐺𝐻 ,

𝛾 · ((𝑢, 𝑠), 𝑤) � 𝜃𝐻 ◦ (𝛾·) ◦ 𝜃
−1
𝐻 ((𝑢, 𝑠), 𝑤) =

((
𝑢, 𝑠 · exp( 𝑝̃𝐻 −1(log 𝛾))

)
, 𝑤 + 𝑝̃𝐻

−1 (log 𝛾)
)
.

The following result below is a generalization of [17, Lemma 3.1] (where 𝐺 = C∗). The proof is a
straightforward verification on local sections which follows the same steps as in [17, Lemma 3.1], so we
omit it. In it, we describe the 𝛾-action on L𝐻 , similarly as to how we have described the 𝛾-action on𝑈 𝑓𝐻

𝐻 .

Lemma 9.3. Let 𝛾 ∈ 𝜋1 (𝐺). There is a morphism of sheaves M𝛾 : L𝐻 → (T𝛾)∗L𝐻 such that after
taking (𝜋𝐻 )∗ it becomes multiplication by 𝛾, that is, the following composition is multiplication by 𝛾:

L
𝜃−1
L𝐻
−−−−→
∼
(𝜋𝐻 )∗L𝐻

(𝜋𝐻 )∗M𝛾
−−−−−−−−→ (𝜋𝐻 )∗(T𝛾)∗L𝐻 = (𝜋𝐻 ◦ T𝛾)∗L𝐻 = (𝜋𝐻 )∗L𝐻

𝜃L𝐻
−−−−→
∼

L.

Furthermore, for every local section 𝜄 of L𝐻 (seen as a map 𝜄 : 𝑈𝐻 → 𝑇𝐺𝐻 such that exp ◦𝜄 = 𝑓𝐻 ),
M𝛾 is given by

M𝛾 (𝜄) = ( 𝑝̃𝐻
−1 ◦ (− log 𝛾) ◦ 𝑝̃𝐻 ) ◦ 𝜄 ◦ T𝛾 = (𝜄 − 𝑝̃𝐻

−1 log 𝛾) ◦ T𝛾 ,

where (− log 𝛾) : 𝑇𝐺 → 𝑇𝐺 is defined by 𝑧 → 𝑧 − log 𝛾.

Remark 9.4. From now on, we are going to be working on complexes of sheaves defined over 𝑈𝐻 . We
will look at the map that M𝛾 induces between 𝑅𝐻

𝑚 ⊗𝑅𝐻 L𝐻 and itself, namely Id ⊗M𝛾 . For simplicity
in the notation, we will denote Id ⊗M𝛾 also by M𝛾 from now on. Note

The following is a higher dimensional generalization of [17, Lemma 3.3].

Lemma 9.5. Let 𝑚 ∈ Z \ {0}. Under the quasi-isomorphism

𝑒−(Φ
𝐺𝐻
R
)∨ : 𝑅𝐻

𝑚 ⊗𝑅 L𝐻 →
(
𝑅𝐻
𝑚 ⊗R A•𝑈𝐻 ,R, 𝑑 + ( 𝑓𝐻 )

∗ ◦Φ𝐺𝐻
R
(𝜀R)

)
from Construction 5.4, the map M𝛾 (where M𝛾 was defined in Lemma 9.3) becomes the following
morphism of complexes of sheaves, defined 𝑅𝐻

∞ -linearly as

M̃𝛾 :
(
𝑅𝐻
𝑚 ⊗R A•𝑈𝐻 ,R, 𝑑 + ( 𝑓𝐻 )

∗ ◦Φ𝐺𝐻
R
(𝜀R)

)
−→ (T𝛾)∗

(
𝑅𝐻
𝑚 ⊗R A•𝑈𝐻 ,R, 𝑑 + ( 𝑓𝐻 )

∗ ◦Φ𝐺𝐻
R
(𝜀R)

)
1 ⊗ 𝜔 ↦−→ 𝑒 𝑝̃𝐻

−1 (log 𝛾) ⊗ (T𝛾)∗𝜔.

In other words, the following diagram commutes:

𝑅𝐻
𝑚 ⊗𝑅𝐻 L𝐻 (T𝛾)∗𝑅𝐻

𝑚 ⊗𝑅𝐻 L𝐻

(
𝑅𝐻
𝑚 ⊗R A•𝑈𝐻 ,R, 𝑑 + ( 𝑓𝐻 )

∗ ◦Φ𝐺𝐻
R
(𝜀R)

)
(T𝛾)∗

(
𝑅𝐻
𝑚 ⊗R A•𝑈𝐻 ,R, 𝑑 + ( 𝑓𝐻 )

∗ ◦Φ𝐺𝐻
R
(𝜀R)

)
.

M𝛾

𝑒
−(Φ

𝐺𝐻
R

)∨ (T𝛾)∗𝑒−(Φ
𝐺𝐻
R

)∨

M̃𝛾

Proof. Since 𝑝∗𝐻 : 𝐻1(𝐺,R) → 𝐻1 (𝐺𝐻 ,R) is surjective, M̃𝛾 is a morphism of complexes of sheaves.
Moreover, since T𝛾 is a deck transformation of 𝜋𝐻 : 𝑈𝐻 → 𝑈,

T ∗𝛾 ◦ 𝑓 ∗𝐻 ◦Φ
𝐺𝐻
R
◦ 𝑝∗𝐻 = T ∗𝛾 ◦ 𝑓 ∗𝐻 ◦ 𝑝

∗
𝐻 ◦Φ

𝐺
R = T ∗𝛾 ◦ 𝜋∗𝐻 ◦ 𝑓 ∗ ◦Φ𝐺

R = 𝜋∗𝐻 ◦ 𝑓 ∗Φ𝐺
R = 𝑓 ∗𝐻 ◦Φ

𝐺𝐻
R

.
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The rest of the proof is a direct application of the definitions of the morphisms involved which can
be checked on elements of the form 1 ⊗ 𝜄, where 𝜄 is a local section of L𝐻 . It uses that (Φ𝐺𝐻

R
)∨ fixes

𝐻1 (𝐺𝐻 ,R), so in particular it fixes 𝑝̃𝐻
−1 log 𝛾. �

Let M̃𝑠𝑠
𝛾 be the following morphism of complexes of sheaves, defined 𝑅𝐻

∞ -linearly as

M̃𝑠𝑠
𝛾 :

(
𝑅𝐻
𝑚 ⊗R A•𝑈𝐻 ,R, 𝑑 + ( 𝑓𝐻 )

∗ ◦Φ𝐺𝐻
R
(𝜀R)

)
−→ (T𝛾)∗

(
𝑅𝐻
𝑚 ⊗R A•𝑈𝐻 ,R, 𝑑 + ( 𝑓𝐻 )

∗ ◦Φ𝐺𝐻
R
(𝜀R)

)
1 ⊗ 𝜔 ↦−→ 1 ⊗ (T𝛾)∗𝜔

Lemma 9.6. The morphism M𝑠𝑠
𝛾 induces an isomorphism of MHS in cohomology

ℎ𝑠𝑠 : 𝐻 𝑗 (𝑈𝐻 , 𝑅
𝐻
𝑚 ⊗𝑅𝐻 L𝐻 ) → 𝐻 𝑗 (𝑈𝐻 , 𝑅

𝐻
𝑚 ⊗𝑅𝐻 L𝐻 )

for all 𝑗 ≥ 0 and all 𝑚 ∈ Z \ {0} through the quasi-isomorphism 𝑒−(Φ
𝐺𝐻
R
)∨ .

Proof. We denote also by T𝛾 : 𝐺𝐻 → 𝐺𝐻 be the deck transformation of 𝑝𝐻 : 𝐺𝐻 → 𝐺 induced by
𝛾 ∈ 𝜋1 (𝐺). Let 𝑌1, 𝑌2 be compactifications of 𝐺𝐻 and 𝑋1, 𝑋2 be compactifications of 𝑈𝐻 such that the
first commutative diagram in

𝑋1 𝑋2

𝑌1 𝑌2

T𝛾

𝑓𝐻 𝑓𝐻
T𝛾

𝑈𝐻 𝑈𝐻

𝐺𝐻 𝐺𝐻

T𝛾

𝑓𝐻 𝑓𝐻

T𝛾

forms a compatible compactification with respect to the second commutative diagram.
Let 𝐷𝑖 � 𝑋𝑖 \𝑈𝐻 for 𝑖 = 1, 2. Note that 𝑗∗M̃𝑠𝑠

𝛾 restricts to a morphism of sheaf complexes(
𝑅𝐻
𝑚 ⊗R A•𝑋2 ,R

(log 𝐷2), 𝑑 + ( 𝑓𝐻 )
∗ ◦Φ𝑌2

R
(𝜀R)

)
→ (T𝛾)∗

(
𝑅𝐻
𝑚 ⊗R A•𝑋1 ,R

(log 𝐷1), 𝑑 + ( 𝑓𝐻 )
∗ ◦Φ𝑌1

R
(𝜀R)

)
,

where 𝑋,𝑌 are compatible compactifications of 𝑈𝐻 , 𝐺𝐻 with respect to 𝑓𝐻 , and 𝐷 = 𝑋 \𝑈𝐻 , and this
restriction is the pullback by T𝛾 .

