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Abstract
Modern quantitative evidence synthesis methods often combine patient-level data from different sources, known
as individual participants data (IPD) sets. A specific challenge in meta-analysis of IPD sets is the presence of
systematically missing data, when certain variables are not measured in some studies, and sporadically missing
data, when measurements of certain variables are incomplete across different studies. Multiple imputation (MI)
is among the better approaches to deal with missing data. However, MI of hierarchical data, such as IPD meta-
analysis, requires advanced imputation routines that preserve the hierarchical data structure and accommodate
the presence of both systematically and sporadically missing data. We have recently developed a new class
of hierarchical imputation methods within the MICE framework tailored for continuous variables. This article
discusses the extensions of this methodology to categorical variables, accommodating the simultaneous presence
of systematically and sporadically missing data in nested designs with arbitrary missing data patterns. To
address the challenge of the categorical nature of the data, we propose an accept–reject algorithm during the
imputation process. Following theoretical discussions, we evaluate the performance of the new methodology
through simulation studies and demonstrate its application using an IPD set from patients with kidney disease.

Highlights
What is already known?

• Systematically and sporadically missing data are very common in individual participant data meta-analysis
(IPD-MA).

• Multiple imputation of missing data in IPD-MA should account for clustering and heterogeneity between
studies.

• Multilevel imputation methods are available for continuous variables with both systematically and sporadi-
cally missing data.

What is new?

• We develop a new class of imputation methods for categorical variables in IPD-MA while addressing the
challenge of simultaneous presence of systematically and sporadically missing data.
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Potential impact for RSM readers

• Imputation of missing values in IPD-MA allows using full data potential which can provide additional insight
for evidence synthesis.

• The proposed imputation methodology can directly be applied to other settings of clustered (or multilevel)
data such as longitudinal studies.

1. Introduction

Quantitative evidence synthesis is an important aspect of contemporary clinical research and medical
decision making. It is widely used to summarize the effectiveness of medical interventions,1 the
accuracy of diagnostic tests,2 the association of prognostic factors,3 or even the performance of
published prediction models.4 Historically, evidence synthesis originates from the desire to summarize
the results from multiple related studies, often through meta-analysis techniques that aggregate
published data (e.g., estimates of relative treatment effect) into a weighted average. However, there is
a growing trend toward combining patient-level data from multiple studies and performing a so-called
individual participant data meta-analysis (IPD-MA).5,6

IPD-MA represents a new era in evidence synthesis, offering several advantages over traditional
meta-analyses that are solely based on aggregate data. Most notably, the use of IPD allows for more
precise tailoring of diagnostic strategies, identification of risk and prognostic factors, and personalizing
risk prediction.7 Moreover, pooling of IPD is particularly sui3 for identifying modifiers of relative
treatment effect8 and developing models to predict absolute outcome risk or absolute treatment effects
in individual patients.9

A key challenge in combining multiple sources of IPD is the presence of between-study hetero-
geneity. Briefly, this implies that studies differ in aspects such as outcome occurrence (baseline risk)
or the magnitude of predictor-outcome associations. Such heterogeneity can arise from differences in
participant eligibility criteria, variable and outcome definitions, measurement methods, or treatment
protocols across studies. The presence of between-study heterogeneity is an important concern in any
meta-analysis, as it may substantially affect the interpretation of pooled summary estimates.10

Another common issue in meta-analysis of IPD is the presence of missing data. This situation
typically occurs when variables of interest have not been measured in one or more studies (resulting
in completely or systematically missing) or in some participants within studies (resulting in partially
or sporadically missing). For example, in the GREAT Network study,11 the biomarker brain natriuretic
peptide (BNP) was used to explain left ventricular ejection fraction. However, BNP is a relatively
recent technique which was unavailable (thus, systematically missing), in several studies within the
IPD-MA of the GREAT study. While it is possible to restrict the analysis to participants with complete
data, the potential loss of efficiency and validity is generally undesirable.12 Therefore, it is generally
recommended to adopt multiple imputation (MI)13 methods when one or more studies are affected by
missing data. Briefly, MI generates multiple versions of the original dataset(s) by replacing missing
values with imputations that are based on observed data. A common approach is to use chained
equations to impute each variable sequentially, conditional on the other variables.14,15 This method
allows for a great deal of flexibility as each variable (e.g., binary, ordinal, continuous, etc.) can be
imputed using an appropriate functional form, such as logistic or probit models for binary variables
(see van Buuren 16). Although MI can be relatively straightforward to implement, it requires careful
consideration when participants are clustered within different studies or centers. Imputation models
should account for variability within and across studies; otherwise, the imputed values and their
uncertainty may no longer be valid.17,18

For clustered data such as IPD, the multivariate imputation using chained equations (MICE)
algorithm naturally extends to multilevel settings. This requires specifying conditional imputation
models that incorporate random effects, known as multilevel or hierarchical imputation models.
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Although several multilevel imputation methods (MLMIs) have been proposed (for a recent overview,
see Audigier et al.19) they have at least two limitations: (i) they are primarily developed for continuous
(and normally distributed) variables and (ii) they are not designed to address the combined presence of
sporadically and systematically missing data.

Several multilevel imputation routines are available for continuous variables within the MICE
framework. Van Buuren20 and Yucel et al.,21 among others, developed multilevel imputation approaches
based on linear mixed-effects models to handle sporadically missing data in continuous variables. While
these methods effectively account for the multilevel structure of the data, they are not designed to handle
systematically missing data. Further, Resche-Rigon and White22 and Jolani23 developed multilevel
imputation approaches that address both systematically and sporadically missing data, but these are
limited to continuous variables. In addition, Resche-Rigon and White24 proposed a two-stage multilevel
imputation approach for systematically and sporadically missing data in continuous variables.

For categorical data, MLMIs are scarce and primarily limited to binary variables. Within the
MICE framework, Yucel et al.21 developed a MLMIs for binary variables using the generalized linear
mixed-effects models. However, this approach only addresses sporadically missing data and is not
suitable for systematically missing data. Conversely, Jolani et al.25 proposed a general class of MLMIs
for categorical variables with systematically missing data, but their method does not accommodate
sporadically missing data. Motivated by the one-stage approach of Jolani et al.25 and two-stage
approach of Resche-Rigon and White,24 Audigier et al.19 suggested treating sporadically missing values
in binary variables as systematically missing and imputing them accordingly using the one-stage or
two-stage multilevel approaches, respectively.

The combined presence of systematically and sporadically missing data in categorical variables is
a common challenge in IPD-MA. To date, the MICE framework still lacks principled MLMIs that
address both systematically and sporadically missing data in categorical variables. To bridge this gap,
we propose a new class of multilevel imputation methodologies for IPD-MA and beyond, specifically
designed to address the challenges posed by both systematically and sporadically missing data in
categorical variables.

This manuscript is organized as follows. Section 2 introduces an innovative multilevel imputation
methodology for categorical variables by utilizing an accept–reject sampling procedure. We mainly
focus on the development of MLMIs for a broad class of families, including models for binary and
count variables. Section 3 evaluates the performance of the proposed methodologies through extensive
simulation studies across a wide range of scenarios, including varying degrees of between-study
heterogeneity. Section 4 demonstrates the implementation of the new methodologies in an IPD-MA
of chronic kidney disease (CKD) patients. Section 5 concludes with a discussion and final remarks.

