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Underwater capillary tubes fill rapidly with the surrounding liquid. Capillary and
hydrostatic pressures push the liquid into the tube, causing the air to exit as bubbles at
the other end. We study the natural filling process of a vertical capillary tube immersed
in water during several bubble formation events. A theoretical model is proposed that
captures the dynamics of the meniscus inside the capillary tube as it fills with water.
We find good agreement with the experimental data that describe this special case of
spontaneous flow using a dynamic contact angle model based on molecular kinetic theory.
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1. Introduction

Capillary rise describes the spontaneous and natural flow of wetting liquids in narrow
spaces with characteristic length scales smaller than the capillary length. It is a long-
standing fluid flow phenomenon that has gained momentum with emerging fields such
as miniaturisation and microfluidics. The ability of the liquid to flow without external
intervention is now at the heart of many practical applications, such as capillary pumps
and biochip-integrated systems for drug delivery and testing, with recent developments in
the capillary rise of liquids in sharp corners (Wu, Duprat & Stone 2024), liquid—liquid
displacement in glass capillaries (André & Okumura 2020; Patrascu & Rasuceanu 2022),
the flow of shear-thinning fluids (Steinik et al. 2024; Wang et al. 2024), capillary rise
in partially saturated porous media (Siddique & Anderson 2024), peristome-like micro-
structured capillary tubes that actuate larger amounts of liquid (Li et al. 2019; Liu et al.
2024), and rough capillary rise (Panter et al. 2023).
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In a typical capillary rise experiment, a narrow tube is placed in contact with the free
surface of a liquid. The liquid will naturally flow into the tube due to the negative capillary
pressure supported by the liquid meniscus. To describe the flow dynamics, one tries to
predict the position of the meniscus in time as the level of the liquid rises. Flows in
submerged capillary tubes represent a distinct subclass of capillary rise phenomena.

Previous studies have shown that superhydrophobic capillary tubes immersed in water
are invaded by air, a phenomenon known as capillary descent, which represents an inverted
capillary rise problem with distinct dynamical features (Delannoy et al. 2018). Mullins &
Braddock (2012) have discussed the capillary rise of a liquid within a partially immersed
moving tube. The authors developed a model for the capillary rise in tubes continuously
immersed into or removed from a liquid reservoir.

Walls, Dequidt & Bird (2016) have studied submerged capillary tubes filled with the
surrounding liquid. Their study discusses the capillary flow of a two-liquid system in a
vertical, submerged, capillary tube, emphasising how viscosity and gravity modify the
dynamics of spontaneous displacement in the early and late viscous regimes.

Immersed capillaries are also at the core of bubble formation processes. Chuang &
Goldschmidt (1970) studied the bubble formation process from an immersed capillary tube
in quiescent and coflowing streams by actively controlling the gas flow rate. Blanchard &
Syzdek (1977) have proposed a relation between the size of the bubbles and the capillary
tube’s inner radius. Oguz & Prosperetti (1993) have shown the existence of different
growth regimes determined by a critical value of the gas flow rate, and studied the degree
of control on bubble size that can be gained by immersing the capillary in a parallel upward
flow. The immersed capillary method has been considered in the study of the bubble
formation process at specific pressures, and also to establish the role of surface tension
on bubble growth (Vazquez, Leifer & Sanchez 2010, Boubendir, Chikh & Tadrist 2020).

Most previous studies within the research area involving immersed capillary tubes
explore the displacement of another immiscible liquid by capillary action or the bubble
formation process by controlling the gas flow rate. We have found no reference to the
natural filling process of a vertical capillary tube immersed in water. The present study
extends the domain of capillary flows to underwater capillaries, with contributions to the
development of potential applications in the absorption kinetics of underwater recycled
aggregates (Liang et al. 2021), submersible capillary sensors and analysers (Drevinskas
et al. 2023), water-based energy devices and capillary pumps (Huang et al. 2016), and
underwater capillary adhesion strategies (Zheng et al. 2022).

We examine the natural filling process of a submerged, empty, capillary tube in
water. We perform experiments describing the spontaneous flow dynamics in underwater
capillaries, and present a theoretical model that captures the relevant features of the filling
process. The paper is structured as follows. Section 2 describes in detail the natural filling
process of a submerged capillary tube, § 3 shows the derivation of the theoretical model,
and § 4 presents a comparison between the experimental data and the predictions, also
highlighting the limitations of the theoretical model.