Recall the definition of the derived direct image of a mixed Hodge complex of sheaves (Defini-
tion 2.65). Composing this restriction of 𝑗∗M̃𝑠𝑠

𝛾 with (T𝛾)∗ of the inclusion of(
𝑅𝐻
𝑚 ⊗R A•𝑋1 ,R

(log 𝐷1), 𝑑 + ( 𝑓𝐻 )
∗ ◦Φ𝑌1

R
(𝜀R)

)
into its Godement resolution, and using that the pullback by algebraic functions respects the weight
filtration 𝑊�, we obtain a morphisms of filtered complexes(

𝑅𝐻
𝑚 ⊗ A•𝑋2 ,R

(log 𝐷2), 𝑑 + ( 𝑓𝐻 )
∗ ◦Φ𝑌2

R
(𝜀R),𝑊

𝑛
�

)
→ 𝑅(T𝛾)∗

(
𝑅𝐻
𝑚 ⊗ A•𝑋1 ,R

(log 𝐷1), 𝑑 + ( 𝑓𝐻 )
∗ ◦Φ𝑌1

R
(𝜀R),𝑊

𝑛
�

)
given by the pullback by T𝛾 , for any 𝑛 ≥ max{2, dimR𝑈𝐻 }. The result follows from the fact that this
extends to a morphism of mixed Hodge complexes of sheaves(

𝑅𝐻
𝑚 ⊗ N •𝑋2 ,𝐷2 ,𝑛

, 𝑑 + 𝑓𝐻
∗
◦Φ𝑌2 (𝜀)

)
→ 𝑅(T𝛾)∗

(
𝑅𝐻
𝑚 ⊗ N •𝑋1 ,𝐷1 ,𝑛

, 𝑑 + 𝑓𝐻
∗
◦Φ𝑌1 (𝜀)

)
,

where the morphism between the complex part is also given by the pullback by T𝛾 . Indeed, pullback
by T𝛾 respects both the weight and Hodge filtrations there, and it is straightforward to check that
𝑅(T𝛾)∗

(
𝑒 𝑓𝐻

∗
◦Ψ𝑌1 (𝜀C)

)
composed with the real part of the morphism (tensored by ⊗RC) coincides with

the composition of the complex part of this morphism and 𝑒 𝑓𝐻
∗
◦Ψ𝑌2 (𝜀C) . �
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Lemma 9.7. Let N be the order of the class of 𝛾 in the quotient 𝜋1 (𝐺)/𝐻, and let 𝑗 ≥ 0, 𝑚 ∈ Z\ {0}. Let

ℎ𝑠𝑠 : 𝐻 𝑗 (𝑈𝐻 , 𝑅
𝐻
𝑚 ⊗𝑅𝐻 L𝐻 ) → 𝐻 𝑗 (𝑈𝐻 , 𝑅

𝐻
𝑚 ⊗𝑅𝐻 L𝐻 )

as in Lemma 9.6, and let

ℎ : 𝐻 𝑗 (𝑈𝐻 , 𝑅
𝐻
𝑚 ⊗𝑅𝐻 L𝐻 ) → 𝐻 𝑗 (𝑈𝐻 , 𝑅

𝐻
𝑚 ⊗𝑅𝐻 L𝐻 )

be the map induced by M𝛾 in cohomology. Then,

◦ (ℎ𝑠𝑠)𝑁 = Id.
◦ (ℎ ◦ (ℎ𝑠𝑠)−1 − Id) |𝑚 | = 0
◦ ℎ𝑠𝑠 and h commute.

In particular, ℎ𝑠𝑠 is the semisimple part in the Jordan-Chevalley decomposition of h.

Proof. Note that ℎ𝑠𝑠 and h are the maps induced in cohomology by M̃𝛾 and M̃𝑠𝑠
𝛾 through the quasi-

isomorphism 𝑒−(Φ
𝐺𝐻
R
)∨ . These statements can be easily checked by looking at M̃𝛾 and M̃𝑠𝑠

𝛾 . The first
statement is a consequence of the fact that (T𝛾)𝑁 is the identity on 𝑈𝐻 . The second is a consequence
of the fact that (𝑒 𝑝̃𝐻

−1 (log 𝛾) − 1) |𝑚 | ∈ 𝑅𝐻
∞ acts as multiplication by 0 in 𝑅𝐻

𝑚 . �

We are now ready to prove the main result in this section.

Proof of Theorem 9.1. Let 𝑚 > 0. By Lemma 9.3, multiplication by 𝛾 ∈ 𝜋1 (𝐺) ⊂ R[𝜋1 (𝐺)] in L
determines an isomorphism of sheaves from 𝛾 : 𝑅𝐻

−𝑚 ⊗𝑅𝐻 L → 𝑅𝐻
−𝑚 ⊗𝑅𝐻 L to itself, which, through

the isomorphism 𝜃L𝐻 determines an isomorphism

(𝜋𝐻 )∗M𝛾 : (𝜋𝐻 )∗
(
𝑅𝐻
−𝑚 ⊗𝑅𝐻 L𝐻

)
→ (𝜋𝐻 )∗

(
𝑅𝐻
−𝑚 ⊗𝑅𝐻 L𝐻

)
Let 𝛾𝑠𝑠 : 𝐻 𝑗 (𝑈, 𝑅𝐻

−𝑚⊗𝑅𝐻 L) → 𝐻 𝑗 (𝑈, 𝑅𝐻
−𝑚⊗𝑅𝐻 L) be the semisimple part of the isomorphism induced

by 𝛾 in cohomology. Now, taking duals and applying Lemma 9.7, we obtain the commutative diagram

HomR
(
𝐻 𝑗 (𝑈, 𝑅𝐻

−𝑚 ⊗𝑅𝐻 L),R
)

HomR
(
𝐻 𝑗 (𝑈𝐻 , 𝑅

𝐻
−𝑚 ⊗𝑅𝐻 L𝐻 ),R

)
HomR

(
𝐻 𝑗 (𝑈, 𝑅𝐻

−𝑚 ⊗𝑅𝐻 L),R
)

HomR
(
𝐻 𝑗 (𝑈𝐻 , 𝑅

𝐻
−𝑚 ⊗𝑅𝐻 L𝐻 ),R

)
,

(𝛾𝑠𝑠)
∨

�

(ℎ𝑠𝑠)
∨MHS

�

where the arrow on the right is an MHS morphism by Lemma 9.6.
We can apply Remark 2.26 to the right column of this diagram and Remark 2.27 to the left column

to obtain

𝐻 𝑗 (𝑈, 𝑅𝐻
𝑚 ⊗𝑅𝐻 L) 𝐻 𝑗 (𝑈𝐻 , 𝑅

𝐻
𝑚 ⊗𝑅𝐻 L𝐻 )

𝐻 𝑗 (𝑈, 𝑅𝐻
𝑚 ⊗𝑅𝐻 L) 𝐻 𝑗 (𝑈𝐻 , 𝑅

𝐻
𝑚 ⊗𝑅𝐻 L𝐻 ).

𝛾𝑠𝑠

�

(ℎ𝑠𝑠)
∨MHS

�

(9.8)

Note that the arrow at the left has been labelled 𝛾𝑠𝑠 because the dual of multiplication by 𝛾 is multiplica-
tion by 𝛾, and taking duals respects the Jordan-Chevalley decomposition. Now, these maps are defined
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for all 𝑚 > 0 and commute with taking inverse limits, so by Corollary 2.30,

𝑅𝐻
∞ ⊗𝑅𝐻 𝐻 𝑗 (𝑈,L) 𝑅𝐻

∞ ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 )

𝑅𝐻
∞ ⊗𝑅𝐻 𝐻 𝑗 (𝑈,L) 𝑅𝐻

∞ ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 ).

lim
←−
𝑚

𝛾𝑠𝑠

�

lim
←−
𝑚

(ℎ𝑠𝑠)
∨

pro-MHS

�

(9.9)

In the previous commutative diagram, the horizontal arrows were induced by 𝜃L𝐻 after tensoring by
𝑅𝐻
−𝑚 over 𝑅𝐻 , taking the j-th cohomology, taking R-duals and performing an inverse limit. However,

notice that this is the map induced in homology by the identification 𝜃𝐻 : 𝑈 𝑓 → 𝑈
𝑓𝐻
𝐻 from (8.2), under

the identification from Remark 2.13. Indeed, both of these maps come from the natural identifications
arising from the commutative cube (8.2).