2. Methods

2.1. Analysis model for IPD-MA

Suppose we aim to perform an IPD-MA from n studies. Let 𝑦𝑖 𝑗 denote a value of the random variable Y
for subject 𝑗 , 𝑗 = 1, . . . , 𝑛𝑖 in study 𝑖, 𝑖 = 1, . . . , 𝑛. We assume the following generalized linear mixed-
effects model for the IPD set:

𝑔{𝐸 (𝑌𝑖 𝑗 = 𝑦𝑖 𝑗 |x𝑖 𝑗 ,w𝑖 𝑗 ;Θ)} = x𝑖 𝑗𝛼 + w𝑖 𝑗u𝑖 , (2.1)

where 𝑔(·) denotes a link function, x𝑖 𝑗 = (𝑥𝑖 𝑗1, . . . , 𝑥𝑖 𝑗 𝑝)
𝑇 is a 𝑝 × 1 vector of potential predictors

of outcome 𝑦𝑖 𝑗 , w𝑖 𝑗 is typically a subset of vector x𝑖 𝑗 , 𝛼 is a vector of fixed-effects parameters, and
u𝑖 = (𝑢𝑖1, . . . , 𝑢𝑖𝑞)

𝑇 is a 𝑞 × 1 (𝑞 ≤ 𝑝) vector of random effects following a multivariate normal
distribution, u𝑖 ∼ 𝑁 (0,Ω) with a 𝑞 × 𝑞 covariance matrix Ω. We denote the diagonal elements of Ω
with 𝜔2

1, . . . , 𝜔
2
𝑞 and its off-diagonal elements with 𝜔𝑞1 ,𝑞2 , 𝑞1, 𝑞2 = 1, . . . , 𝑞 and 𝑞1 ≠ 𝑞2. We refer

to such variances and covariances as random-effects parameters, and Θ = (𝛼,Ω). Furthermore, we
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assume that the vectors (𝑌𝑖 𝑗 , 𝑋𝑖 𝑗1, . . . , 𝑋𝑖 𝑗 𝑝) for all 𝑖, 𝑗 are independent and identically distributed and
that the vectors (𝑦𝑖 𝑗 , 𝑥𝑖 𝑗1, . . . , 𝑥𝑖 𝑗 𝑝) are their realizations.

The analysis model 2.1 encompasses a general family of distributions. For continuous outcome 𝑌𝑖 𝑗 ,
for instance, the link function is identity (𝑔 = 1) so we use

𝐸 (𝑌𝑖 𝑗 = 𝑦𝑖 𝑗 |x𝑖 𝑗 ,w𝑖 𝑗 ;Θ) = x𝑖 𝑗𝛼 + w𝑖 𝑗u𝑖 .

For binary outcome 𝑌𝑖 𝑗 , as another example, the link function is logit (𝑔(𝑝) = 𝑙𝑜𝑔( 𝑝
1−𝑝 )) and the

analysis model 2.1 is represented by

log{
𝑃𝑟 (𝑌𝑖 𝑗 = 1|x𝑖 𝑗 ,w𝑖 𝑗 ;Θ)

1 − 𝑃𝑟 (𝑌𝑖 𝑗 = 1|x𝑖 𝑗 ,w𝑖 𝑗 ;Θ)
} = x𝑖 𝑗𝛼 + w𝑖 𝑗u𝑖 .

2.2. Multilevel MI in MICE

MICE is blind to the role of variables in the analysis, and each variable is imputed in turn conditional
on the other variables. Let Z = [𝑋1, . . . , 𝑋𝑝 , 𝑌 ] denote a full data matrix containing a set of explanatory
variables 𝑋1, . . . , 𝑋𝑝 and outcome Y, and Z−𝑘 = [𝑍1, . . . , 𝑍𝑘−1, 𝑍𝑘+1, . . . , 𝑍𝐾 ]. Without loss of
generality, we assume that each column of Z has some missing entries. The MICE (or fully conditional
specification) approach specifies an appropriate conditional regression model for each variable (i.e.,
each column of Z) given the other variables, that is,

𝑍1 ∼ 𝑓1(𝑍1 |Z−1, 𝜃1)

𝑍2 ∼ 𝑓2(𝑍2 |Z−2, 𝜃2)

...

𝑍𝐾 ∼ 𝑓𝐾 (𝑍𝐾 |Z−𝐾 , 𝜃𝐾 ),

where 𝜃𝑘 , 𝑘 = 1, . . . , 𝐾, denotes the unknown parameters of each conditional distribution. These
conditional models are the basis for approximating the posterior predictive distribution of the missing
data. To account for the hierarchical data structure (i.e., individuals within studies), we apply a linear
mixed-effects model for continuous variables, a logistic mixed-effects model for binary variables, a
Poisson mixed-effects model for count variables, and so on. The set of specified conditional multilevel
models forms a cycle, a few of which typically should be repeated successively to achieve an adequate
approximation to the marginal posterior predictive distribution of the missing data. Specifically, missing
values of 𝑍1 are imputed conditional on the other variables. Subsequently, missing values of 𝑍2 are
imputed using the recent imputations of 𝑍1 and other variables. The imputed values from the last
cycle are eventually considered as one set of imputations. Replicating the whole process multiple times
produces MI sets.

We throughout assume the missing data mechanism is missing at random (MAR)26 implying that the
probability that any data value is missing may depend on quantities that are observed but not quantities
that are missing. Therefore, the imputation model that we focus on would be appropriate under missing
completely at random (MCAR) or MAR assumption.

2.3. Multilevel imputation of a single variable

Because MICE is implemented on a variable-by-variable basis, we focus on the imputation of a single
(categorical) variable in this section. For subject j in study i, suppose 𝑍𝐾,𝑖 𝑗 represents the Kth (last)
incomplete variable in the data matrix Z. We define the following multilevel imputation model for 𝑍𝐾 ,
which is a generalized linear mixed-effects model conditional on the remaining 𝐾 − 1 variables

𝑔{𝐸 (𝑍𝐾,𝑖 𝑗 = 𝑧𝐾,𝑖 𝑗 |z−𝐾,𝑖 𝑗 ; 𝛽,Ψ)} = 𝛽0 + 𝛽1𝑧1,𝑖 𝑗 + · · · + 𝛽𝐾−1𝑧 (𝐾−1) ,𝑖 𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑧1,𝑖 𝑗 , (2.2)
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where g is the link function and z−𝐾,𝑖 𝑗 = (𝑧1,𝑖 𝑗 , . . . , 𝑧 (𝐾−1) ,𝑖 𝑗 ). For brevity, we assume a random
intercept and a random slope model for 𝑧1 only in the above imputation model, so b𝑖 = (𝑏0𝑖 , 𝑏1𝑖)

𝑇 ∼

𝑁 (0,Ψ) for 𝑖 = 1, . . . , 𝑛, where Ψ is a 2×2 covariance matrix containing the random-effects parameters.
The fixed-effects parameters are denoted by (𝛽0, 𝛽1, . . . , 𝛽𝐾−1) in the imputation model 2.2. Following
Rubin13, the formal procedure to obtain imputations for 𝑍𝐾 consists of the following steps:

(1) Estimating the parameters Γ = {𝛽0, 𝛽1, . . . , 𝛽𝐾−1,Ψ} altogether with the random effects B =
(b1, . . . , b𝑛) in model 2.2 using the observed data.

(2) Drawing Γ∗ = {𝛽∗0, 𝛽
∗
1, . . . , 𝛽

∗
𝐾−1,Ψ

∗} and subsequently B∗ = (b∗
1, . . . , b

∗
𝑛) from their observed-

data posterior distributions.
(3) Imputing missing values of 𝑍𝐾 from the conditional predictive distribution

𝑔{𝐸 (𝑍𝐾,𝑖 𝑗 = 𝑧𝐾,𝑖 𝑗 |z−𝐾,𝑖 𝑗 ; 𝛽∗,Ψ∗)} = 𝛽∗0 + 𝛽
∗
1𝑧1,𝑖 𝑗 + · · · + 𝛽∗𝐾−1𝑧 (𝐾−1) ,𝑖 𝑗 + 𝑏

∗
0𝑖 + 𝑏

∗
1𝑖𝑧1,𝑖 𝑗 .