2. The natural filling process of a submerged capillary tube

Consider a vertical capillary tube submerged in water, with its lower end in contact with a
flat solid material that blocks water from entering the tube before its complete immersion.
If we slightly move the capillary tube away from the solid material, then water will invade
and eventually fill the entire tube. As water invades the capillary tube, the air exits at the
other end and forms a bubble. A typical filling process is shown in figure 1, with a detail
of the bubble that forms and detaches at the other end of the capillary.
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Figure 1. (@) Images showing a submerged capillary tube and its natural filling process, with a bubble forming
at the other end (39 ms between each frame). (b) As water enters the capillary, the air is removed as a bubble
that detaches from the tube when buoyancy exceeds the surface tension forces. (¢) Images showing a typical
water—air meniscus that contributes to the filling process of a capillary tube (0.42 mm in diameter).

The filling process is driven by capillarity and the hydrostatic pressure difference
between the two ends. The convex liquid meniscus that forms inside the tube (shown
in figure 1c¢) sustains a capillary pressure that forces the liquid to rise and fill the tube.
Depending on the tube’s radius and length, the hydrostatic pressure difference can also
significantly contribute to the initial stages of the filling process. As water rises in the
capillary, the process is resisted by a combination of gravitational, viscous and inertial
effects.

The movement of water in capillary tubes has been a long-standing problem since the
early works of Bell & Cameron (1906), Lucas (1918) and Washburn (1921), where the
derivation of the equation of motion assumes capillary action, a fully developed Poiseuille
flow, and a constant contact angle. Later studies by Blake & Haynes (1969), Hoffman
(1975), Voinov (1976), Cox (1986) and Bracke, De Voeght & Joos (1989) have emphasised
the dynamic nature of the contact angle. The flow depicted in figure 1 is also a function
of the dynamic contact angle of the meniscus, a characteristic feature of all capillary rise
phenomena. The description of such flows always requires the coupling of the governing
equations with a model that considers the velocity dependence of the contact angle.

A distinct feature of underwater capillary rise is the airflow at the outlet. Compared with
the classical case of capillary rise where the end tip is practically surrounded by the same
fluid that exits the tube, for an immersed capillary tube, the air is removed underwater.
The flow expels air from the capillary tube in the form of bubbles at the other end. In the
process, the bubble also displaces the liquid in which it grows, adding to the resistive forces
that shape the capillary flow. This aspect requires the coupling with a bubble-growth model
that gives the phenomenon its distinct dynamical trait.

Depending on the tube’s length, several bubbles may detach during the filling process.
The bubble’s detachment may also significantly change the general flow dynamics due
to the high capillary pressures that characterise the pitch-off regime, a detail that will be
discussed in § 4.3.
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Figure 2. Schematic of the capillary rise process, showing the relevant physical parameters.

3. Theoretical model
3.1. Momentum balance

We consider an empty capillary tube of length L and radius R submerged in water at
distance hg from the free surface. A representation of the phenomenon and the relevant
parameters are given in figure 2.

When both ends are open, the outer liquid (water) will invade the capillary tube because
of the combined forces of hydrostatic pressure and capillarity, forcing the air out of the
tube as bubbles. We aim to describe the position of the meniscus z(¢) as a function of
time. The rate of change of the liquid’s momentum as it flows into the capillary tube is
given by

d
m [(ml + mé) z)] = nRzpo - TERzpl +2nRzo —myg, 3.1

where m; = TR%zp is the mass of the liquid, p is the density of water, my = TR2(L — 2)Pg
is the mass of the gas, p, is the gas density, and o represents viscous stresses discussed in
more detail below. The first term on the right-hand side represents the force exerted at the
entrance with

Po = Par + pg(ho + L) — 5 pz?, (3.2)

where z denotes the velocity of the liquid.
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The second term on the right-hand side can be obtained by considering the pressure
jump at the liquid—gas interface via Laplace pressure,

2y
P1 = Pgi = 5 €OS 0, (3.3)

where p,; is the gas pressure at the interface, y is the surface tension, and 6 is the dynamic
(apparent) contact angle.