Let us see that the maps in (9.8) all commute with multiplication by any element of 𝐻1 (𝐺𝐻 ,R) ⊂ 𝑅𝐻
∞ .

It is a well known fact of the Jordan-Chevalley decomposition that the semisimple part of a matrix A
with real entries can be written as a polynomial on A as follows: if 𝑝𝐴(𝑥) =

∏𝑙
𝑘=1 (𝑥 − 𝜆𝑘 )

𝑛𝑘 is the
characteristic polynomial of A for 𝜆1, . . . , 𝜆𝑙 distinct elements in C, Bézout’s identity implies that we
can pick polynomials 𝐶𝑘 (𝑥), 𝐷𝑘 (𝑥) ∈ C[𝑥] such that 𝐶𝑘 (𝑋) · (𝑥 −𝜆𝑘 )

𝑛𝑘 +𝐷𝑘 (𝑥) ·
∏

𝑗≠𝑘 (𝑥 −𝜆 𝑗 )
𝑛 𝑗 = 1,

and 𝐷𝑘 can be chosen so that its constant term is 0. Let 𝑃(𝑥) �
∑𝑙
𝑘=1 𝜆𝑘𝐷𝑘 (𝑥) ·

∏
𝑗≠𝑘 (𝑥−𝜆 𝑗 )

𝑛 𝑗 , which
is a polynomial with 0 constant term. Since every vector in ker(𝐴−𝜆𝑘 𝐼)𝑛𝑘 is an eigenvector of 𝑃(𝐴) of
eigenvalue 𝜆𝑘 for all K = 1, . . . , 𝑙, 𝑃(𝐴) is the semisimple part of A. Now, since the Jordan-Chevalley
decomposition commutes with taking duals, we have that (ℎ𝑠𝑠)∨ is a polynomial in ℎ∨ with no constant
term, so in particular (ℎ𝑠𝑠)∨ commutes with every linear operator that commutes with ℎ∨. Since the
action of 𝛾 on the left-hand side of (9.8) commutes with multiplication by any element of 𝐻1(𝐺𝐻 ,R),
we obtain that it commutes with all the maps in (9.8), as desired.

In Corollary 6.16 𝑅𝐻
𝑚 ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 ) is endowed with an MHS as the cokernel of a multiplication

map

𝐻1 (𝐺𝐻 ,R) ⊗ . . . ⊗ 𝐻1 (𝐺𝐻 ,R)︸������������������������������������︷︷������������������������������������︸
𝑚

⊗
(
𝑅𝐻
∞ ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 )

)
→ 𝑅𝐻

∞ ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 ),

so, by (9.9),

(ℎ𝑠𝑠)
∨ : 𝑅𝐻

𝑚 ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 ) → 𝑅𝐻
𝑚 ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 )

is a mixed Hodge structure isomorphism. Note that there exists 𝑚′ � 1 such that the natural map

𝐻 𝑗 (𝑈𝐻 , 𝑅
𝐻
𝑚′ ⊗𝑅𝐻 L𝐻 ) → 𝑅𝐻

𝑚 ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 )

is surjective and an MHS morphism. Since this surjection commutes with (ℎ𝑠𝑠)∨, Lemma 9.6 implies
that ((ℎ𝑠𝑠)∨)𝑁 : 𝑅𝐻

𝑚 ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 ) → 𝑅𝐻
𝑚 ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 ) is the identity, it commutes with h, and

ℎ∨ ◦ ((ℎ𝑠𝑠)
∨)
−1 is unipotent. In other words, (ℎ𝑠𝑠)∨ : 𝑅𝐻

𝑚 ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 ) → 𝑅𝐻
𝑚 ⊗𝑅𝐻 𝐻 𝑗 (𝑈𝐻 ,L𝐻 )

is the semisimple part in the Jordan-Chevalley decomposition of ℎ∨, and it is an MHS isomorphism.
Recall the definition of the MHS on 𝐻 𝑗 (𝑈

𝑓 ,R)

𝔪𝐻𝐻 𝑗 (𝑈 𝑓 ,R)
from Proposition 8.3, which uses the MHS from

Definition 6.17. Under the isomorphism 𝐻 𝑗 (𝑈𝐻 ,L𝐻 ) � 𝐻 𝑗 (𝑈,L) coming from 𝜃𝐻 and the identifica-
tion from Remark 2.13, (ℎ𝑠𝑠)∨ corresponds to the semisimple part of the map induced by 𝛾, so

𝛾𝑠𝑠 :
𝐻 𝑗 (𝑈

𝑓 ,R)

𝔪𝐻𝐻 𝑗 (𝑈 𝑓 ,R)
� 𝑅𝐻

𝑚 ⊗𝑅𝐻 𝐻 𝑗 (𝑈,L) → 𝑅𝐻
𝑚 ⊗𝑅𝐻 𝐻 𝑗 (𝑈,L) �

𝐻 𝑗 (𝑈
𝑓 ,R)

𝔪𝐻𝐻 𝑗 (𝑈 𝑓 ,R)

is a mixed Hodge structure isomorphism, concluding the proof. �
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10. The Q-MHS in the case 𝐺 = (C∗)𝑛

In 6.1, a canonical MHS was defined on 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) for all 𝑚 ∈ Z \ {0}. All of the other MHS
defined in this paper are induced from these ones through morphisms defined over Q. The goal of this
section is to prove that the MHSs of this paper are actually defined over Q, in the specific case where
𝐺 = (C∗)𝑛, although we expect the result to be true in general. Note that the construction in Section 6
only uses morphisms defined over Q, and the results in Sections 6, 7, 8 and 9 only involve morphisms
defined over Q. Therefore, the results therein also hold for the MHS with Q-coefficients.

Let U be a smooth connected complex algebraic variety, and let 𝑓 : 𝑈 → (C∗)𝑛 be an algebraic
morphism, where 𝑛 ≥ 1. Let X and (P1)𝑛 be compactifications of U and (C∗)𝑛 which are compatible with
f, and let 𝑓 : 𝑋 → (P1)𝑛 be the extension of f to those compactifications. Let 𝐷 � 𝑋 \𝑈 and let 𝑛′ ≥
max{2, dimR𝑈}. Pick coordinates (𝑧1, 𝑧2, . . . , 𝑧𝑛) of (C∗)𝑛, and note that

{[
1

2𝜋𝑖
𝑑𝑧 𝑗
𝑧 𝑗

]
| 𝑗 = 1, . . . , 𝑛

}
form a basis of 𝐻1 ((C∗)𝑛,Z). With this choice of coordinates, we have that 𝑓 = ( 𝑓1, . . . , 𝑓𝑛), where
𝑓 𝑗 : 𝑈 → C∗ for all 𝑗 = 1, . . . , 𝑛.

Note that 𝐺𝐴 in the Chevalley decomposition of 𝐺 = (C∗)𝑛 is a point, and 𝐺 = 𝐺𝑇 . Hence, by
Definition-Proposition 4.6, Φ(P

1)𝑛

C
factors through Γ

(
(P1)𝑛,Ω1

(P1)𝑛
(log 𝐸)

)
, where 𝐸 = (P1)𝑛 \ (C∗)𝑛. It

is straightforward to see that maps 𝑓
∗
◦Φ(P

1)𝑛

C
, 𝑓
∗
◦Φ(P

1)𝑛

R
, and 𝑓

∗
◦Ψ (P

1)𝑛 appearing in Definition 4.10
have the following form:

𝑓
∗
◦Φ(P

1)𝑛

C
:
(
𝐻1 ((C∗)𝑛,C),𝑊� [1], 𝐹 �

)
−→

(
Γ(𝑋,Ω1

𝑋 (log 𝐷)),𝑊�, 𝐹
�) ⊂ (

Γ(𝑋,A1
𝑋,C (log 𝐷)),𝑊𝑛′

� , 𝐹
�
)[

1
2𝜋𝑖

𝑑𝑧 𝑗
𝑧 𝑗

]
↦−→ 1

2𝜋𝑖
𝑑 𝑓𝑗
𝑓𝑗
,

𝑓
∗
◦Φ(P

1)𝑛

R
:
(
𝐻1 ((C∗)𝑛,R),𝑊� [1]

)
−→

(
Γ(𝑋,A1

𝑋,R (log 𝐷)),𝑊𝑛′
�

)[
1

2𝜋𝑖
𝑑𝑧 𝑗
𝑧 𝑗

]
↦−→ � 1

2𝜋𝑖
𝑑 𝑓𝑗
𝑓𝑗

= 1
2𝜋�

𝑑 𝑓𝑗
𝑓𝑗
,

𝑓
∗
◦ Ψ(P

1)𝑛 :
(
𝐻1 ((C∗)𝑛,C),𝑊� [1]

)
−→

(
Γ(𝑋,C ⊗R A0

𝑋,R (log 𝐷)),𝑊𝑛′
�

)[
1

2𝜋𝑖
𝑑 𝑓𝑗
𝑓𝑗

]
↦−→ − 1

2𝜋𝑖 log( | 𝑓 𝑗 |).
(10.1)

Recall the filtrations in the target of the first of these maps, which were defined in Section 2.9, and
note that it respects the filtrations (recall that 𝐻1 ((C∗)𝑛,R) is pure of type (1, 1)).