Although the implementation of step (1) is rather straightforward, drawing the parameters from the
posterior distributions in step (2) is cumbersome as the unconditional distributions for these parameters
cannot generally be obtained in closed form. Thus, Markov chain Monte Carlo methods are typically
employed by combining steps (1) and (2) to estimate and obtain random draws of Γ∗ and B∗ (see, among
others, Drechsler27). Such iterative algorithms are, however, unattractive within the MICE framework
because a Gibbs sampler needs to be iterated within each conditional model of a cycle. Jolani et al.25

proposed a simplification over the full Gibbs sampler that relies on the conditional independence
between 𝛽 and Ψ and requires no iteration. In short, inference about Γ = (𝛽,Ψ) can be separated into
two conditionally independent parts assuming that the random effects B = (b1, . . . , b𝑛) are known.
Here, standard routines for the (generalized) linear mixed-effects models (e.g., the glmer function in
the R package lme4) are used to estimate the parameters in step (1). Random draws of 𝛽 and Ψ are
then obtained independently conditional of the estimated random effects B from step (1) (see Jolani23

for details).
This imputation methodology was originally developed by Jolani et al.25 for any systematically

missing variable where the random effects b𝑖 are drawn from the unconditional (prior) distribution
𝑃𝑟 (b𝑖). Jolani23 further extended the proposed imputation methodology to systematically and sporadi-
cally missing continuous variables. Extensions to categorical variables with sporadically missing data
are an uneasy task because the conditional posterior distribution of random effects does not have a
standard form as opposed to continuous variables. To elaborate on this point, consider an incomplete
variable Z. For study i with sporadically missing values, we need to make a draw from the posterior
distribution 𝑃𝑟 (b𝑖 |𝑧𝑖), which can be approximated by

𝑃𝑟 (b𝑖 |𝑧𝑖) ∝ 𝑃𝑟 (b𝑖) × 𝑃𝑟 (𝑍𝑖 = 𝑧𝑖 |b𝑖). (2.3)

From model 2.2, we know that 𝑃𝑟 (b𝑖) ∼ 𝑁 (0,Ψ). If Z is normally distributed (and thus continuous), it
follows that 𝑃𝑟 (b𝑖 |𝑧𝑖) is normally distributed too, and so a random draw of b𝑖 can easily be obtained
conditional on 𝑧𝑖 . However, it is difficult to simulate directly from this distribution if Z is categorical
(e.g., binary). Therefore, we propose an accept–reject sampling method, 28 to draw a random value b∗

𝑖
from the posterior distribution 𝑃𝑟 (b𝑖 |𝑧𝑖).

The accept–reject sampling method involves obtaining draws from a proposal density (which is
easier to sample from) until a draw satisfies a particular condition. We choose 𝑃𝑟 (b𝑖) ∼ 𝑁 (0,Ψ) as a
proposal density, from which samples can easily be drawn. The method then requires the ratio of the
target density (i.e., 𝑃𝑟 (b𝑖 |𝑧𝑖)) to the proposal density be bounded above a constant quantity M. It is
easy to show that this ratio is proportional to

𝑃𝑟 (b𝑖 |𝑧𝑖)
𝑃𝑟 (b𝑖)

∝ 𝑃𝑟 (𝑍𝑖 = 𝑧𝑖 |b𝑖).
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Following Robert and Casella,28 the bound M can be taken to be the likelihood function in equation
(2.3) evaluated at the maximum likelihood estimates. The algorithm is then completed when we sample
b∗
𝑖 from the proposal density and U from the uniform distribution on (0, 1). The drawn sample b∗

𝑖 is
accepted if𝑈 ≤ 𝑃𝑟 (𝑍𝑖 = 𝑧𝑖 |b∗

𝑖 )/𝑀 . Otherwise, a new pair (b∗
𝑖 ,𝑈) is drawn. After completing the above

steps (1) and (2), imputations are obtained in step (3) using an appropriate generalized mixed-effects
model.

The proposed accept–reject method is general and can be applied to any categorical variables as long
as these include the family of generalized linear mixed-effects models. Also, it should be emphasized
that, for a given incomplete variable, the proposed accept–reject sampling method is required for studies
with sporadically missing data. For studies with systematically missing data, the random effects b𝑖
are drawn from the unconditional distribution 𝑃𝑟 (b𝑖) (see Jolani et al.25). As a showcase, we provide
computational details of the proposed imputation methodology for a count variable with systematically
and sporadically missing data.

Example 2.1. Multilevel imputation of a count variable

For simplicity suppose the data matrix Z contains three variables 𝑍1, 𝑍2, and 𝑍3. Further, assume
that the count variable 𝑍3 is sporadically and systematically missing in m and (𝑛−𝑚) studies and 𝑍𝑜𝑏𝑠3
and 𝑍𝑚𝑖𝑠3 are the observed and missing part of 𝑍3 respectively. For 𝑍3, we define the following Poisson
mixed-effects model as the imputation model:

𝑙𝑜𝑔{𝐸 (𝑍3,𝑖 𝑗 |𝑧−3,𝑖 𝑗 ; 𝛽,Ψ)} = 𝛽0 + 𝛽1𝑧1,𝑖 𝑗 + 𝛽2𝑧2,𝑖 𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑧1,𝑖 𝑗 ,

where the link function is the natural logarithm, and the model parameters are defined as in model 2.2.
Assuming the parameters are a priori independent (i.e., 𝑃𝑟 (𝛽,Ψ) = 𝑃𝑟 (𝛽)𝑃𝑟 (Ψ)) and specifying the
standard prior distributions 𝑃𝑟 (𝛽) ∝ 1 and Pr(Ψ−1) ∝ |Ψ−1 |−(2+1)/2, the imputation procedure consists
of the following steps:

1. Obtain the restricted maximum likelihood estimates 𝛽 = (𝛽0, 𝛽1, 𝛽2) and Ψ̂ using 𝑍1, 𝑍2, 𝑍
𝑜𝑏𝑠
3 .

2. Obtain the random effects B = (b1, . . . , b𝑚), where b𝑖 = (𝑏0𝑖 , 𝑏1𝑖)
𝑇 and calculate Λ̂ =

∑𝑚
𝑖=1 b𝑖b𝑇𝑖 .

3. Obtain a random draw 𝛽∗ ∼ 𝑁 (𝛽,𝑉𝑎𝑟 (𝛽)).
4. Obtain a random draw Ψ∗−1 ∼ 𝑊𝑡 (𝑚, Λ̂−1) where W is a Wishart distribution with m degrees of

freedom and a 𝑡 × 𝑡 scale matrix parameter Λ. (here 𝑡 = 2)
5. For each study i, 𝑖 = 1, . . . , 𝑛

(a) If 𝑍3 is sporadically missing, draw b∗
𝑖 from the developed accept–reject sampling algorithm.

(b) If 𝑍3 is systematically missing, draw b∗
𝑖 from 𝑁 (0,Ψ∗).

6. Impute 𝑍𝑚𝑖𝑠3 from the Poisson mixed-effects model

𝑙𝑜𝑔{𝐸 (𝑍3,𝑖 𝑗 |𝑧−3,𝑖 𝑗 ; 𝛽∗,Ψ∗)} = 𝛽∗0 + 𝛽
∗
1𝑧1,𝑖 𝑗 + 𝛽

∗
2𝑧2,𝑖 𝑗 + 𝑏

∗
0𝑖 + 𝑏

∗
1𝑖𝑧1,𝑖 𝑗 .

It should be noted that the scale matrix parameter Λ is calculated from studies for which 𝑍3 is
sporadically missing and studies with systematically missing do not contribute, and consequently this
may underestimate Λ. Further, the above procedure can easily be modified for imputation of other types
of categorical variables.

3. Simulations

A set of simulation studies was considered to assess the performance of the proposed multilevel
imputation methodology by varying the between-study heterogeneity, the size of studies, the proportion
of systematically missing data, the missing data mechanism, and the type of (incomplete) variables.
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3.1. Simulation design

We began by generating a triple (𝑋1, 𝑋2, 𝑌 ) where 𝑋1 is a binary variable, 𝑋2 is a count variable, and
Y is the outcome of interest (continuous or binary). Covariates 𝑋1 and 𝑋2 were generated from a joint
mixed-effects model

logit{𝑃𝑟 (𝑋1𝑖 𝑗 = 1)} = 𝛾1 + 𝜈1𝑖

log{𝐸 (𝑋2𝑖 𝑗 )} = 𝛾2 + 𝜈2𝑖 ,

where 𝛾1 and 𝛾2 are the fixed-effects parameters and the random-effects (𝜈0𝑖 , 𝜈1𝑖)
𝑇 ∼ 𝑁 (0,Λ) with

Λ =

(
𝜆2

1 𝜆12
𝜆12 𝜆2

2

)
.