We neglect the viscous resistance of the gaseous phase, 8mng(L — z)Z, knowing that
L — z and 7 decrease rapidly. Also, Hultmark, Aristoff & Stone (2011) proposed that the
viscous contribution of the gaseous phase should be considered when ny,L/(nR) > 1.
In our case, for the 80 mm long capillaries with inner diameters 0.42 mm and 1.15 mm,
we find that the ratios are approximately 8 and 3, respectively, values that are below the
required order of magnitude. The same values for this characteristic ratio have been found
in several published studies in capillarity where the viscosity of the gaseous phase is
neglected (Quéré et al. 1999; Wu et al. 2017b; Hamraoui ef al. 2000; Ruiz-Gutiérrez et al.
2022).

As the liquid rises into the capillary tube, a bubble forms and grows at the other end.
We denote by p, the air pressure in the bubble. Assuming negligible viscosity for the gas,
we write the unsteady Bernoulli equation on a streamline between the interface and the
bubble’s centre for an inviscid fluid, and obtain pg; + pg22/2 = pg+ pg&(L —z2+ Rp) +

ff pg(dv/0t) dl, where the last term can be approximated as p,Z(L — z + Rp), with Ry,
the bubble radius.

We aim to derive an equation for the acceleration of the interface Z, and numerically
solve in Matlab the resulting differential equation. The procedure requires us to divide
all terms by mR?pz. Since Pg/p~ 1073, and knowing that the velocity of the liquid
decreases in time as water enters the capillary tube, we can discard all terms dependent
on pg, therefore pg; & p,. It is important to mention that one can also opt for keeping all
terms dependent on p, in the final equation, but the predictions will not differ substantially
(an aspect that has been verified) since the density ratio is three orders smaller than unity.

As the liquid enters the capillary tube, the air exits at the other end of the tube and
forms a bubble. We consider the growth of a spherical bubble in a surrounding Newtonian
liquid. The bubble’s surface moves with velocity Rp, displacing the surrounding liquid
(Elshereef, Vlachopoulos & Elkamel 2010). Except in extreme conditions, gas viscosity,
gas inertia and compressibility effects can be safely neglected (Scriven 1995). The pressure
difference at the bubble’s surface is then given by

A S G e (3.4)
Pg — Pe= an R) 1Y bIp 2b s .

where 7 is the viscosity of the liquid, p, = par + pg(ho — Rp) is the hydrostatic pressure
far away from the bubble, and R, is the bubble radius. The equation is also known as
the extended Rayleigh equation (Plesset 1949; Scriven 1995). The terms on the right-hand
side represent viscous stresses, capillary pressure and liquid inertia. By considering mass
conservation, one can relate the position of the liquid in the tube z(#) with the bubble
radius Rp(t). We find that the time variation of the bubble’s volume is equal to the flow
rate of air that enters the bubble,

av, drR, d Re z
iR o 4nRISE = ZaR? / 4mR? de:/ nR*dz,  (3.5)
0 20

dr b ar T dr
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which yields
Ry =3(6RHP(z — 2903, (3.6)

where we have considered the general case when initially the tube is filled up to zo with
water. This would correspond to cases when multiple bubbles form and detach during the
filling process of the capillary tube. For an empty capillary tube, zo = 0. Combining (3.6)
and (3.4), we obtain

4nz 4y p(6R*)*PZ  p(6R*)*1 2

= + + — . 3.7
Pe T 3@ =20 T GRDB(z—20)1 7 ' 12z —z20)!3 T2z — 20)*3 67

Dg

The third term on the right-hand side of (3.1) represents viscous friction, where
o = —4nz/R are the viscous stresses assuming a local Poiseuille flow, and the fourth term
represents the weight of the liquid column.

