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1. Introduction and summary. In this paper we shall study the relations 
between the ranks of g-variate, discrete-parameter, weakly stationary sto­
chastic processes x, y, and z satisfying the condition 

1.1 xn = yn + zn j ym J_ zn , -*> <m,n < <*>, 

and derive from them a characterization for the Wold decomposition and 
conditions for the concordance of the Wold and the Lebesgue-Cramér decom­
positions. We shall also extend these results to the continuous-parameter case. 
In order to describe our results, we must first recall the definitions and standard 
properties of such processes (cf. (13 ; 6)). 

Let X be a complex Hilbert space and Xq the Cartesian product consisting of 
all g-dimensional (column) vectors with components in X, where q is a positive 
integer. As usual we shall endow XQ with a Gram-matricial structure: 

(1.2) (x, y) = [(*', y% x = (*<), y = M , * = 1, 2, . . . , g. 

We say that 

(1.3) x JL y if and only if (x, y) = 0. 

|x| = V{ trace (x, x)} is the usual norm in XQ, and it provides the appropriate 
topology for Xq.1 

Linear combinations in XQ are taken with q X q matrix (not just complex) 
coefficients, and subspaces of Xq and linear operators on XQ are to be under­
stood with this sense of linear combination. We then have 

1.4. LEMMA. M is a (closed) subspace of Xq if and only if M = Mq where M 
is a (closed) subspace of X; moreover, M is the set of all components of vectors in M. 

1.5. LEMMA. T is a (bounded) linear operator on Xq if and only if 
T(x) = (Tipc1))^ = 1, 2, . . . , q where Tis a (bounded) linear operator onX. 

If M, M, T, and T are as in 1.4 and 1.5, then M and T are called the inflations 
of M and T respectively, and M and T are called the uninflated versions of M 
and T respectively. If M is a closed subspace of X and if P is the orthogonal 
projection onto M, then the inflation P of P acts as an orthogonal (see 1.3) 
projection onto M, the inflation of M. We shall then write (x|M) = P(x). 

A q-variate, discrete-parameter, weakly stationary stochastic process (S.P.), x, is 
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a sequence {xn, — œ < n < 00} of vectors xn in XQ such that (xw, xn) = 
r (m — w) depends only onm — n and not on m and w separately. This is equiva­
lent to saying that xn = \ n (x0) where Vis the inflation of a unitary operator F on 
X. V or F will be called the shift operator of the process x. We are interested in the 
following subspaces: 

Mn(x) = the smallest closed subspace of XQ containing xk for all k < n. 
Mœ(x) = the smallest closed subspace of Xa containing xk for all k. 

M_œ(x) = nn Mn. 
If x and y are two S.P. with the same shift operator, we shall say that y is 

subordinate to x if Mœ(y) C Mœ(x) and that y is dominated by x if Mw(y) 
C| Mw(x) for some finite, and hence all, n. If x, y, and z are S.P. satisfying 
(1.1), in which case a common shift operator may always be chosen for them, 
we say that x = y + z is an orthogonal decomposition of x. If y is subordinate to 
(dominated by) x, we say that x = y + z is a subordinate (dominated) decom­
position. Thus x = y + z is a subordinate (dominated) decomposition if and 
only if Mœ(x) = Mœ(y) + Mœ(z) (Mn(x) = Mn(y) + Mn(z)). 

én(x) = (XnlMn-itx)* H Mn(x)) = Vw(g0(x)) is called the nth innovation 
vector of x. (If M is a subspace, M^ denotes its orthogonal complement in the 
sense of 3.1.) We shall be especially interested in the rank of x, r(x), which is 
defined to be the rank of the Gram matrix (êo(x), êo(x)). r(x) is easily seen to be 
the dimension of W = M-i(x)± Pi M0(x). W is a wandering subspace for V, 
the shift operator of x, i.e. Vm(W) _L Vn(W) for all integers m 9^ n. 

If x is a S.P., then v(x) defined by vw(x) = (xn|M_00(x)) is an S.P. called the 
deterministic part of x. u(x) defined by un(x) = xn — vn(x) is an S.P. called the 
purely non-deterministic part of x. x = u(x) + v(x) is a dominated orthogonal 
decomposition of x and is called the Wold decomposition of x. x is said to be 
deterministic or purely non-deterministic according as x equals v(x) or u (x). 

Associated with every S.P. is a hermitian matrix-valued function F on 
(0, 2x) called the spectral distribution. Its derivative F' (i.e. the derivative of 
its absolutely continuous part), a non-negative hermitian matrix-valued func­
tion, is called the spectral density. Results and arguments which deal directly 
with XQ are said to be in the time domain, while those involving F are in the 
spectral domain. 

In terms of this framework the new results we have obtained may be 
described as follows. 