The continuous outcome variable Y was subsequently generated from the linear mixed-effects model

𝑌𝑖 𝑗 = 𝛼0 + 𝛼1𝑥1𝑖 𝑗 + 𝛼2𝑥2𝑖 𝑗 + 𝑢0𝑖 + 𝑢1𝑖𝑥1𝑖 𝑗 + 𝜀𝑖 𝑗 , (3.1)

where 𝛼 = (𝛼0, 𝛼1, 𝛼2)
𝑇 represents the regression coefficients of interest (i.e., the fixed-effects

parameters), the residual errors 𝜀𝑖 𝑗 ∼ 𝑁 (0, 𝜎2), and the random effects (𝑢0𝑖 , 𝑢1𝑖)
𝑇 ∼ 𝑁 (0,Ω) with

Ω =

(
𝜔2

0 𝜔01
𝜔01 𝜔2

1

)

representing the random-effects parameters. For the binary outcome Y, we similarly defined the
generalized linear mixed-effects model

logit{𝑃𝑟 (𝑌𝑖 𝑗 = 1)} = 𝛼0 + 𝛼1𝑥1𝑖 𝑗 + 𝛼2𝑥2𝑖 𝑗 + 𝑢0𝑖 + 𝑢1𝑖𝑥1𝑖 𝑗 , (3.2)

with the same assumption for (𝑢0𝑖 , 𝑢1𝑖).
The parameter values were chosen to mimic the structure of an IPD-MA investigating potential

factors associated with smoking in patients with CKD. Further details on the data are provided in
the Application section. We chose alcohol consumption status and the number of comorbidities (e.g.,
hypertension, obesity, etc.) to motivate the distribution of the binary and count variables 𝑥1 and 𝑥2,
respectively. For the outcome variable y, smoking status was used to motivate the parameters of
the analysis model 3.2 (and 3.1). We considered three levels of between-study heterogeneity—weak,
moderate, and strong—by varying elements of the covariance matrix Ω. Details about the parameter
values used for the simulation study are provided in the Appendix.

For each simulated dataset, we introduced systematically and sporadically missing values in
variables 𝑥1 and 𝑥2. These variables were independently systematically missing with probability 𝜋𝑠𝑦𝑠
under the MCAR assumption, which is more plausible in IPD settings. We considered two proportions
of systematically missing data: 𝜋𝑠𝑦𝑠 = 0.10 and 𝜋𝑠𝑦𝑠 = 0.30, resulting in approximately 1% and 9%
joint systematically missing data in both 𝑥1 and 𝑥2. In addition, for studies where a variable was not
systematically missing, sporadically missing values were created independently for each variable under
the MCAR and MAR assumptions. For the MAR scenarios, the probability that a data value is missing
depended on the outcome variable (which was fully observed). Specifically, we used the following
models to create sporadically missing data in 𝑥1 and 𝑥2, respectively:

Logit{Pr(𝑅1 = 1)} = 𝛿01 + 𝛿11𝑦,

Logit{Pr(𝑅2 = 1)} = 𝛿02 + 𝛿12𝑦,

where 𝑅1 = 1 (𝑅2 = 1) if 𝑥1 (𝑥2) is observed and 𝑅1 = 0 (𝑅2 = 0) if 𝑥1 (𝑥2) is sporadically missing.
Under MCAR, 𝛿11 = 𝛿12 = 0, and we fixed the proportion of sporadically missing data to 15% in each
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of 𝑥1 and 𝑥2. Under MAR, we set 𝛿11 = 1 and 𝛿12 = 0.5 and adjusted the intercept values accordingly.
For example, setting 𝛿01 = −0.47 resulted in about 15% sporadically missing data in 𝑥1 when the
outcome variable y was continuous.

Finally, we considered five study sizes 𝑛 = 6, 10, 15, 20, 30 with a fixed total sample size of 3,000
participants, resulting in 500 subjects (𝑛 = 6), 300 subjects (𝑛 = 10), 200 subjects (𝑛 = 15), 150
subjects (𝑛 = 15), and 100 subjects (𝑛 = 30) per study. This led to a total of 120 simulation scenarios
(2 types of outcomes × 3 levels of between-study heterogeneity × 5 study sizes × 2 proportions of
systematically missing data × 2 types of missing data mechanism), each of which was replicated 1000
times.

3.2. Methods and performance criteria

The simulation study evaluates five methods: the newly developed MLMI, the two-stage MLMI
(2STG),24 the stratified imputation method (STI), complete case analysis (CCA), and the analysis
of original data before the introduction of missing values (REF). The last method (REF) serves as a
reference to assess the performance of the methods.

The STI method includes a study indicator as a categorical variable to the imputation model to
account for the presence of clustering and uses standard imputation routines for non-clustered data,
such as predictive mean matching, to generate imputations. However, for studies with systematically
missing data, the intercept cannot be unidentified in the STI imputation method. To address this, the
method uses the average of the observed study-intercept terms to obtain imputations for studies with
systematically missing data. The CCA method, on the other hand, excludes subjects or studies with
missing values from the analysis.

For all imputation methods (MLMI, 2STG, and STI), the conditional imputation models include all
available covariates. In the MLMI and 2STG methods, the imputation models additionally include a
random intercept and a random slope for the outcome variable y. Each incomplete dataset was imputed
five times, with 10 cycles of the MICE algorithm used to obtain each imputed dataset. Afterward, each
imputed dataset was fitted to the analysis model 3.1 or 3.2, and the results were pooled using Rubin’s
rule. All analyses were conducted using the R packages mice and lme4.

The primary parameters of interest are the fixed-effects parameters 𝛼 = (𝛼0, 𝛼1, 𝛼2)
𝑇 and the

random-effects parameters 𝜔0 and 𝜔1 in model 3.1 or 3.2. For each method, we calculated the bias, root
mean squared error (RMSE), model-based standard error (Model SE), empirical Monte Carlo standard
error (Emp SE), and the coverage rate of the 95% confidence interval (CR).

3.3. Results

This section presents the simulation study results for the binary outcome. The findings for the
continuous outcome are included in the Supplementary Material.

3.3.1. The binary outcome case
Tables 1–3 show the results for the fixed-effects and random-effects parameters with 𝑛 = 10 studies
under MAR across the five different methods under weak, moderate, and strong between-study
heterogeneity, respectively. Overall, all methods provided satisfactory estimates for the fixed-effects
parameters (𝛼0, 𝛼1, 𝑎𝑛𝑑 𝛼2) except for CCA where the bias for the estimate of 𝛼0 was moderate.
Notably, both STI and 2STG exhibited a slight bias in the estimates of 𝛼0 and 𝛼1 under strong between-
study heterogeneity. Moreover, the CCA method had the largest RMSE, likely due to the proportion of
missing data as it rose with the rate of systematically missing data. The RMSEs of the other methods
were comparable.

The performance of methods varied with respect to confidence interval coverage. For the coefficient
𝛼1 of the binary covariate, all methods were close to the nominal level since the variance of 𝛼1 was
generally underestimated, even for the reference method (REF). Nevertheless, the STI method had the
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Table 1. Estimates of the fixed- and random-effects parameters in the simulation study for the binary outcome with n = 10 studies and weak between-
study heterogeneity.

Systematically missing

10% 30%

REF CCA STI MLMI 2STG REF CCA STI MLMI 2STG

𝛼0 = −1.85
Estimate −1.841 −2.119 −1.849 −1.850 −1.844 −1.843 −2.127 −1.859 −1.855 −1.848
Bias 0.009 −0.269 0.001 0.000 0.006 0.007 −0.277 −0.009 −0.005 0.002
Model.SE 0.135 0.177 0.167 0.167 0.166 0.137 0.240 0.249 0.227 0.203
Emp.SE 0.141 0.178 0.163 0.162 0.160 0.140 0.246 0.205 0.190 0.181
CR% 91.4 66.8 93.3 94.2 94.3 91.3 77.4 96.6 95.8 95.7
RMSE 0.141 0.322 0.163 0.162 0.160 0.140 0.370 0.205 0.190 0.181

𝛼1 = 1.05
Estimate 1.038 1.044 1.052 1.050 1.038 1.049 1.053 1.078 1.059 1.052
Bias −0.012 −0.006 0.002 0.000 −0.012 −0.001 0.003 0.028 0.009 0.002
Model.SE 0.184 0.229 0.173 0.205 0.207 0.183 0.291 0.187 0.241 0.236
Emp.SE 0.190 0.230 0.213 0.213 0.214 0.191 0.305 0.243 0.249 0.241
CR% 91.9 92.9 88.4 90.9 91.0 91.9 90.2 84.3 90.3 91.1
RMSE 0.190 0.230 0.213 0.213 0.214 0.191 0.304 0.245 0.249 0.241

𝛼2 = −0.04
Estimate −0.042 −0.043 −0.040 −0.042 −0.039 −0.041 −0.045 −0.045 −0.041 −0.039
Bias −0.002 −0.003 0.000 −0.002 0.001 −0.001 −0.005 −0.005 −0.001 0.001
Model.SE 0.043 0.061 0.080 0.053 0.053 0.043 0.081 0.170 0.067 0.067
Emp.SE 0.042 0.061 0.057 0.050 0.051 0.043 0.078 0.093 0.062 0.062
CR% 95.7 95.0 98.0 95.3 94.6 95.3 96.2 99.0 94.4 94.9
RMSE 0.042 0.061 0.057 0.050 0.051 0.043 0.078 0.093 0.062 0.062
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Table 1. (Continued).