After replacing po, p1 and o, we divide (3.1) by ptR?z and obtain the acceleration

2 6RH/3 (7 — ;173
_————2—g+—y cos9+g( ) 7"z~ 20)
z 2z pR pRz 2z

[ gL 322 8nz

4nz 4y (z —z0)~ /3 N (6R?)2/332 ] / ( (6R?)2/3 )
3pz(z — z0) pz(6R?)1/3 72 7(z — z0)*/3 12z(z —z0)13 )"
(3.8)

3.2. Dynamic contact angle model

The dynamic contact angle 6 is considered via the molecular-kinetic theory (Blake 2006;
Wu et al. 2017b), which considers the adsorption and desorption dynamics of liquid
molecules on a solid surface near the three-phase contact line. The velocity-dependent
contact angle can be written in the form

cosf =cosf, — §ﬁ, 3.9
where 6, is the equilibrium contact angle, and
Vin A%y (1 + cos 6,)
_m LAt 3.10

where V), is the molecular volume, 4 is the distance between the adsorption sites on a
solid surface, y (1 + cos 6,) is the work of adhesion, kp is the Boltzmann constant, and T
is the absolute temperature (Wu et al. 2017b).

We numerically solve (3.8) and (3.9) in Matlab, with ¢ as a fitting parameter for one set
of experimental data (the capillary rise of water in a tube of 0.42 mm diameter during the
first bubble formation process), then use it to predict the position of the liquid—air interface
inside another capillary tube with a larger diameter during multiple bubble formation
processes. We then compute A using (3.10), and find it to be extremely close to previously
reported values (Wu et al. 2017b). Experimental data and comparisons with predictions
are given below.
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4. Experiments
4.1. Experimental details

The experiment requires the immersion of a glass capillary tube in water. First, we
vertically position a capillary tube in an empty container, then we gently put the lower end
in contact with a flexible, flat, silicone material (PDMS) to prevent water from entering
the tube during the filling process of the container. When the water level exceeds the upper
end of the capillary tube, we gently lift the capillary and let water naturally enter the tube.

We used soda-lime glass capillary tubes with inner diameters 0.42 and 1.15 mm,
both 80 mm long. The working liquid is water with p =998 kgm™, 1 =0.85 mPa s,
y =71.7 mNm™, and capillary length . = (y/pg)*> =2.7 mm at 27 °C. The position
of the meniscus in the capillary tube during the filling process was recorded using a
high-speed camera (Photron FASTCAM UX 100) working at 4000 fps.

The equilibrium contact angle 6, was determined by placing the glass capillary tubes
in contact with water. By measuring the equilibrium height H,, in several capillary
tubes, and using Jurin’s law H,, =2y cos 6./(pgR), we obtain the equilibrium contact
angles for glass capillary tubes that are (i) 0.42 mm in diameter, 6, =42.5 £ 0.3°, and
(1) 1.15 mm in diameter, 6, = 25.5 = 5.6°. We considered that equilibrium was reached
after waiting 160 min from the contact with the liquid bath, after which we observed no
capillary rise. This procedure for determining the equilibrium contact angle corresponds
to previously published papers that have reported greater equilibrium heights due to
pinning forces attributed to the imperfections of real surfaces (Schiffer & Wong 2000;
Zhao et al. 2023).

The fitting parameter ¢, needed to compute the velocity-dependent contact angle, was
obtained by generating trial numerical solutions of (3.8) and (3.9). We use an error
function similar to that defined by Ruiz-Gutiérrez et al. (2022). For each trial, we compute

1 e
€= 215w — 2w, 1)

i=1

where N is the number of data points, zl-exP (t;) is the position of the interface inside the
capillary tube at time #;, and z(#;) is the corresponding prediction. We search for the
minimum of € by incremental variation of ¢, then numerically solve (3.10) for 4 in the
range of nanometres. The fitting is done for the capillary rise of water in a tube of diameter
0.42 mm during the first bubble formation process. The value was then used to predict the
position of the liquid—air interface inside the capillary tube with a larger diameter during
multiple bubble formation processes. The values of the error function € were found to be
lower than 0.55 mm.

4.2. Experimental data and model predictions

The experiments target the filling process of a capillary tube submerged in water.
Figure 3(a) shows two sets of repeated experiments and corresponding data for the
meniscus position as a function of time for two capillary tubes with different diameters.
As water rises in the capillary tube, the air exits at the other end as a bubble. Buoyancy
increases as the air accumulates into the bubble, initiating the detachment process. For
the smaller capillary tube (D = 0.42 mm), the first bubble detaches after the liquid moves
more than 50 mm from the lower end. The bubble’s detachment process induces significant
changes to the dynamics of the advancing water column due to higher capillary pressures
created by the necking process. The capillary tube’s length (80 mm) does not allow the
formation of multiple successive bubbles since over 50 mm is needed for the natural