Let 𝑗 : 𝑈 → 𝑋 be the inclusion. Consider the multiplicative Q-mixed Hodge complex of sheaves on
X of [16, Theorem 2.37]

((K•∞,𝑊�), (Ω•𝑋 (log 𝐷),𝑊�, 𝐹
�), 𝜑∞), (10.2)

which coincides with the one from [41, Section 4.4] except for a slight modification in the weight
filtration of the rational part so as to make it biregular.

For the purposes of this section, we just need to recall this much of the definition of this mixed Hodge
complex of sheaves:

K𝑝
∞ � lim

−−→
𝑚→∞

(
Sym𝑚−𝑝

Q
(O𝑋 ) ⊗

(
𝑝∧
Q

Mgp
𝑋,𝐷⊗Z

))
, 𝑊𝑚K•∞ �

{
K•𝑚 if 𝑚 ≤ dimC 𝑋,
K•∞ otherwise. ,

𝜑∞ : K𝑝
∞ −→ Ω𝑝

𝑋 (log 𝐷)

𝑔1 · . . . · 𝑔𝑚−𝑝 ⊗ 𝑦1 ∧ . . . ∧ 𝑦𝑝 ↦−→
1

(2𝜋𝑖) 𝑝 𝑔1 · . . . · 𝑔𝑚−𝑝
𝑑𝑦1
𝑦1
∧ . . . ∧

𝑑𝑦𝑝
𝑦𝑝

https://doi.org/10.1017/fms.2025.10102 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10102


74 E. Elduque and M. Herradón Cueto

where O𝑋 is the sheaf of holomorphic functions on X and Mgp
𝑋,𝐷 is the sheaf of abelian groups

associated to M𝑋,𝐷 � O𝑋 ∩ 𝑗∗O∗𝑈 , where O∗𝑈 is the sheaf of nonvanishing holomorphic functions on
U, as a sheaf of groups under multiplication.

Remark 10.3. Note that 𝑓 𝑗 ∈ Γ(𝑋, 𝑗∗O∗𝑈 ) for all 𝑗 = 1, . . . , 𝑛. These functions can be extended to X as
the quotient of two holomorphic functions, and thus 𝑓 𝑗 ∈ Γ(𝑋,Mgp

𝑋,𝐷) for all 𝑗 = 1, . . . , 𝑛.

Definition 10.4. We define the morphism ΦQ as

ΦQ :
(
𝐻1((C∗)𝑛,Q),𝑊� [1]

)
−→ Γ

(
𝑋, (K1,cl

∞ ,𝑊�)
)[

1
2𝜋𝑖

𝑑𝑧𝑖
𝑧𝑖

]
↦−→ 1 ⊗ 𝑓𝑖 .

Clearly, ΦQ preserves the weights and, using (10.1), it is straightforward to see that 𝜑∞ ◦ ΦQ =

𝑓
∗
◦Φ(P

1)𝑛

C
in 𝐻1 ((C∗)𝑛,Q). In particular, we may apply Definition-Proposition 3.9 to get the following

mixed Hodge complex of sheaves.

Definition 10.5 (Thickened rational mixed Hodge complex of sheaves). Let 𝑚 ∈ Z \ {0}. The following
is a Q-mixed Hodge complex of sheaves in X:( (

(𝑅𝑚 ⊗Q K•∞, 𝑑 +ΦQ(𝜀Q)),𝑊�
)
,
(
(𝑅𝑚 ⊗C Ω

•
𝑋 (log 𝐷), 𝑑 + 𝑓

∗
◦Φ(P

1)𝑛

C
(𝜀C)),𝑊�, 𝐹

�
)
, Id ⊗𝜑∞

)
,

where the filtrations are the tensor filtrations corresponding to 𝑅𝑚 and the mixed Hodge complex (10.2),
and Id ⊗𝜑∞ : 𝑅𝑚 ⊗QK•∞ → 𝑅𝑚 ⊗C Ω•𝑋 (log 𝐷) is a quasi-isomorphism after tensoring the domain with
C over Q.

Remark 10.6. Let 𝑚 ∈ Z \ {0}, and let 𝑛′ ≥ max{2, dimR𝑈}. Note that the mixed Hodge complex
of sheaves from Definition 10.5 can be given an extra term so that its complex part coincides with
the complex part in the mixed Hodge complex of sheaves

(
𝑅𝑚 ⊗ N •𝑋,𝐷,𝑛′ , 𝑑 + 𝑓

∗
◦Φ(P

1)𝑛 (𝜀)
)

of
Definition 4.10. Indeed, by Proposition 3.17, the composition of the bi-filtered quasi-isomorphisms
from Theorem 2.70 and Definition-Proposition 2.73 (Ω•𝑋 (log 𝐷),𝑊�, 𝐹

�) ↩→ (A•𝑋,C (log 𝐷),𝑊𝑛′
� , 𝐹

�)

given by inclusion extends to a bi-filtered quasi-isomorphism between the complex parts of the thickened
complexes of Definitions 10.5 and 4.10(
(𝑅𝑚 ⊗C Ω

•
𝑋 (log 𝐷), 𝑑 + 𝑓

∗
◦Φ𝑌

C (𝜀C)),𝑊�, 𝐹
�
)
↩→

(
(𝑅𝑚 ⊗C A•𝑋,C (log 𝐷), 𝑑 + 𝑓

∗
◦Φ𝑌

C (𝜀C)),𝑊
𝑛′

� , 𝐹
�
)

Notation 10.7. Let LQ (resp. LR) be as L in Definition 2.12 but with Q (resp. R) coefficients. For
𝑚 ∈ Z \ {0}, 𝑅𝑚 (resp. R) in the expression 𝑅𝑚 ⊗𝑅 LQ will be as in Definition 2.20 for K = Q (resp.
Q[𝜋1 ((C

∗)𝑛)]), and similarly for R-coefficients.

We now introduce some notation. Let K = Q,R or C, depending on context. Let 𝑠∨𝑗 �
[

1
2𝜋𝑖

𝑑𝑧 𝑗
𝑧 𝑗

]
, let

{𝑠 𝑗 | 𝑗 = 1, . . . , 𝑛} ⊂ 𝐻1((C
∗)𝑛,K) be the dual basis of {𝑠∨𝑗 | 𝑗 = 1, . . . , 𝑛}. Let 𝛾 𝑗 be a loop around the

origin in the j-th coordinate C∗ of (C∗)𝑛 for all 𝑗 = 1, . . . , 𝑛. Identify 𝑇 (C∗)𝑛 with C𝑛 (with coordinates
(𝑤1, . . . , 𝑤𝑛)) in a way that exp(𝑤1, . . . , 𝑤𝑛) = (𝑒𝑤1 , . . . , 𝑒𝑤𝑛 ). With those identifications, log 𝛾 𝑗 is
seen in 𝑇 (C∗)𝑛 as 2𝜋𝑖𝑒 𝑗 , where 𝑒 𝑗 is the j-th element of the canonical basis of C𝑛. Denote by 𝑥 𝑗 and
𝑦 𝑗 the real and imaginary parts of 𝑧 𝑗 . Note that {𝑒1, . . . , 𝑒𝑛} ∪ {log 𝛾𝑖 , . . . , log 𝛾𝑛} form an R-basis
of 𝑇 (C∗)𝑛. Note that Φ(C