Systematically missing

10% 30%

REF CCA STI MLMI 2STG REF CCA STI MLMI 2STG

𝜔0 = 0.316
Estimate 0.240 0.228 0.266 0.301 0.302 0.254 0.242 0.323 0.387 0.372
Bias −0.076 −0.088 −0.050 −0.015 −0.014 −0.062 −0.074 0.006 0.071 0.056
RMSE 0.176 0.202 0.155 0.150 0.145 0.167 0.229 0.146 0.234 0.157

𝜔1 = 0.500
Estimate 0.455 0.449 0.338 0.426 0.437 0.450 0.406 0.300 0.422 0.423
Bias −0.045 −0.051 −0.162 −0.074 −0.063 −0.050 −0.094 −0.200 −0.078 −0.077
RMSE 0.162 0.203 0.198 0.188 0.180 0.157 0.254 0.228 0.221 0.205

Note: REF indicates the results that were obtained before missing data were introduced and can be viewed as a benchmark for comparing the performance of methods that are applied after missingness is introduced:
complete case analysis (CCA), stratified multiple imputation (STI), multilevel multiple imputation (MLMI), and two-stage multilevel multiple imputation (2STG). The following values are given: mean of estimates
(Estimate), bias (Bias), mean of standard error (Model SE), empirical standard error (Emp SE), the coverage rate of 95% confidence interval (CR), and the root of mean squared error (RMSE).

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. 26 Jul 2025 at 22:06:21, subject to the Cam

bridge Core term
s of use.

https://www.cambridge.org/core


Research
SynthesisM

ethods
11

Table 2. Estimates of the fixed- and random-effects parameters in the simulation study for the binary outcome with n = 10 studies and moderate between-
study heterogeneity.

Systematically missing

10% 30%

REF CCA STI MLMI 2STG REF CCA STI MLMI 2STG

𝛼0 = −1.85
Estimate −1.844 −2.124 −1.824 −1.846 −1.829 −1.851 −2.136 −1.850 −1.860 −1.843
Bias 0.006 −0.274 0.026 0.004 0.021 −0.001 −0.286 0.000 −0.010 0.007
Model.SE 0.281 0.328 0.284 0.307 0.299 0.280 0.426 0.335 0.353 0.335
Emp.SE 0.302 0.356 0.320 0.322 0.316 0.297 0.453 0.349 0.348 0.334
CR% 90.5 81.7 89.7 91.5 91.1 90.7 83.9 91.4 93.0 93.2
RMSE 0.302 0.449 0.321 0.322 0.317 0.297 0.536 0.348 0.348 0.334

𝛼1 = 1.05
Estimate 1.040 1.043 1.033 1.043 1.019 1.057 1.076 1.075 1.068 1.045
Bias −0.010 −0.007 −0.017 −0.007 −0.031 0.007 0.026 0.025 0.018 −0.005
Model.SE 0.299 0.349 0.241 0.329 0.316 0.299 0.439 0.235 0.387 0.357
Emp.SE 0.311 0.376 0.337 0.348 0.336 0.315 0.473 0.378 0.391 0.377
CR% 89.6 89.8 81.2 88.9 88.6 91.8 88.6 75.5 89.6 89.0
RMSE 0.311 0.375 0.338 0.348 0.337 0.315 0.473 0.378 0.391 0.377

𝛼2 = −0.04
Estimate −0.038 −0.039 −0.038 −0.039 −0.036 −0.040 −0.040 −0.039 −0.038 −0.036
Bias 0.002 0.001 0.002 0.001 0.004 0.000 0.000 0.001 0.002 0.004
Model.SE 0.044 0.063 0.082 0.055 0.056 0.045 0.083 0.170 0.069 0.071
Emp.SE 0.044 0.064 0.060 0.054 0.054 0.045 0.082 0.092 0.064 0.063
CR% 95.8 94.8 97.7 94.5 95.1 93.9 94.4 99.3 93.5 95.4
RMSE 0.044 0.064 0.060 0.054 0.054 0.045 0.082 0.092 0.064 0.063
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Table 2. (Continued).

Systematically missing

10% 30%

REF CCA STI MLMI 2STG REF CCA STI MLMI 2STG

𝜔0 = 0.866
Estimate 0.785 0.759 0.736 0.804 0.790 0.780 0.710 0.747 0.849 0.825
Bias −0.081 −0.107 −0.130 −0.062 −0.076 −0.086 −0.156 −0.119 −0.017 −0.041
RMSE 0.241 0.312 0.250 0.232 0.230 0.248 0.407 0.244 0.235 0.221

𝜔1 = 0.922
Estimate 0.835 0.810 0.583 0.804 0.790 0.836 0.739 0.491 0.790 0.753
Bias −0.087 −0.112 −0.339 −0.118 −0.132 −0.086 −0.183 −0.431 −0.132 −0.169
RMSE 0.261 0.325 0.388 0.307 0.299 0.251 0.411 0.468 0.359 0.337

Note: REF indicates the results that were obtained before missing data were introduced and can be viewed as a benchmark for comparing the performance of methods that are applied after missingness is introduced:
complete case analysis (CCA), stratified multiple imputation (STI), multilevel multiple imputation (MLMI), and two-stage multilevel multiple imputation (2STG). The following values are given: mean of estimates
(Estimate), bias (Bias), mean of standard error (Model SE), empirical standard error (Emp SE), the coverage rate of 95% confidence interval (CR), and the root of mean squared error (RMSE).

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. 26 Jul 2025 at 22:06:21, subject to the Cam

bridge Core term
s of use.

https://www.cambridge.org/core


Research
SynthesisM

ethods
13

Table 3. Estimates of the fixed- and random-effects parameters in the simulation study for the binary outcome with n = 10 studies and strong between-
study heterogeneity.

Systematically missing

10 % 30 %

REF CCA STI MLMI 2STG REF CCA STI MLMI 2STG

𝛼0 = −1.85
Estimate −1.858 −2.125 −1.714 −1.852 −1.754 −1.869 −2.140 −1.708 −1.875 −1.746
Bias −0.008 −0.275 0.136 −0.002 0.096 −0.019 −0.290 0.142 −0.025 0.104
Model.SE 0.524 0.592 0.453 0.548 0.502 0.527 0.787 0.472 0.627 0.543
Emp.SE 0.540 0.616 0.526 0.563 0.511 0.551 0.843 0.587 0.634 0.569
CR% 90.9 87.7 86.2 91.9 91.8 91.9 85.5 85.1 93.4 92.0
RMSE 0.540 0.675 0.543 0.562 0.520 0.551 0.891 0.603 0.634 0.578

𝛼1 = 1.05
Estimate 1.058 1.064 0.942 1.058 0.947 1.050 1.071 0.917 1.045 0.904
Bias 0.008 0.014 −0.108 0.008 −0.103 0.000 0.021 −0.133 −0.005 −0.146
Model.SE 0.533 0.598 0.376 0.573 0.516 0.537 0.809 0.352 0.720 0.597
Emp.SE 0.550 0.642 0.562 0.594 0.549 0.560 0.852 0.642 0.702 0.634
CR% 91.4 89.4 78.6 91.8 89.9 91.1 86.8 68.9 89.8 86.7
RMSE 0.550 0.642 0.572 0.594 0.559 0.559 0.852 0.656 0.702 0.650

𝛼2 = −0.04
Estimate −0.037 −0.039 −0.035 −0.037 −0.034 −0.042 −0.046 −0.042 −0.039 −0.038
Bias 0.003 0.001 0.005 0.003 0.006 −0.002 −0.006 −0.002 0.001 0.002
Model.SE 0.046 0.064 0.083 0.057 0.060 0.046 0.086 0.168 0.072 0.077
Emp.SE 0.044 0.063 0.058 0.052 0.053 0.045 0.083 0.093 0.063 0.066
CR% 95.8 96.3 98.3 97.5 96.1 95.8 95.4 98.9 94.9 95.9
RMSE 0.044 0.063 0.058 0.052 0.054 0.045 0.083 0.093 0.063 0.066
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Table 3. (Continued).