1016 A38-7


https://doi.org/10.1017/jfm.2025.10453

https://doi.org/10.1017/jfm.2025.10453 Published online by Cambridge University Press

V.-E. Plopeanu, I. Rasuceanu and C. Patrascu

a b
(@) D=T1.15mm ‘ ) 0

80 "

70 / = D=0.42mm | 50 g ¢

“r g | 40 " D=042mm
—~ 50t 4 |~ |p=115mm .
E ‘.-' E //
E 40 | & 30
N N o

0 1 200

20 8 | L

10/
10 +§ 1 H
0L . oLL . . L
0 0.5 1.0 1.5 0 0.1 0.2 03 0.4
1(s) 1(s)

Figure 3. (a) Experimental data of the position z as a function of time for several capillary filling processes.
The data represent two experiments for two capillary tubes with different inner diameters. (b) Three sets of
experimental data showing the meniscus position in time until the first bubble detaches from the other end of
the capillary tube.

detachment process. The last bubble can detach or remain pinned at the upper end of the
capillary tube, depending on the glass surface roughness and the contact line that forms
during the bubble formation process.

The larger capillary tube (D =1.15 mm) gives three complete, consecutive bubbles
during the filling process. Each detachment process has less impact on the overall
dynamics due to lower capillary pressures during the necking of the bubble, and higher
inertia due to larger masses of liquid contained by the tube. The last bubble (the fourth)
may not detach from the capillary due to contact line pinning. Also, we observed that the
contact line settles inside the capillary tube at approximately one millimetre below its tip.

The model described by (3.8) and (3.9) was used to describe the observed dynamics of
the capillary rise of water for an immersed capillary tube. Figure 3(b) shows three sets of
experimental data depicting the position of the liquid meniscus inside the capillary tube
during the formation of the first bubble. The figure shows data for both capillary tubes
(0.42 and 1.15 mm in diameter). The data were used to compute the average value of z at
each instant in time, and the corresponding standard deviation.

To test the model, we fit the prediction by varying ¢ until we obtain the minimum value
of the error function €. The fit was done on one set of experimental data for the capillary
rise in a tube of 0.42 mm diameter during the formation process of the first bubble (initial
conditions zg = z(0) = 0 and z(0) = 0). We find ¢ = 105 with error € = 0.55 mm.

Figure 4(a) shows the model’s predictions compared to experimental data representing
a typical filling process. We observe that a constant contact angle approach overestimates
the data, emphasising the importance of the variation of the contact angle with respect to
velocity. In figure 4(b), we also plot the model’s prediction considering a static contact
angle model (D = 0.42 mm, ¢ = 0). We incrementally vary the equilibrium contact angle
from the measured value 42.5° to 72.5°. The predictions show large deviations compared
to the measured values of the liquid’s position in the capillary tube. Even if in some cases
the prediction seems to gradually enter the margin of error, the overall trend does not
capture the proper dynamics of the system (which is well captured only by the dynamic
contact angle model — the continuous black curve).
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Figure 4. (a) Model predictions (dashed line indicates constant contact angle, solid line indicates dynamic
contact angle) and experimental data for the capillary rise of water in a completely submerged tube of 0.42 mm
diameter during the formation of the first bubble. The relevant parameters are given in table 1. The images on
the right show a typical filling process. (b) Sensitivity of the predictions to a change in the equilibrium contact
angle when a static contact angle model is assumed.

The analysis shows that the model needs to include a dissipation that occurs at the
moving contact line. The motion induces a deformation of the meniscus, which is only
captured by the dynamic contact angle models. Without taking into account the dynamic
nature of the contact angle, one cannot capture the proper capillary rise dynamics as shown
by the data and also represent the actual physical picture of the moving contact line, which
shows a variation in the contact angle.

We emphasise that the standard deviation of the experimental data is below one capillary
length, and the model offers a good prediction for the underwater capillary rise problem
when ¢ = 105.

Using the definition of ¢ in the molecular-kinetic theory, here shown by (3.10), we can
calculate the value of A, the distance between adsorption and desorption sites. Knowing
that V,, =2.989 x 107 m3, y =71.7mN m™!, 6, = 42.5°, kg = 1.38064 x 10723 JK~!
and 7 = 300.15 K, we find A = 0.43 nm, which is extremely close to previously reported
values (0.44-0.56 nm) in studies involving the capillary rise of several other liquids
(Wu et al. 2017D).