In §§2 and 3 we show that an orthogonal decomposition x = y + z of an 
S.P. x is the Wold decomposition of x if and only if y is purely non-determinis­
tic, x = y + z is a subordinate decomposition, and r(y) = r(x) (3.1). This 
theorem is proved by studying the relation between the ranks of the processes 
in an orthogonal decomposition. We show that if x = y + z is an orthogonal 
decomposition, a subordinate orthogonal decomposition, or a dominated 
orthogonal decomposition of x, then r(x) > max[ r(y), r(z)], r(x) > r(y) 
+ r(z), or r(x) = r(y) + r(z) respectively (2.1, 2.6, 2.8). We also give examples 
to show that the last two conditions are not necessary (7.2, 7.3). 
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In the spectral theory (§§4, 5) we show that if x = y + z is a subordinate 
orthogonal decomposition of x and if F^, Fy, and F2 are the spectral distribu­
tions of the S.P. x, y, and z respectively, then rank F'x = rank F'„ + rank F'2 

almost everywhere (Leb.) (4.5). With the aid of this result and known relations 
between the ranks of S.P. and the ranks of their spectral densities, we give a 
necessary and sufficient condition for the concordance of the Wold and the 
Lebesgue-Cramér decompositions (5.2). This result subsumes results obtained 
by Rozanov (12, Theorem 1), Masani (5, Corollary 2.8 and Theorem 4.5), 
Wiener and Masani (13, Theorem 7.11), and Kolmogorov (4, Theorem 23) as 
will be indicated in Corollaries 5.3-5.6. 

In §6 we extend our results on discrete S.P. to continuous-parameter S.P. 
With a mean-continuous, continuous-parameter S.P. {x(t), t real} with shift 
group { Vu t real} we shall associate the discrete S.P. xn = Vw(x(0)) where V is 
the Cayley transform of H, iH being the infinitesimal generator of the shift 
group. We shall then be able to obtain the Wold decomposition of a continuous 
parameter S.P. into the sum of a deterministic S.P. and a one-sided moving 
average S.P. This generalizes the results of (8), where only the case q = 1 was 
considered. In the later part of §6 the spectral analysis of continuous-parameter 
processes is treated. A similar procedure for going from discrete to continuous-
parameter results has been given by Gladyshev (2). His method differs from 
ours in that he uses spectral techniques throughout while our time-domain 
results are handled with time-domain techniques. 

The results in §§2 and 3 and the first part of §6 pertain to the time-domain, 
and our proofs of these results are spectral-free. It is obviously desirable in the 
interest of coherence and simplicity to avoid spectral considerations in proving 
such results. With the time-domain analysis so completed, one can develop the 
spectral theory in an equally coherent manner. Quite apart from this, spectral-
free treatments of the time-domain have been found to extend to situations in 
which spectral analysis fails. For example, Masani (7) was able to generalize 
the time-domain arguments used in (8) to obtain valuable results concerning 
the structure of continuous-parameter semigroups of isometries whereas the 
techniques of (2) would not apply. Thus it seems worth while to give spectral-
free proofs of time-domain theorems. 

Most of the results here are contained in the author's doctorial dissertation at 
Indiana University.2 After the writer had submitted this dissertation, in 
September 1963, he learned that the results in §§3-5 had been essentially 
duplicated by Jang Ze-pei (14, Part I). Jang Ze-pei considers processes with 
absolutely continuous spectral distributions. As he points out, most results 
about S.P. with absolutely continuous spectral distribution can be translated 
into results about general processes. Thus, for example, the statement that a 
certain process with absolutely continuous spectral distribution is purely non-

2The author is happy to acknowledge the help which Professor Masani, the director of this 
research, has so graciously given. 
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deterministic (regular) corresponds to the concordance of the Wold and 
Lebesgue-Cramér decompositions for general processes. We mention that Jang 
Ze-pei's proof of the result, which corresponds to our Theorem 4.7, uses a 
rather cumbersome diagonalization of the spectral densities, which we have 
avoided. Also our proof of Theorem 3.1 is spectral-free and without the 
assumption of an absolutely continuous spectral distribution. Jang Ze-pei (14, 
Parts I and II) also gives spectral criteria for a process to be deterministic. We 
have not considered that question here. 

2. The r anks of or thogonal decomposi t ions. In this section we shall 
investigate the relationships of the ranks of the processes in the orthogonal 
decomposition x = y + z. We start with a general theorem. 

2.1. THEOREM. If x = y + z is an orthogonal decomposition of the S.P. x, 
then r(x) > max jr(y), r(z)}. 

Theorem 2.1 is an immediate consequence of the following more general 
result. 

2.2. THEOREM. Let x be an S.P. with shift operator V, and let S be a sub space 
ofXQ such that V(S) = S. Then: 

(a) yn = (xn|S) is an S.P. with the same shift operator V. 
(b) go(y) = (êo(x) |M_ 1 (y) i nM„(y)) . 
(c) r(y) < r(x). 

Proof, (a) Since V(S) = S and V is unitary, V(-|S) = (V(-)|S). Hence 
V(yo) = yn as desired. 

(b) Since (x„|S) is in Mn(y) Ç S, we have 

[(xo|M_1(x))|M0(y)] = ([(Xo|M_1(x))|S]|M„(y)) 
= ([(x„|M_1(x))|S]|M_1(y)) 
= [(x„|M_1(x))|M_1(y)]. 