Systematically missing

10 % 30 %

REF CCA STI MLMI 2STG REF CCA STI MLMI 2STG

𝜔0 = 1.658
Estimate 1.533 1.496 1.285 1.506 1.404 1.543 1.426 1.245 1.541 1.413
Bias −0.125 −0.162 −0.373 −0.152 −0.254 −0.115 −0.232 −0.414 −0.117 −0.245
RMSE 0.442 0.520 0.507 0.436 0.442 0.432 0.719 0.523 0.438 0.429

𝜔1 = 1.688
Estimate 1.555 1.504 1.027 1.486 1.370 1.567 1.463 0.895 1.543 1.350
Bias −0.133 −0.184 −0.661 −0.202 −0.319 −0.121 −0.225 −0.794 −0.145 −0.338
RMSE 0.442 0.514 0.712 0.480 0.517 0.437 0.737 0.838 0.587 0.587

Note: REF indicates the results that were obtained before missing data were introduced and can be viewed as a benchmark for comparing the performance of methods that are applied after missingness is introduced:
complete case analysis (CCA), stratified multiple imputation (STI), multilevel multiple imputation (MLMI), and two-stage multilevel multiple imputation (2STG). The following values are given: mean of estimates
(Estimate), bias (Bias), mean of standard error (Model SE), empirical standard error (Emp SE), the coverage rate of 95% confidence interval (CR), and the root of mean squared error (RMSE).
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Figure 1. Bias of the fixed-effects estimates with 10% systematically missingness. Methods include
reference (REF-before introducing missing data), complete case analysis (CCA), stratified multiple
imputation (STI), multilevel multiple imputation (MLMI), and two-stage multilevel multiple imputation
(2STG).

lowest coverage rate, dropping below 80% under strong between-study heterogeneity. Interestingly, STI
resulted in coverage rates that exceeded the nominal level for the coefficient 𝛼2. These are likely due to
improper modeling of the multilevel data structure during imputation. The other methods achieved the
nominal 95% level for the coefficient 𝛼2 of the count variable. Despite not underestimating the variance
of 𝛼0, the CCA method led to severe undercoverage for 𝛼0.

For the random-effects parameters 𝜔0 and 𝜔1, all methods, including the reference, yielded
downwardly biased estimates, likely due to the shrinkage effect in random-effects models and the
limited number of studies, and the bias increased with the degree of between-study heterogeneity. For
𝜔0, the largest bias was observed with CCA under weak and moderate between-study heterogeneity,
whereas it occurred with STI under strong between-study heterogeneity. For 𝜔1, the largest bias was
consistently observed with STI across all between-study heterogeneity scenarios. In contrast, the MLMI
and 2STG methods produced estimates close to the reference method, with 2STG exhibiting a slightly
larger bias under strong between-study heterogeneity. When comparing RMSE, CCA, and STI had the
highest values for 𝜔0, and 𝜔1, respectively, followed by the MLMIs, where RMSE increased as the
proportion of systematically missing data grew.

To evaluate the performance of the methods across different study sizes (𝑛 = 6, 10, 15, 20, 30),
Figures 1–3 present the results for the fixed-effects parameters when the rate of systematically missing
data was 10%, and the missing data mechanism was MAR (for sporadically missing data). In Figures 4
and 5, the focus is on the random-effects parameters 𝜔0 and 𝜔1.

Figure 1 illustrates the bias in estimates of 𝛼1 and 𝛼2 for the analysis model 3.2. Under weak and
moderate between-study heterogeneity, all methods resulted in negligible bias for the coefficient 𝛼1
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Figure 2. Coverage rate of the 95% confidence interval for the fixed-effects parameters with 10% sys-
tematically missingness. Methods include reference (REF-before introducing missing data), complete
case analysis (CCA), stratified multiple imputation (STI), multilevel multiple imputation (MLMI), and
two-stage multilevel multiple imputation (2STG).

of the binary covariate, except for 2STG. Surprisingly, the 2STG method tended to underestimate 𝛼1,
with the bias gradually increasing as study size grew. Under strong between-study heterogeneity, both
the 2STG and STI methods tended to underestimate 𝛼1 across different study sizes, while the MLMI
method showed only a negligible bias in this scenario. For the coefficient 𝛼2 of the count covariate, on
the other hand, bias remained trivial across all methods and study sizes.

Figure 2 presents the coverage rates of the 95% confidence intervals for the fixed-effects parameters
𝛼1 and 𝛼2. STI exhibited significant coverage issues for the coefficient 𝛼1 of the binary covariate,
especially under moderate and strong between-study heterogeneity, where coverage dropped below
85%. Additionally, STI led to overcoverage for the coefficient 𝛼2 of the count covariate due to inflated
standard errors across different study sizes and between-study heterogeneity scenarios. Conversely,
the other methods performed reasonably well, maintaining coverage rates close to the nominal 95%
level (except for 2STG, which showed slightly lower coverage rates under strong between-study
heterogeneity).

Figure 3 displays the RMSE of 𝛼1 and 𝛼2 across different methods and study sizes. As expected,
CCA showed the highest error, particularly for the coefficient 𝛼1 of the binary covariate with strong
between-study heterogeneity. STI, 2STG, and MLMI had comparable RMSE values, though marginally
higher than REF. We also noticed that RMSE of �̂�1 increased with the degree of between-study
heterogeneity across all methods.

Figure 4 illustrates the bias in estimating the random-effects parameters 𝜔0 and 𝜔1. As discussed
earlier, all methods exhibited marginal underestimation of random-effects parameters. Most notably,
STI suffered from a large bias, particularly when estimating the random-effect parameter 𝜔1 or when
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Figure 3. Root mean squared error (RMSE) of the fixed-effects estimates with 10% systematically
missingness. Methods include reference (REF-before introducing missing data), complete case analysis
(CCA), stratified multiple imputation (STI), multilevel multiple imputation (MLMI), and two-stage
multilevel multiple imputation (2STG).

the between-study heterogeneity was strong. The multilevel imputation methods (MIML and 2STG)
produced comparable estimates of the random-effects parameters and were generally in line with
the reference method under weak and moderate between-study heterogeneity. However, under strong
between-study heterogeneity, 2STG exhibited a noticeable bias, followed by MLMI, though the bias
from MLMI remained trivial. Finally, CCA showed the least bias across different scenarios, although
it increased with smaller study sizes.

Figure 5 shows the RMSE for the estimates of random-effects parameters 𝜔0 and 𝜔1. For all
methods, RMSE generally decreased as the number of studies increased but increased with greater
between-study heterogeneity. CCA and STI consistently exhibited higher RMSE for 𝜔0 and 𝜔1,
respectively. In contrast, MLMI and 2STG tended to have lower RMSE, closely aligning with the
reference method.

The findings for the binary outcome with 30% systematically missing data are presented in Figures
A.1–A.5 in the Appendix. Although these results generally align with those in Figures 1–5, differences
in model performance are more pronounced in Figures A.1–A.5 due to the higher rate of systematically
missing data. Most notably, STI exhibited a substantial decline in coverage rates for the coefficient
𝛼1 of the binary covariate, while it increased sharply for the coefficients 𝛼2 of the count covariate.
Additionally, 2STG showed a gradual decline in coverage rates for 𝛼1 under strong between-study
heterogeneity (Figure A2). Lastly, CCA showed a modest increase in RMSE of �̂�1 (Figure A3).

It is also worth noting that the performance of methods changed slightly when the number of studies
was small (𝑛 = 6) and the rate of systematically missing data was 30%. Specifically, CCA exhibited a
rapid decline in coverage rate for 𝛼1, dropping below 80%, whereas the decline was less pronounced for
the other methods, including REF (Figure A2). Moreover, CCA produced downward-biased estimates
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Figure 4. Bias of the random-effects estimates with 10% systematically missingness. Methods include
reference (REF-before introducing missing data), complete case analysis (CCA), stratified multiple
imputation (STI), multilevel multiple imputation (MLMI), and two-stage multilevel multiple imputation
(2STG).

for the random-effects parameters 𝜔0 and 𝜔1, while MLMI exhibited an upward bias only for 𝜔0
(Figure A4). This may be due to the limited number of studies available, which could affect imputation
precision for MLMI and reduce analysis accuracy for CCA.