The model was then used to predict the filling process of a larger capillary tube
(D = 1.15 mm) during which several complete bubble formation processes occur. Table 1
gives all the relevant parameters to compute the predictions. The initial velocity of the wa-
ter column for the second, third and fourth bubbles is determined by the linear fit of the last
five data points (¢;, z;) measured before the new bubble formation process begins. Also,
for each new bubble formation process, we reset the time to zero, and aim to predict the
position of the liquid inside the capillary tube as a function of time using (3.8) and (3.9).

Figure 5 shows the position of the liquid as a function of time, and the corresponding
prediction (continuous line) during the filling process of a capillary tube of 1.15 mm
diameter. The predictions agree well with the data, the error functions being lower than
0.36 mm (as shown in table 1) with ¢ = 105 as obtained earlier. We emphasise that the
predictions were not obtained in this case via fitting, the approach aiming at testing the
model’s predictive power. The parameter ¢ was calculated by fitting the experimental data
obtained in the experiments where we used the capillary tube with a smaller diameter
(0.42 mm).
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Capillary diameter O, Bubble index L 20 z(0) ¢ €
(mm) (deg.) (mm)  (mm)  (ms™}) (mm)
0.42 425 1 80 0 0 105 0.55
2 80 52.7 0.08 105 -
1.15 25.5 1 80 32 0 105 0.20
2 80 28.8 0.543 105 0.11
3 80 53 0.297 105 0.36
4 80 69 0.128 105 -

Table 1. The set of parameters for the model predictions. The parameters are given for each successive bubble
formation process. The liquid is water at 27 °C, with n = 0.85 mPas, p =998 kgm > and y =71.7 mN m™!.
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Figure 5. Model predictions (continuous line) and experimental data for the capillary rise of water in a tube
of 1.15 mm diameter during the formation of (@) the first bubble, and (b) three consecutive bubbles. The
parameters for the predictions are given in table 1.

Conversely, we can also use the model to fit the data from figure 5 and determine A,
using ¢ as the fitting parameter, ensuring a minimum for the error function, for each of the
three capillary rise processes that correspond to the three consecutive bubbles. Using this
approach, we find that the average value is A =0.417 +0.013 nm. The analysis shows
that A is approximately the same for all experiments conducted in the same type of glass
capillaries.

We also tested the model’s predictions under the assumption that the dynamic contact
angle is described by the hydrodynamic model (Cox 1986), 8% =62 +9xnz/y. The
predictions overlap with the molecular-kinetic theory model when y = 38, as shown in
figure 6. In the literature, the parameter ranges from 8 to 30 for several other tested liquids
(Katoh et al. 2015; Wu et al. 2017b). For the range of capillary numbers that correspond
to the filling process (Ca =n z(t)/y < 0.0057), both models predict approximately the
same variation for the contact angle. Another model for the dynamic contact angle is the
self-layering model, cos @ =cos 6, — Bnz/y, with B =exp [2y/ W (0)], and W (0) as the
entropic solvation energy extrapolated to zero distance from the solid surface (Wu et al.
2017a,b). Compared with the model given by (3.9), the model is equivalent (only in written
form) to the molecular-kinetic theory model, meaning that we can use the previous fit to
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Figure 6. Model predictions for a dynamic contact angle described by the hydrodynamic model versus
molecular-kinetic theory compared to experimental data. The data are given for the capillary rise of water
in a tube of diameter 0.42 mm.

determine 8. Writing 8 = ¢ = 105, this gives W (0) = 2y /In(105) ~ 30.8 mN'm™! for the
entropic solvation energy extrapolated to zero distance from the solid surface. Considering
that the dynamics of the contact angle is not fully understood, the interpretation of the
numerical values of both parameters is still a matter of scientific debate, especially when
considering the role of inertia in the description of the contact line flow for fluids with low
viscosity (Bonn et al. 2009) or the local temperature change in the vicinity of the dynamic
contact line (Kusudo et al. 2023).