∗)𝑛

R

( [
1

2𝜋𝑖
𝑑𝑧 𝑗
𝑧 𝑗

] )
= � 1

2𝜋𝑖
𝑑𝑧 𝑗
𝑧 𝑗

, which, at the identity element of (C∗)𝑛 takes the
value 1

2𝜋 𝑑𝑦 𝑗 . The form 1
2𝜋 𝑑𝑦 𝑗 takes the value 1 in log 𝛾 𝑗 and 0 in the rest of the elements of the fixed R

basis of 𝑇 (C∗)𝑛. Hence, under these identifications, (Φ(C
∗)𝑛

R
)∨ (as introduced in Construction 5.4) takes
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the following form:

(Φ(C
∗)𝑛

R
)∨ : 𝑇𝐺 −→ 𝐻1 (𝐺,R)

log 𝛾 𝑗 ↦−→ log 𝛾 𝑗 = 𝑠 𝑗
𝑒 𝑗 ↦−→ 0

Let V be a small open set in U and let 𝜄 : 𝑉 → 𝑇 (C∗)𝑛 be a holomorphic map such that exp ◦𝜄 = 𝑓 .
Note that such 𝜄 form a Q-basis of LQ in V. Under the identifications above, 𝜄 = (𝜄1, . . . , 𝜄𝑛), where
𝜄 𝑗 : 𝑉 → C is holomorphic. Hence, it makes sense to talk about�𝜄 𝑗 and �𝜄 𝑗 for all 𝑗 = 1, . . . , 𝑛. Notice
that exp(𝜄 𝑗 ) = 𝑓 𝑗 , so exp(�𝜄 𝑗 ) = | 𝑓 𝑗 |.

We now do the analogue of Construction 5.4 but for Q-coefficients.

Construction 10.8. Let 𝑚 ∈ Z \ {0}. Then, we can define an 𝑅 = Q[𝜋1 (C
∗)𝑛]-linear morphism of

sheaves 𝜈Q : 𝑅𝑚 ⊗𝑅 LQ → 𝑗−1(𝑅𝑚 ⊗Q K0
∞) locally by

𝜈Q : 𝑅𝑚 ⊗𝑅 LQ −→ 𝑗−1(𝑅𝑚 ⊗Q K0
∞)

𝛼 ⊗ 𝜄 ↦−→ 𝛼 exp

(
− 1

2𝜋𝑖

𝑛∑
𝑗=1
(𝑠 𝑗 ⊗ (𝜄 𝑗 ⊗ 1))

)
.

The proof that 𝜈Q is well-defined on the tensor product (over R) and that it is R-linear follows similar
steps as its analogue for R-coefficients (Proposition 5.5), so we omit it. This time, it needs to use that
for all 𝑎1, . . . , 𝑎𝑛 ∈ Z, (

∏𝑛
𝑗=1 𝛾

𝑎 𝑗
𝑗 ) · 𝜄 = (𝜄1 − 2𝜋𝑖𝑎1, . . . , 𝜄𝑛 − 2𝜋𝑖𝑎𝑛).

Proposition 10.9. Let 𝑚 ∈ Z \ {0}. Then, the restriction of the morphism 𝑒 𝑓
∗◦Ψ (C

∗)𝑛 (𝜀C) · 𝑒−(Φ
(C∗)𝑛

R
)∨ :

𝑅𝑚 ⊗𝑅 LR → 𝑗−1
(
𝑅𝑚 ⊗C A0

𝑋,C
(log 𝐷)

)
to 𝑅𝑚 ⊗𝑅 LQ coincides with the composition (Id ⊗𝜑∞) ◦ 𝜈Q.

Proof. The proof is a direct computation:

𝑒 𝑓
∗◦Ψ (C

∗)𝑛 (𝜀C) · 𝑒−(Φ
(C∗)𝑛

R
)∨ (𝛼 ⊗ 𝜄) = 𝛼 · 𝑒 𝑓

∗◦Ψ (C
∗)𝑛 (𝜀C) · 𝑒

−(Φ(C
∗)𝑛

R
)∨
(∑𝑛

𝑗=1 𝑒 𝑗 ⊗� 𝜄 𝑗+
1

2𝜋
∑𝑛
𝑗=1 log 𝛾 𝑗 ⊗� 𝜄 𝑗

)

= 𝛼 · exp���− 1
2𝜋𝑖

𝑛∑
𝑗=1

𝑠 𝑗 ⊗ log(| 𝑓 𝑗 |)
��� · exp���− 1

2𝜋

𝑛∑
𝑗=1

𝑠 𝑗 ⊗ �𝜄 𝑗
���

= 𝛼 · exp���− 1
2𝜋𝑖

𝑛∑
𝑗=1

𝑠 𝑗 ⊗ (�𝜄 𝑗 + 𝑖�𝜄 𝑗 )
���

= 𝛼 · exp���− 1
2𝜋𝑖

𝑛∑
𝑗=1

𝑠 𝑗 ⊗ 𝜄 𝑗
��� = (Id ⊗𝜑∞) ◦ 𝜈Q(𝛼 ⊗ 𝜄)

�

Remark 10.10. Since Id ⊗𝜑∞ (resp. 𝑒 𝑓 ∗◦Ψ (C
∗)𝑛 (𝜀C) ) is a quasi-isomorphism when the domain is ten-

sored by C over Q (resp. over R) and C is faithfully flat over Q (resp. over R), we have that
𝑗−1 ((𝑅𝑚 ⊗Q K•∞, 𝑑 +ΦQ(𝜀Q))) resolves a free rank 1𝑅-local system. Using Proposition 10.9 and
Lemma 5.9 we get that 𝜈Q induces a quasi-isomorphism

𝜈Q : 𝑅𝑚 ⊗𝑅 LQ → 𝑗−1 (𝑅𝑚 ⊗Q K•∞, 𝑑 +ΦQ(𝜀Q)) .
In particular, the mixed Hodge complex of sheaves from Definition 10.5 endows 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 LQ)
with a Q-MHS following the same steps as in Definition 6.1 (with the same shifts if 𝑚 > 0), using the
adjunction Id→ 𝑅 𝑗∗ 𝑗

−1.
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Corollary 10.11. Let 𝑚 ∈ Z \ {0}, and suppose that 𝐺 = (C∗)𝑛 for some 𝑛 ≥ 1. The MHS on
𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 LR) from Definition 6.1 is defined over Q. In particular, all of the MHSs defined in this
paper are defined overQ in this case, and the results in Sections 6, 7, 8 and 9 also hold forQ-coefficients.

Proof. Proposition 10.9 implies that, after tensoring by R over Q, the MHS on 𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 LQ)
induced by the mixed Hodge complex of sheaves from Definition 10.5 coincides with the MHS from
Definition 6.1. �

Remark 10.12 (The case𝐺 = C∗). Suppose that𝑚 > 0 and that𝐺 = C∗. Let s be a positive oriented loop
around the origin in 𝐻1((C

∗)𝑛,Q), and use it to identify 𝑅𝑚 withQ[𝑠±1]/(𝑠𝑚). Under the identifications
and choice of coordinates explained in this section, the mixed Hodge complex of Definition 10.5 and
𝜈Q coincide with those of [16] (see Remark 5.12 and Theorem 5.24 therein). Therefore, the Q-MHS on
𝐻∗(𝑈, 𝑅𝑚 ⊗𝑅 L) from both papers is the same. Note that, in [16], this MHS (with the same Tate twist
as in Definition 6.1) was used to endow Tors𝑅 𝐻∗(𝑈,L) with a canonical MHS.

11. Relationship with the Milnor fiber of a central hyperplane arrangement complement

Let 𝑓𝑖 ∈ C[𝑥1, . . . , 𝑥𝑛] be homogeneous polynomials of degree 1 for 𝑖 = 1, . . . , 𝑚 such that if 𝑖 ≠ 𝑗 , 𝑓𝑖 is
not a product of 𝑓 𝑗 by a constant. Suppose that 𝑚 > 𝑛. Let 𝑓 =

∏𝑚
𝑖=1 𝑓 𝑑𝑖𝑖 for some 𝑑𝑖 ≥ 1, let 𝑑 =

∑𝑚
𝑖=1 𝑑𝑖 ,

let 𝐻𝑖 = 𝑉 ( 𝑓𝑖) ⊂ C
𝑛, and let 𝐻 = ∪𝑚𝑖=1𝐻𝑖 . The 𝑓𝑖’s describe a central hyperplane arrangement in C𝑛,

but if we think of it as being determined by f, the arrangement is not necessarily reduced.
The Milnor fiber of f is 𝑓 −1(1), and it is equipped with the monodromy action

𝑓 −1(1) −→ 𝑓 −1(1)
(𝑥1, . . . , 𝑥𝑛) ↦−→ (𝜉𝑥1, . . . , 𝜉𝑥𝑛),

where 𝜉 = 𝑒
2𝜋𝑖
𝑑 . Note that this induces a semisimple action on the reduced homology groups

𝐻 𝑗 ( 𝑓 −1(1),C), and its possible eigenvalues are the d-th roots of unity.