Finally, we did not report the results for MCAR cases (for sporadically missing data), as the methods
showed no substantial performance differences across scenarios.

3.3.2. The continuous outcome case
The results for the continuous outcome are presented in the Supplementary Material. Specifically,
Tables S1–S3 in the Supplementary Material provide the results for the fixed-effects and random-effects
parameters with 𝑛 = 10 studies. Figures S1–S10 in the Supplementary Material illustrate the findings
for 10% and 30% systematically missing data, respectively.

Overall, the performance of the methods remained consistent with that observed in the binary case.
However, CCA performed poorly. Specifically, it exhibited the largest bias for the coefficient 𝛼1 of the
binary covariate across most scenarios, while 2STG had the second largest bias, but only when study
size was large and between-study heterogeneity was strong (Figures S1 and S6 in the Supplementary
Material). The bias with the other methods was fairly trivial. Furthermore, both CCA and STI showed
coverage issues for 𝛼1, whereas the other methods achieved improved coverage rates (Figures S2 and
S7 in the Supplementary Material). For the coefficient 𝛼2 of the count covariate, all methods performed
well in terms of bias and coverage rates, similar to the binary case.

For the random-effects parameters 𝜔0 and 𝜔1, CCA and STI showed biased estimates with CCA
showing the largest bias for 𝜔0 and STI for 𝜔1 (Figures S4 and S9 in the Supplementary Material).
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Figure 5. Root mean squared error (RMSE) of the random-effects estimates with 10% systematically
missingness. Methods include reference (REF-before introducing missing data), complete case analysis
(CCA), stratified multiple imputation (STI), multilevel multiple imputation (MLMI), and two-stage
multilevel multiple imputation (2STG).

MLMI and 2STG performed comparably, exhibiting less bias across different scenarios. Nevertheless,
2STG tended to show greater bias for 𝜔1 as study size and between-study heterogeneity increased.

As in the binary case, the methods showed no substantial performance differences across scenarios
under the MCAR mechanism, so the results are not presented.

3.3.3. Conclusion
In summary, the findings indicate that naïve methods like CCA and STI have major drawbacks. Specif-
ically, CCA struggles with the reduced number of studies, leading to increased errors and potentially
biased estimates, and lower coverage rates, particularly when the proportion of systematically missing
data increases. Similarly, the STI method showed bias and coverage issues in many scenarios due
to inadequate modeling of the multilevel structure. In contrast, the multilevel imputation methods
(MLMI and 2STG), which appropriately account for the multilevel structure, offer more reliable
inferences, with smaller bias and confidence intervals closer to the nominal level. Nonetheless, 2STG
exhibited slight underestimation in some scenarios, possibly due to treating categorical variables with
sporadically missing values as systematically missing and imputing them accordingly. When the study
size was small (𝑛 = 6), the performance of all methods generally declined, highlighting their limitations
in settings with limited data.

4. Application

To demonstrate the approaches, we considered an IPD meta-analysis of 15 studies involving 4,774
patients with CKD stages III–V, defined by an estimated glomerular filtration rate below 60. The
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Table 4. Percentage of missing data by variable and study in the empirical
example.

Study Size Smoke Gender Age Alcohol Comorbidities

1 832 1 0 0 1 0
2 533 0 0 0 26 0
3 88 0 0 0 0 0
4 1,144 0 0 0 100 0
5 551 0 0 0 100 0
6 578 0 0 0 100 0
7 116 0 0 0 100 0
8 44 39 0 0 55 0
9 73 0 0 0 5 0
10 55 0 0 0 100 0
11 27 0 0 0 100 0
12 405 0 0 0 100 0
13 224 0 0 0 0 0
14 59 0 0 0 100 100
15 45 0 0 0 100 0

anonymized individual participant datasets for these studies were retrieved from the PLOS ONE
website.

In this purely methodological exercise, we aimed to explore whether alcohol consumption and the
number of existing health conditions such as hypertension and diabetes are associated with smoking
status in this specific population. Focusing on the analysis model 3.2, we considered smoking status
as the outcome y and alcohol consumption (yes vs no) and the number of comorbidities (count) as
the covariates 𝑥1 and 𝑥2, respectively. The number of comorbidities was defined as the sum of the
presence of hypertension, diabetes, obesity, and cardiovascular disease. While the analysis model was
restricted to these variables, the imputation models also included additional covariates—age and sex—
to make the MAR assumption more plausible.29 Table 4 summarizes the percentage of systematically
and sporadically missing data for each variable included in this case study.

We employed four methods to investigate the strength of association and the degree of between-
study heterogeneity for the covariates in model 3.2. First, we performed the CCA, excluding studies
with systematically missing data and patients with sporadically missing data. This resulted in a subset
of 1,615 patients across six studies.

Second, we applied the stratified MI method (STI), which accounts for heterogeneous intercepts by
including study indicators in the imputation model. For STI, binary and count variables were imputed
using the logreg and pmm imputation procedures in the R package mice, respectively.

Finally, we applied the newly developed MLMI to account for heterogeneity across studies by
incorporating joint random effects into the imputation models. Specifically, the imputation models
for alcohol consumption (binary) and the number of comorbidities (count) included random effects
on the intercept and the outcome variable smoking status, while the other covariates were treated as
fixed effects. In addition, the two-stage MLMI (2STG) was included for comparison. For 2STG, the
imputation models were identical to those used in MLMI.

For all imputation approaches (STI, 2STG, and MLMI), we allowed 20 iterations of the MICE
algorithm to enhance convergence. Following White et al.,15 the number of imputed datasets should be
at least as large as the percentage of missing data. Since approximately 65% of the data were missing
in this study, we generated 100 imputed datasets from the original data.
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Table 5. Estimates of the fixed- and random-effects parameters in the empirical example.

Fixed effects Random effects

𝛼0 𝛼1 𝛼2 𝜔0 𝜔1

Est se Est se Est se Est Est

CCA −1.794 0.572 0.913 0.477 0.102 0.085 1.217 0.677
STI −1.289 0.315 0.632 0.265 −0.014 0.045 1.129 0.543
MLMI −1.322 0.353 0.677 0.403 −0.012 0.047 1.137 0.616
2STG −1.125 0.459 0.372 0.600 −0.005 0.048 1.286 0.975
Note: Methods include complete case analysis (CCA), stratified multiple imputation (STI), multilevel multiple imputation (MLMI), and two-stage
multilevel multiple imputation (2STG).

Table 5 presents the estimates of the fixed-effects coefficients, their standard errors, and the between-
study heterogeneity estimates (i.e., the random-effects parameters 𝜔0 and 𝜔1) for this case study.
Overall, the results align with the findings from the simulation study.

First, the estimates of the random-effects parameters indicate moderate between-study heterogeneity.
The STI method tended to underestimate this heterogeneity, particularly for 𝜔1, whereas other methods
produced comparable estimates. Surprisingly, 2STG overestimated 𝜔1, with its estimate increasing
sharply compared to CCA and MLMI.

Next, CCA produced fixed-effects coefficient estimates that were further from the null compared
to those obtained using the MI methods. This suggests that the missing data mechanism might not
be completely at random. The MI methods yielded similar estimates for the fixed-effects parameters,
but the estimate of the regression slope for alcohol consumption (𝛼1) appeared to differ with 2STG
compared to the other imputation methods. Although this pattern was also observed in the simulation
study (middle panel of Figure A1 in the Appendix), the corresponding coefficient is not statistically
significant at the 5% level, suggesting that differences in point estimates are unlikely to be meaningful.

As expected, CCA overestimated the standard errors of the fixed-effects parameters due to
substantial data reduction. In contrast, the STI method underestimated these standard errors relative to
the multilevel imputation approaches, likely due to improper handling of between-study heterogeneity.

In summary, the multilevel imputation methods (particularly MLMI), which properly account for
between-study heterogeneity, may provide more accurate results than other alternatives.