4.3. Limitations and interpretations of the model

The model can describe the filling process only until the bubble detaches at the other end.
We can approximate beforehand the height of the water column inside the capillary tube
that will result in the formation and detachment of a bubble if we assume that detachment
occurs when the buoyancy force is approximately equal to the surface tension force,
pgV ~ nDy. The air that forms the bubble is displaced by the advancing water column of
length z., which implies V = z.D?/4. We obtain z. = 4lc2 /D, where [, is the capillary
length. In the last equation, we emphasise an interesting aspect: the resemblance to Jurin’s
law for the equilibrium height in the case of a liquid that completely wets the tube. Tubes
with a length greater than 412/ D will generate two or more bubbles. Since, in practice, it
is difficult to manufacture capillary tubes of a specific length, one is forced to use standard
lengths provided by the manufacturer. In our study, the capillary tubes are 80 mm long,
giving two bubbles when D = 0.42 mm, and four bubbles when D =1.15 mm. To avoid
bubble detachment, one would need capillaries smaller than 4lc2 /D. Even if the option
of manufacturing capillary tubes of a specific length were commercially available, the
detachment of the bubble does not take place exactly when the liquid reaches the calculated
critical height because the detachment process of the bubble is dependent on the irregular-
ities of the capillary tube’s tip, which are an artefact of the manufacturing process. Even
with these limitations, the model can be used to accurately predict the filling process when
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Figure 7. (a) Images showing the water—air interface in the first 24 ms as water invades a capillary tube of 1.15
mm diameter. (b) The water—air interface at the other end of the capillary tube at the beginning of the filling
process (the image on the left) and after bubble detachment. (¢) The model predictions and experimental data
that correspond to the final stage of the filling process for which bubble detachment was observed. The relevant
parameters are given in table 1.

multiple bubbles form by changing the model’s initial conditions concerning the position
of the interface inside the capillary and the initial velocity (as depicted in figure 5b).

The prediction fits the data quite well during the first process of bubble formation,
even though when water enters the capillary, one observes a highly irregular shape of the
water—air interface. The phenomenon is more pronounced in capillary tubes with larger
diameters, as shown in figure 7(a). This is due to the hydrostatic pressure that forces
water into the tube. The contact line pins to local surface irregularities and suffers major
deviations from the convex meniscus seen in capillary rise. Since this phenomenon adds
to the dissipative forces that accompany the early times of the filling process, the model
slightly overestimates the data, as depicted in figure 6. Although the interface starts with a
highly irregular shape, it rapidly takes the shape of a convex meniscus that advances into
the capillary tube, and the process takes place without major shape alterations until the
capillary tube is filled.

It is important to mention that the added mass effect may contribute to the capillary
filling process at early times. To incorporate the added mass effect, one has to add m,Z
on the left-hand side of (3.1), with m, = 7mpR3/6 as the added mass (Ruiz-Gutiérrez
et al. 2022). Considering the procedure for obtaining the final differential equation, this
corresponds to the addition of 7R/(6z) in the denominator of (3.8). The term shows that
the influence of the added mass decreases rapidly as z increases. We have found that
the predictions do not change when considering the added mass term (the corresponding
error function remains unchanged at the reported calculated value with two digits after the
decimal), which implies that with this particular phenomenon, the effect can be considered
as having a minor influence.

Another limitation is related to the bubble detachment process, which induces an
adverse pressure that increases due to the capillary pressure exerted by the necking regime
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Figure 8. (a) Comparative view of the position of the liquid as a function of time for two immersed capillaries,
with one having the end tip in contact with the atmosphere. The predictions are given by (4.2) as a dashed
line, and (3.8) as a continuous line. (b) Rise height as a function of time for immersed capillaries of different
lengths. The basic configuration for the predictions is given in the text. (¢) Model prediction and experimental
data for the bubble diameter Dj as a function of time for the first bubble formation process at the end of a
capillary tube with diameter 0.42 mm.

during detachment. Figure 7(b) shows the water—air interface for an empty capillary tube
before the filling process starts and after two bubble detachment processes. We observe
that the interface settles inside the capillary tube, at approximately 1 mm below the end
tip. Furthermore, the last image in figure 7(b) also shows a case of an asymmetric meniscus
due to contact line pinning immediately after bubble detachment. The bubble detachment
process primarily affects smaller capillary tubes (as clearly visible in figure 3a) because
the necking process implies larger capillary pressures. Although bubble break-up affects
the capillary rise of the liquid in larger tubes, the effect is not as pronounced as in the latter
case.