Definition 11.1 (Spectrum of f ). The spectrum of f is defined by Sp( 𝑓 ) =
∑

𝛼∈Q 𝑛 𝑓 ,𝛼𝑡
𝛼, where

◦ 𝑛 𝑓 ,𝛼 =
∑

𝑗 (−1) 𝑗−𝑛+1 dimCGr𝑝𝐹 𝐻 𝑗 ( 𝑓 −1(1),C)𝜆,
◦ 𝐻 𝑗 ( 𝑓 −1(1),C)𝜆 is the eigenspace of eigenvalue 𝜆 by the monodromy action on the reduced cohomol-

ogy groups 𝐻 𝑗 ( 𝑓 −1(1),C),
◦ 𝜆 = 𝑒−2𝜋𝑖𝛼 and
◦ 𝑝 = �𝑛 − 𝛼�.

The spectrum of a hypersurface singularity was first defined by Steenbrink [44] as a local invariant
of the Hodge filtration of the cohomology of the local Milnor fiber, but in the case of central hyperplane
arrangements, the Milnor fibration corresponding to the singularity at the origin comes from a global
fibration of the hyperplane complement over C∗, and Definition 11.1 coincides with Steenbrink’s.

Remark 11.2. Budur and Saito showed in [3] that Sp( 𝑓 ) depends only on the combinatorial data of the
(not necessarily reduced) arrangement defined by f.

Despite this positive result of Budur and Saito, one of the most important open problems of arrange-
ment theory is the following.

Question 11.3. Are the Betti numbers of the Milnor fiber associated to a (reduced) central hyperplane
arrangement in C𝑛 determined by the combinatorics of the arrangement?

This has been solved if 𝑛 = 3 and the projectivized arrangement in P2 only has double and triple
points by Papadima and Suciu in [40]. However, a general answer to this question is not known even in
this particular case:
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Question 11.4. Is the first Betti number of the Milnor fiber associated to a (reduced) central hyperplane
arrangement in C𝑛 determined by the combinatorics of the arrangement?

In this section, we translate Question 11.4 to a question of whether the dimensions of the filtered pieces
by the Hodge filtration of an MHS defined in this paper are combinatorially determined, motivating the
future study of the objects introduced in this note.

Suppose that one wants to study Question 11.4. It is enough to consider the case where the arrangement
is essential and the number of hyperplanes is greater than the dimension of the ambient space.

Lemma 11.6 below details the relation between Question 11.4 and the following stronger question.

Question 11.5. Let f be the reduced defining polynomial of a (not necessarily central) essential line
arrangement in C2 of 3 or more lines, and let U be the corresponding arrangement complement in C2.
Let 𝜋 : 𝑈 𝑓 → 𝑈 be the pullback of exp : C→ C∗ by 𝑓 : 𝑈 → C∗ as in (1.1). Is the first Betti number
of the infinite cyclic cover 𝜋 : 𝑈 𝑓 → 𝑈 of an essential line arrangement complement U in C2 with 3 or
more lines determined by the combinatorics of the arrangement?

Lemma 11.6. Let {𝐻1, . . . , 𝐻𝑚} be a (reduced) central arrangement of m different hyperplanes in C𝑛,
where 𝑚 > 𝑛, and let {𝐿1, . . . , 𝐿𝑚} a (reduced, not necessarily central) line arrangement in C2 which
is obtained from {𝐻1, . . . , 𝐻𝑚} after intersection with 𝑛 − 2 generic hyperplanes. Let 𝑓 (𝑥, 𝑦) ∈ C[𝑥, 𝑦]
be a reduced defining polynomial of ∪𝑚𝑖=1𝐿𝑖 , and let 𝑈 = C2 \ 𝑉 ( 𝑓 ). Let 𝑈 𝑓 → 𝑈 be the pullback by f
of exp : C→ C∗.

If dimC 𝐻1(𝑈
𝑓 ,C) is determined by the combinatorics of {𝐿1, . . . , 𝐿𝑚}, then the first Betti number

of the Milnor fiber of {𝐻1, . . . , 𝐻𝑚} is determined by the combinatorics of {𝐻1, . . . , 𝐻𝑚}.
Moreover, the reverse implication holds if 𝑛 = 3.

Proof. Note that the combinatorics of {𝐻1, . . . , 𝐻𝑚} determines the combinatorics of {𝐿1, . . . , 𝐿𝑚} and
the reverse implication also holds if 𝑛 = 3. By the Lefschetz hyperplane section theorem, C𝑛 \

(
∪ 𝑗=1𝐻 𝑗

)
can be obtained (up to homotopy equivalence) by attaching cells of dimensions 3 and higher to U.
Consider the commutative diagram

𝑈 C𝑛 \
(
∪ 𝑗=1𝐻 𝑗

)
C∗

𝑓

𝑓2

(where 𝑓2 is a reduced defining polynomial of the arrangement {𝐻1, . . . , 𝐻𝑚}). Since 𝑓2 is homogeneous
of degree m, (C𝑛 \

(
∪ 𝑗=1𝐻 𝑗

)
) 𝑓2 � ( 𝑓2)−1(1)×C. Hence, the inclusion in the commutative diagram above

induces an isomorphism 𝐻1(𝑈
𝑓 ,C) → 𝐻1 (( 𝑓2)

−1(1),C). If the dimension of 𝐻1(𝑈
𝑓 ,C) is determined

by the combinatorics of {𝐿1, . . . , 𝐿𝑚}, then the dimension of the first Betti number of the Milnor fiber
of the arrangement {𝐻1, . . . , 𝐻𝑚} is determined by the combinatorics of {𝐻1, . . . , 𝐻𝑚}. �

From now on in this section, this will be our setting: 𝑚 ≥ 3, 𝐿1, 𝐿2, . . . , 𝐿𝑚 form an essential
arrangement of m different lines in C2, and 𝑓𝑖 ∈ C[𝑥, 𝑦] is a polynomial of degree 1 such that 𝐿𝑖 = 𝑉 ( 𝑓𝑖)
for all 𝑖 = 1, . . . , 𝑚. Let 𝑓 =

∏𝑚
𝑖=1 𝑓𝑖 , and let 𝑈 � C2 \

(
∪𝑚𝑖=1𝐿𝑖

)
. The infinite cyclic cover 𝜋 : 𝑈 𝑓 → 𝑈

is constructed as the pullback of exp : C→ C∗ by 𝑓 : 𝑈 → C∗. Moreover, we identify 𝑅 = C[𝜋1 (C
∗)]

with C[𝑡±1] by taking a positively oriented loop around the origin to t.

Remark 11.7. By [16, Proposition 2.24, Corollary 7.21], there exists 𝑁 ∈ N such that 𝑡𝑁 −1 annihilates
𝐻1 (𝑈

𝑓 ,C). Moreover, by [14, Theorem 5], N can be taken to be the least common multiple of all the
numbers which are greater than 2 and appear as multiplicities of multiple points in the arrangement (so
in particular, this choice of N is combinatorially determined).