5. Discussion

Meta-analysis of IPD should employ appropriate methodologies to deal with the simultaneous presence
of systematically and sporadically missing data. Excluding incomplete studies or cases from the meta-
analysis is undesirable, as full data potential is not optimally used, especially when the individual
studies are too large or important to be excluded. This can lead to efficiency loss, reduced statistical
power due to a smaller sample size, and potentially biased estimates.

Additionally, in the simulation study, CCA yielded conflicting results when comparing binary and
continuous outcomes. Specifically, the estimates of the main parameters (𝛼1 and 𝛼2) were unbiased
for the binary outcome but exhibited bias in the continuous case. This is not surprising because CCA
leads to biased regression slope estimates in linear regression when missingness in a covariate depends
on the outcome variable Y (i.e., the MAR mechanism). In contrast, in logistic regression with CCA,
the regression slope estimates remain unbiased when missingness depends on Y due to the symmetry
property of the odds ratio (see Bartlett et al.30 and Carpenter and Kenward31).

Hence, imputation strategies become an attractive solution in meta-analysis of IPD. Naïve impu-
tation approaches, such as stratified imputation, which do not fully account for variability within
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and across studies typically lead to biased parameter estimates, and hence wrong conclusions may
be drawn.18 Multilevel (or hierarchical) imputation approaches are therefore a valuable alternative to
preserve data integrity in IPD-MA and should be preferred in practice.

Building upon our previous work, we developed new multilevel imputation methodologies for
clustered (or multilevel) data, which effectively handle the combined presence of systematically
and sporadically missing values in dichotomous or count variables. This methodology utilizes a
generalized linear mixed-effects model with random intercept terms and random slopes to complete
the imputation task. The simulation and case study results demonstrate that the proposed multilevel
imputation approach has desirable statistical properties in terms of bias and coverage rates and
maintains appropriate levels of between-study heterogeneity. Furthermore, this methodology facilitates
more complex post-imputation analyses by incorporating joint random effects during the imputation
phase. Finally, the developed multilevel imputation routines are freely accessible via the popular R
package mice.

Within the MICE framework, missing values can be imputed per study, a process known as the
two-stage imputation approach as opposed to the one-stage imputation approach (such as the proposed
MLMI methodology) that imputes missing values within and across studies. The two-stage imputation
approach does not impose any restrictions on sporadically missing data. However, it is no longer
feasible to impute systematically missing data because the variable is entirely missing in certain studies,
so no imputation can be generated for that variable within those studies.

Resche-Rigon and White24 proposed a variant of the two-stage imputation approach (the 2STG
method in the simulation study), where a two-stage estimator is used to handle both types of
missing data. Compared to our one-stage imputation approach, the two-stage imputation approach24 is
computationally faster because estimation is performed in two steps. However, in our simulations, this
approach produced mildly biased estimates for categorical covariates, particularly when the between-
study heterogeneity was strong. A possible explanation is that it treats categorical variables with
sporadically missing data as systematically missing, leading to inaccurate imputations. In addition, this
method requires large studies to minimize the small-sample bias of the maximum likelihood estimator
and to avoid separability issues, particularly with binary variables. Moreover, it is prone to overfitting
when there are many covariates or high rates of missing data within each study. In contrast, the one-
stage imputation approach is highly relevant and useful for IPD sets even with relatively few studies, as
it can prevent overfitting issues. Audigier et al.19 compared broadly properties of the one-stage and two-
stage imputation approaches (together with other imputation methods) through an extensive simulation
study.

One limitation of the one-stage imputation approaches within the MICE framework is the compat-
ibility issue inherited from the standard (non-hierarchical) FCS algorithm. The conditional multilevel
imputation models may not be consistent with a well-defined joint multilevel model, meaning the
imputation models could be generally misspecified.24,32 However, both papers showed via simulation
studies that the impact of misspecified imputation models could be minor, particularly when the number
of studies is large. Additionally, one-stage imputation approaches, such as MLMI, are computationally
intensive and slow due to fitting several mixed-effects models during imputation. This is, however, less
of an issue nowadays with fast processors and parallel computing options.

Multilevel imputation models often involve many random effects, which can cause convergence
issues, particularly when the number of studies is limited. This can lead to inaccurate imputations,
introducing bias in subsequent analyses. As suggested by Jolani et al.,25 simplifying the imputation
model (e.g., by considering fewer or independent random effects) may help address this issue.
Furthermore, in our simulation study, Rubin’s rule was applied to summarize the random-effects
parameters (i.e., taking the arithmetic average of the estimated variances of the random effects from
the imputed datasets). However, given the skewness of the distribution of these parameters, taking a
simple mean might not be the optimal approach. Increasing the number of imputations and using the
median of the estimated random parameters could be a better alternative, although further research is
needed to systematically evaluate this proposal.
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It is also worth mentioning that in IPD-MA, variables with systematically missing data are typically
assumed to follow an MCAR or MAR mechanism. This assumption enables leveraging information
from studies with observed data to impute plausible values for studies with systematically missing
data. However, the possibility of an MNAR mechanism cannot be ruled out. A potential solution is to
integrate the proposed multilevel imputation approach with the pattern-mixture approach and conduct
a sensitivity analysis.

Although the development of the new imputation methodology was motivated by its usage in the
meta-analysis of IPD, this methodology, by no means, is restricted to studies with both systematically
and sporadically missing data. The proposed imputation methodology is general and can be directly
applied to other hierarchical or multilevel settings, such as longitudinal studies where sporadically
missing data are common.

While we focused on logistic and Poisson mixed-effects models in the current article, extending this
methodology to other families of distributions, such as gamma or inverse Gaussian, would be relatively
straightforward. Additionally, extending the methodology to handle other types of categorical variables
(nominal and ordinal) with both systematically and sporadically missing data would be a valuable
direction for future research. Another promising line of research is to broaden the methodology to
handle treatment-covariate interactions (i.e., effect modifiers) in IPD-MA. Our current methodology
does not account for effect modifiers during the imputation process, and addressing this challenge
is not trivial. When a covariate has missing observations, its interaction with treatment will also be
incomplete, complicating the imputation process.
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A. Setup values for simulation study

The parameters were

(𝛾1, 𝛾2) = (0.4, 0) Λ =

(
0.200 0.005
0.005 0.200

)
,

and

(𝛼0, 𝛼1, 𝛼2) = (−1.85, 1.05,−0.04).

We considered three versions of between-study heterogeneity by varying the covariance matrix Ω:

• Strong between-study heterogeneity: Ω =

(
2.75 −1.82
−1.82 2.85

)

• Moderate between-study heterogeneity: Ω =

(
0.75 −0.30
−0.30 0.85

)
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• Weak between-study heterogeneity: Ω =

(
0.100 −0.024
−0.024 0.250

)

For the continuous outcome scenarios, we set 𝜎2 = 1.

B. Simulation results for the binary outcome with 30% systematically missingness

Figures A1–A5 present the findings of binary outcome when the rate of systematically missing data
was 30%.
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Figure A1. Bias of the fixed-effects estimates with 30% systematically missingness. Methods include
reference (REF-before introducing missing data), complete case analysis (CCA), stratified multiple
imputation (STI), multilevel multiple imputation (MLMI), and two-stage multilevel multiple imputation
(2STG).
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Figure A2. Coverage rate of the 95% confidence interval for the fixed-effects parameters with
30% systematically missingness. Methods include reference (REF-before introducing missing data),
complete case analysis (CCA), stratified multiple imputation (STI), multilevel multiple imputation
(MLMI), and two-stage multilevel multiple imputation (2STG).
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Figure A3. Root mean squared error (RMSE) of the fixed-effects estimates with 30% systematically
missingness. Methods include reference (REF-before introducing missing data), complete case analysis
(CCA), stratified multiple imputation (STI), multilevel multiple imputation (MLMI), and two-stage
multilevel multiple imputation (2STG).
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Figure A4. Bias of the random-effects estimates with 30% systematically missingness. Methods include
reference (REF-before introducing missing data), complete case analysis (CCA), stratified multiple
imputation (STI), multilevel multiple imputation (MLMI), and two-stage multilevel multiple imputation
(2STG).
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Figure A5. Root mean squared error (RMSE) of the random-effects estimates with 30% systematically
missingness. Methods include reference (REF-before introducing missing data), complete case analysis
(CCA), stratified multiple imputation (STI), multilevel multiple imputation (MLMI), and two-stage
multilevel multiple imputation (2STG).
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