In figure 7(c), we compare the prediction with the experimental data for the position
of the liquid inside the capillary tube, z(¢), during the last bubble formation process
ending with the bubble’s detachment and with it the complete filling of the tube. We also
emphasise that the last bubble may not detach due to the contact line or bubble pinning
at the tip of the capillary, with a small amount of air remaining inside. We observe
large deviations, especially when the last 5 mm is to be filled, which corresponds to
approximately two capillary lengths. In this final stage, the advancing meniscus merges
with the contact line that supports the bubble, their interaction not being described by the
model. The model overpredicts the position of the liquid in this region, the data showing
possible extra resistive forces occurring in the last stage of the capillary filling.

One also needs to highlight that the molecular-kinetic approach of the contact line
dynamics, which has been incorporated into the present model, has intrinsic limitations
that have been highlighted and discussed by Sedev (2015).

The model can also be used to quantify the influence of various characteristic features.
To show this, we start with a basic configuration of parameters (for simplicity, D =1
mm, L =30mm, 0 =0,¢=0,z0=0,z(00=10%1., 2(0) =0, n =0.85 mPa s, p =998
kgm™3, y =71.7 mNm™"), and consider a comparison with the flow in a submerged
capillary tube having one end at the free surface. In this situation, no bubble would form
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at the tip, the air flowing directly into the atmosphere. Considering the basic configuration
given above, the capillary flow is described by the differential equation

gL 337 8y 2y

; 4.2
DRz 4.2)

which represents the limiting case of (3.8) when the end of the capillary tube is in contact
with the atmosphere. Figure 8(a) shows that in the absence of the bubble, the filling
process is faster. As expected, the combined resistive forces associated with bubble
growth, introduced via capillary pressure, viscous stresses and inertia, considerably delay
the filling process, with longer tubes favouring the observed delay. Compared to flows
solely driven by the capillary pressure, the flow in immersed tubes is also driven by
the hydrostatic pressure difference between the two ends. In figure 8(b), we compare
the flow dynamics of three capillary tubes with different lengths, where we observe that
the hydrostatic pressure difference increases the velocity of liquid intake. For example,
considering the rise height of 10 mm, longer tubes, which correspond to greater hydrostatic
pressure differences ~ pgL, favour the increase of liquid uptake.

One can also plot the time variation of the gas bubble’s diameter as the liquid fills the
capillary tube using (3.6), which yields Dy = (6RH)/3(z — z0)/3. We measure the time
variation of the bubble’s diameter, and compare it to the model’s predictions for a capillary
tube with diameter 0.42 mm, as depicted in figure 8(c). We obtained good quantitative
agreement despite the fact that close to detachment, the bubble deviates from the assumed
spherical shape, the effect being more pronounced when using larger capillaries.

5. Conclusions

The study shows how underwater capillary tubes naturally fill with the surrounding liquid.
As the fluid flows into the tube, the air is removed as bubbles at the other end. The
physical description of the flow in an underwater capillary tube includes the coupling
of distinct, yet interconnected phenomena, such as capillary rise, contact line dynamics
and bubble growth. When these phenomena are coupled, the resulting model provides a
good approximation for the filling process of the submerged capillary tube, as shown by
comparison with the experimental data.

We present experimental data concerning the capillary rise of water in a submerged
empty capillary tube, and derive a theoretical model that also takes into consideration
the bubble formation process that takes place at the other of the capillary. The proposed
theoretical model captures the advance of the water column as it slows down during the
filling process. The last stages of the capillary rise, which also include the merging of the
two contact lines, prove to be more difficult to predict with the same accuracy as the earlier
filling stages. However, this final regime covers only approximately 7 % of the total rise
height, spanning approximately two capillary lengths.

These spontaneous flows provide a fruitful ground for future development, with
implications in fundamental and applied sciences. The study can also be extended to
describe the natural displacement process of another immiscible liquid that initially
occupies the submerged capillary tube for which the flow will now generate a droplet
at the other end, a situation that is less encountered in Nature but of great importance in
engineering.
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