Remark 11.8. Let N be as in Remark 11.7 (given by the least common multiple of the non-2 multiplicities
of the multiple points in the arrangement), and suppose that 𝑁 < 𝑚 = deg 𝑓 . We may substitute N by
min{𝑁𝑘 | 𝑘 ∈ N, 𝑁𝑘 > 𝑚}, which is again combinatorially determined.
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Let N as in Remark 11.8 (a combinatorially determined number such that 𝑁 ≥ 𝑚 and 𝑡𝑁 − 1
annihilates 𝐻1 (𝑈

𝑓 ,C)), and let 𝜋𝑁 : 𝑈𝑁 → 𝑈 be the covering space of U obtained via the pullback
diagram

𝑈𝑁 ⊂ 𝑈 × C∗ C∗

𝑈 C∗,

𝑓𝑁

𝜋𝑁
�

𝑤 ↦→𝑤𝑁

𝑓

(11.9)

Notice that if we see U as the affine variety 𝑉 (𝑧 · 𝑓 (𝑥, 𝑦) − 1) ⊂ C3, then

𝑈𝑁 = {(𝑥, 𝑦, 𝑧, 𝑤) ∈ C3 × C∗ | 𝑧 𝑓 (𝑥, 𝑦) = 1, 𝑓 (𝑥, 𝑦) = 𝑤𝑁 }

� {(𝑥, 𝑦, 𝑤) ∈ C2 × C∗ | 𝑓 (𝑥, 𝑦) = 𝑤𝑁 },

Let 𝑓̃ (𝑥, 𝑦, 𝑧) be the homogenization of the polynomial 𝑓 (𝑥, 𝑦). The following is an isomorphism of
algebraic varieties

𝑉 (𝑧𝑁−𝑚 𝑓̃ (𝑥, 𝑦, 𝑧) = 1) ⊂ C3 ←→ 𝑈𝑁 = {(𝑥, 𝑦, 𝑤) ∈ C2 × C∗ | 𝑓 (𝑥, 𝑦) = 𝑤𝑁 } ⊂ C3

(𝑥, 𝑦, 𝑧) ↦−→
(
𝑥
𝑧 ,

𝑦
𝑧 ,

1
𝑧

) (11.10)

and under this identification, 𝜋𝑁 and 𝑓𝑁 in the pullback diagram (11.9) become

𝜋𝑁 : 𝑈𝑁 = 𝑉 (𝑧𝑁−𝑚 𝑓̃ (𝑥, 𝑦, 𝑧) = 1) ⊂ C3 −→ 𝑈 = C2 \𝑉 ( 𝑓 ) ⊂ C2

(𝑥, 𝑦, 𝑧) ↦−→
(
𝑥
𝑧 ,

𝑦
𝑧

)
and

𝑓𝑁 : 𝑈𝑁 = 𝑉 (𝑧𝑁−𝑚 𝑓̃ (𝑥, 𝑦, 𝑧) = 1) ⊂ C3 −→ C∗

(𝑥, 𝑦, 𝑧) ↦−→ 1
𝑧

respectively. Note that 𝑈𝑁 is a (possibly nonreduced) Milnor fiber of an essential central hyperplane
arrangement in C3, so it makes sense to talk about Sp(𝑧𝑁−𝑚 𝑓̃ (𝑥, 𝑦, 𝑧)). Under the identification of R
with C[𝑡±1], the t-action on 𝑈𝑁 given by Deck transformations of 𝜋𝑁 is

𝑡 : 𝑈𝑁 = 𝑉 (𝑧𝑁−𝑚 𝑓̃ (𝑥, 𝑦, 𝑧) = 1) ⊂ C3 −→ 𝑈𝑁

(𝑥, 𝑦, 𝑧) ↦−→ 𝑒−
2𝜋𝑖
𝑁 (𝑥, 𝑦, 𝑧),

which is the inverse of the monodromy of the Milnor fiber.

Theorem 11.11. Let {𝐿1, . . . , 𝐿𝑚} be a (reduced) essential line arrangement in C2, with 𝑚 ≥ 3.
Let 𝑓 (𝑥, 𝑦) ∈ C[𝑥, 𝑦] be a reduced defining polynomial of ∪𝑚𝑖=1𝐿𝑖 , and let 𝑈 = C2 \ 𝑉 ( 𝑓 ). Let
L = 𝑓 −1 exp! CC, and let N as Remark 11.8, which is determined by the combinatorics of {𝐿1, . . . , 𝐿𝑚}.
Then, the following hold.

1. dimCGr−𝑝𝐹
𝐻2 (𝑈

𝑓 ,R)
(𝑡𝑁−1)𝐻2 (𝑈 𝑓 ,R)

≠ 0⇒ 𝑝 = 0, 1, 2.

2. dimCGr−1
𝐹

𝐻2 (𝑈
𝑓 ,R)

(𝑡𝑁−1)𝐻2 (𝑈 𝑓 ,R)
is determined by the combinatorics of {𝐿1, . . . , 𝐿𝑚}.

3. 𝐻2 (𝑈
𝑓 ,R) is a free C[𝑡±1]-module of rank 𝜒(𝑈), so dimC 𝐻2 (𝑈

𝑓 ,R)
(𝑡𝑁−1)𝐻2 (𝑈 𝑓 ,R)

= 𝑁𝜒(𝑈), which is
determined by the combinatorics of {𝐿1, . . . , 𝐿𝑚}.
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4. The following are equivalent:
◦ dimC 𝐹−1 𝐻2 (𝑈

𝑓 ,C)
(𝑡𝑁−1)𝐻2 (𝑈 𝑓 ,C)

is determined by the combinatorics of {𝐿1, . . . , 𝐿𝑚}.

◦ dimC 𝐹0 𝐻2 (𝑈
𝑓 ,C)

(𝑡𝑁−1)𝐻2 (𝑈 𝑓 ,C)
is determined by the combinatorics of {𝐿1, . . . , 𝐿𝑚}.

◦ dimC 𝐻1 (𝑈
𝑓 ,C) = dimC Tors𝑅 𝐻1 (𝑈

𝑓 ,C) is determined by the combinatorics of {𝐿1, . . . , 𝐿𝑚}.

Proof. The statement in (3) is true by [14, Theorem 4]. The covering 𝜋 : 𝑈 𝑓 → 𝑈 factors through 𝑈𝑁

as 𝜋𝑁 ◦ 𝜋′, where 𝜋′ : 𝑈 𝑓 → 𝑈𝑁 is a covering space. The short exact sequence at the level of singular
chains

0→ 𝐶•(𝑈
𝑓 )

𝑡𝑁−1
−−−−→ 𝐶•(𝑈

𝑓 )
(𝜋′)∗
−−−−→ 𝐶•(𝑈𝑁 ) → 0

yields the Milnor long exact sequence in homology, which we claim gives rise to the following exact
sequences of MHS, where (1) denotes a Tate twist.

0→
𝐻2 (𝑈

𝑓 ,C)

(𝑡𝑁 − 1)𝐻2(𝑈 𝑓 ,C)
→ 𝐻2 (𝑈𝑁 ,C) → Tors𝑅 𝐻1 (𝑈

𝑓 ,C) (1) → 0,

0→ Tors𝑅 𝐻1 (𝑈
𝑓 ,C) = 𝐻1 (𝑈

𝑓 ,C) → 𝐻1 (𝑈𝑁 ,C) → 𝐻0(𝑈
𝑓 ,C) = Tors𝑅 𝐻0 (𝑈

𝑓 ,C) (1) → 0,
0→ 𝐻0 (𝑈

𝑓 ,C) = Tors𝑅 𝐻0 (𝑈
𝑓 ,C) → 𝐻0 (𝑈𝑁 ,C) → 0,

Let us see that these are indeed short exact sequences of MHS, where Tors𝑅 𝐻𝑖 (𝑈
𝑓 ,C) is endowed with

the MHS from [16], 𝐻1 (𝑈𝑁 ,C) is endowed with Deligne’s MHS, and 𝐻2 (𝑈
𝑓 ,C)

(𝑡𝑁−1)𝐻2 (𝑈 𝑓 ,C)
is endowed with

the MHS from Proposition 8.3. Indeed, 𝐻𝑖 (𝑈
𝑓 ,C) = Tors𝑅 𝐻𝑖 (𝑈

𝑓 ,C) for 𝑖 = 0, 1 by [14, Theorem 4].
We have that 𝐻2 (𝑈

𝑓 ,C)
(𝑡𝑁−1)𝐻2 (𝑈 𝑓 ,C)

→ 𝐻2(𝑈𝑁 ,C) is an MHS morphism by Corollary 7.18 and Proposition 8.3.
The remaining maps are shown to be MHS morphisms in [17, Corollary 5.9].

The statement in (1) holds by observing the first of these sequences, because since 𝑈𝑁 is smooth,
the analogous statement holds for 𝐻2 (𝑈𝑁 ,C) (see [9, Corollaire 3.2.15]).

The t-action is semisimple in all of the homology groups appearing in the three exact sequences
above, in fact, 𝑡𝑁 acts as the identity. In the case of 𝑈𝑁 , it acts by deck transformations realized by an
algebraic isomorphism, so it is an MHS isomorphism in homology. By Theorem 9.1 (and its counterpart
for the torsion in [17, Theorem 1.3]) multiplication by t is an MHS isomorphism for the rest of those
homology groups. The exact sequences above induce exact sequences of MHSs in the corresponding
eigenspaces, which in turn induce the following exact sequences:

0→ Gr−𝑝𝐹

(
𝐻2 (𝑈

𝑓 ,C)

(𝑡𝑁 − 1)𝐻2(𝑈 𝑓 ,C)

)
𝜆

→ Gr−𝑝𝐹 𝐻2 (𝑈𝑁 ,C)𝜆 → Gr−𝑝+1𝐹

(
Tors𝑅 𝐻1 (𝑈

𝑓 ,C)
)
𝜆
→ 0,

0→ Gr−𝑝𝐹
(
Tors𝑅 𝐻1(𝑈

𝑓 ,C)
)
𝜆
→ Gr−𝑝𝐹 𝐻1 (𝑈𝑁 ,C)𝜆 → Gr−𝑝+1𝐹

(
Tors𝑅 𝐻0(𝑈

𝑓 ,C)
)
𝜆
→ 0,

Gr−𝑝𝐹
(
Tors𝑅 𝐻0 (𝑈

𝑓 ,C)
)
𝜆
� Gr−𝑝𝐹 𝐻0(𝑈𝑁 ,C)𝜆.

By [16, Theorem 10.5], the following hold:

◦ Tors𝑅 𝐻1 (𝑈
𝑓 ,C)≠1 is a pure Hodge structure of weight −1, where the subindex ≠ 1 denotes the direct

sum of all of the eigenspaces of eigenvalue other than 1. Hence,

dimC Gr0
𝐹

(
Tors𝑅 𝐻1 (𝑈

𝑓 ,C)
)
≠1

= dimC Gr−1
𝐹

(
Tors𝑅 𝐻1 (𝑈

𝑓 ,C)
)
≠1
.

◦
(
Tors𝑅 𝐻1 (𝑈

𝑓 ,C)
)

1 is a pure Hodge structure of type (−1,−1), so its only nonzero graded piece is
Gr−1

𝐹

(
Tors𝑅 𝐻1(𝑈

𝑓 ,C)
)

1. Moreover, this graded piece has dimension 𝑚−1, which is combinatorially
determined.
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◦ Tors𝑅 𝐻0 (𝑈
𝑓 ,C) is a Hodge structure of weight 0 and dimension 1. The only nontrivial eigenspace

is the eigenspace of eigenvalue 1, which has dimension 1, and its only nontrivial graded piece is
Gr0

𝐹

(
Tors𝑅 𝐻0 (𝑈

𝑓 ,C)
)

1.

Recall from Remark 11.2 that, by Budur and Saito’s result, 𝑛 𝑓 ,𝛼 :=
∑

𝑗 (−1) 𝑗 dimC Gr𝑝𝐹 𝐻 𝑗 (𝑈𝑁 ,C)𝜆

is a combinatorial invariant, where 𝑓̃ (𝑥, 𝑦, 𝑧) � 𝑧𝑁−𝑚 𝑓 (𝑥, 𝑦, 𝑧), 𝜆 = 𝑒2𝜋𝑖𝛼, 𝐻 𝑗 (𝑈𝑁 ,C)𝜆 is the
eigenspace of eigenvalue 𝜆 for the t-action on the reduced cohomology groups 𝐻 𝑗 (𝑈𝑁 ,C) (which
is the inverse of the monodromy action), and 𝑝 = �3 − 𝛼�. Let 𝜆𝑙 � 𝑒2𝜋𝑖 𝑙𝑁 for 𝑙 = 1, . . . , 𝑁 be all the
N-th roots of unity. We have that

𝑛 𝑓 , 𝑙𝑁 +(2−𝑝)
= dimC Gr−𝑝𝐹 𝐻2(𝑈𝑁 ,C)𝜆𝑙 − dimC Gr−𝑝𝐹 𝐻1 (𝑈𝑁 ,C)𝜆𝑙 (11.12)

is combinatorially determined for all 𝑝 = 0, 1, 2 (the only possibly nonzero graded pieces). Now, using
the exact sequences above, we get that, for all 𝑙 ≠ 𝑁 ,

𝑛 𝑓 , 𝑙𝑁 +2
= dimC Gr0

𝐹

(
𝐻2(𝑈

𝑓 ,C)

(𝑡𝑁 − 1)𝐻2(𝑈 𝑓 ,C)

)
𝜆𝑙

− dimC Gr0
𝐹

(
Tors𝑅 𝐻1 (𝑈

𝑓 ,C)
)
𝜆𝑙
,

𝑛 𝑓 , 𝑙𝑁 +1
= dimC Gr−1

𝐹

(
𝐻2 (𝑈

𝑓 ,C)

(𝑡𝑁 − 1)𝐻2(𝑈 𝑓 ,C)

)
𝜆𝑙

+ dimC Gr0
𝐹

(
Tors𝑅 𝐻1(𝑈

𝑓 ,C)
)
𝜆𝑙

− dimC Gr−1
𝐹

(
Tors𝑅 𝐻1 (𝑈

𝑓 ,C)
)
𝜆𝑙
,

and for 𝑙 = 𝑁 ,

𝑛 𝑓 , 𝑙𝑁 +2
= dimCGr0

𝐹

(
𝐻2 (𝑈

𝑓 ,C)

(𝑡𝑁 − 1)𝐻2(𝑈 𝑓 ,C)

)
𝜆𝑙

,

𝑛 𝑓 , 𝑙𝑁 +1
= dimCGr−1

𝐹

(
𝐻2(𝑈

𝑓 ,C)

(𝑡𝑁 − 1)𝐻2(𝑈 𝑓 ,C)

)
𝜆𝑙

− 𝑚,

Hence, dimC Gr−1
𝐹

𝐻2 (𝑈
𝑓 ,C)

(𝑡𝑁−1)𝐻2 (𝑈 𝑓 ,C)
=
(∑𝑁

𝑙=1 𝑛 𝑓 , 𝑙𝑁 +1

)
+𝑚 is combinatorially determined, which concludes

the proof of the statement in (2). For the statement in (4), just note that

dimCGr−1
𝐹

𝐻2 (𝑈
𝑓 ,R)

(𝑡𝑁 − 1)𝐻2(𝑈 𝑓 ,R)
= dimC 𝐹−1 𝐻2(𝑈

𝑓 ,R)

(𝑡𝑁 − 1)𝐻2(𝑈 𝑓 ,R)
− dimC 𝐹0 𝐻2 (𝑈

𝑓 ,R)

(𝑡𝑁 − 1)𝐻2(𝑈 𝑓 ,R)

and that

dimC 𝐹0 𝐻2(𝑈
𝑓 ,C)

(𝑡𝑁 − 1)𝐻2(𝑈 𝑓 ,C)
= dimC Gr0

𝐹

𝐻2 (𝑈
𝑓 ,C)

(𝑡𝑁 − 1)𝐻2(𝑈 𝑓 ,C)

=

(
𝑁∑
𝑙=1

𝑛 𝑓 , 𝑙𝑁 +2

)
−

1
2

dimC
(
Tors𝑅 𝐻1 (𝑈

𝑓 ,C)
)
≠1

=

(
𝑁∑
𝑙=1

𝑛 𝑓 , 𝑙𝑁 +2

)
−

1
2

(
dimC Tors𝑅 𝐻1 (𝑈

𝑓 ,C) − (𝑚 − 1)
)
.

�

Remark 11.13. Note that, by Theorem 11.11, 𝐻2 (𝑈
𝑓 ,C)

(𝑡𝑁−1)𝐻2 (𝑈 𝑓 ,C)
is a space whose dimension is combi-

natorially determined, and the dimension of one out of its three possible nonzero graded pieces by the
Hodge filtration is also combinatorially determined.
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The following corollary summarizes the work done in this section.

Corollary 11.14. Let {𝐿1, . . . , 𝐿𝑚} be a (reduced) essential line arrangement in C2, with 𝑚 ≥ 3.
Let 𝑓 (𝑥, 𝑦) ∈ C[𝑥, 𝑦] be a reduced defining polynomial of ∪𝑚𝑖=1𝐿𝑖 , and let 𝑈 = C2 \ 𝑉 ( 𝑓 ). Let N
as Remark 11.8, which is determined by the combinatorics of {𝐿1, . . . , 𝐿𝑚}. Consider the MHS on

𝐻2 (𝑈
𝑓 ,R)

(𝑡𝑁−1)𝐻2 (𝑈 𝑓 ,R)
from Definition 6.17. Then, if dimC 𝐹0 𝐻2 (𝑈

𝑓 ,C)
(𝑡𝑁−1)𝐻2 (𝑈 𝑓 ,C)

is always determined by the
combinatorics of {𝐿1, . . . , 𝐿𝑚}, Question 11.4 has a positive answer.
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