Hence 
go(y) = (y 0 |M_ 1 (y ) i nM 0 (y ) ) 

= (xo|M0(y)) - [(x0|M_1(x))|Mo(y)] 
+ [(x0|M_](x))|M_1(y)] - (xo|M_!(y)) 

= (g0(x)|M_i(y)± C\ M0(y)) as desired. 

(c) dim {goKy), . . . , go^y)} < dim {goK*), • • • , go^x)} since {goKy), • • • , 
goff(y)} is the image of {goKx), . . . , goç(x)} under the linear transformation 
( . | ikf_ 1 (y) ± nM 0 (y) ) .Thus 

r(y) = dim {go1^), • • • , go*(y)} < dim [gj(x)t . . . , g0«(x)} = r(x). 
Next we shall give two lemmas which will be useful in studying subordinate 

decompositions. 

2.3. LEMMA. If x = y + z is an orthogonal decomposition of the S.P. x, then: 
(a) u(x) = u(y) + u(z) + [v(y) + v(z) — v(x)] is an orthogonal decom­

position of u (x). 
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(b) If x = y + z is a subordinate decomposition, then so is the decomposition 
in (a). 

(c) If x = y + z is a dominated decomposition, then so is the decomposition 
in (a). 

Proof, (a) Clearly u„(x) = u„(y) + un(z) + [v„(y) + v»(z) - v„(x)], and 
we have 

M„(v(x)) = M _ ( x ) Q f \ < „ {M„(u(y)) 

+ M„(u(z)) + M.(v(y)) + M,(T(I))} . 

Since the four subspaces inside {. . .) are mutually orthogonal and decreasing as 
n _» — oo, the intersection of the sum is the sum of the intersections. Thus 

(1) Mœ(v(x)) ç Mœ(v(y)) + M„(v(z)). 

Therefore, 

MJy(y) + v(z) - v(x)) ç {Mœ(v(y)) + Mœ(v(z))} 
ç l M J u ^ + M ^ z ) ) } 1 . 

Since Mœ(u(y)) ± Mœ(u(z)), (a) is proved. 
(b) By (l), we have 

Mœ(v(x)) ± {M„(u(y)) + M „ ( u ( z ) ) } . 

Hence, since y and z are subordinate to x, 

MJu(y) ) + Mœ(u(z)) ç M„(x) r> ^ ( v d ) ) 1 = Mœ(u(x)). 

Thus the decomposition in (a) is a subordinate decomposition. 
(c) is proved in the same way as (b). 

2.4. LEMMA. Let V be a unitary operator on a Hilbert space H. Let X and Y be 
wandering subspaces for V such that: 

(i) Ê V\X) ç E V\Y), 
A;=—co k=—co 

(ii) dim Y < co, 
then 

(a) dim X < dim Y. 
(b) dim X = dim Y if and only if 

CO CO 

£ V*CX-) = 2 V\Y). 
k=—co k=—co 

Part (a) of Lemma 2.4 is due to Halmos (3', Lemma 4). For a proof of Lemma 
2.4 the reader is referred to (9, Theorem 1). 

2.5. THEOREM. Let x = y + z be an orthogonal decomposition of the S.P. x, 
and suppose that y and z are purely non-deterministic S.P. Then x is also purely 
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non-deterministic and r(x) < r(y) + r(z). r(x) = r(y) + r(z) if awe? <w/y if 
x = y + z w a subordinate decomposition. 

Proof. Clearly we have M„(x) C Mn(y) + Mn(z) for all integers ». Taking 
intersections on both sides and noticing that here the intersection of the sum is 
the sum of the intersections, we see that M_œ(x) ç; {0} and hence x is purely 
non-deterministic. 

Since Mœ(x) C Mœ(y) + Mœ(z) and since Mœ(x) and Mœ(y) + Mœ(z) are 
generated by the wandering subspaces M-i(x)x C\ M0(x) and {M_i(y)x 

r\ Mo(y)} + {M-i(z)-1- Pi MQ(z)} respectively, Lemma 2.4 (a) yields 

r(x) = dim {M_i(x)A H -M0(x)} 

< dim { { M . i ( y ) i n Mo(y)} + {M_i(z)A H ilf0(z)}} 

= dim {ikr-i(y)x n ikT0(y)i + dim {ikf_i(z)x n M0(Z)} = Ky) + Kz). 
In the same manner Lemma 2.4 (b) yields Mœ(x) = MQ0(y) + Mco(z) if and 
only if r(x) = r(y) + r(z). 

One might have hoped that the subordinate decomposition x = y + z given 
in Theorem 2.5 was actually a dominated decomposition. Example 7.4 is a 
decomposition x = y + z satisfying the conditions of Theorem 2.5 which is a 
subordinate decomposition but not a dominated one. 

2.6. THEOREM. If x = y + z is a subordinate orthogonal decomposition of the 
S.P.x,thenr(x) > r(y) + r(z). 

Proof. Lemma 2.3 (b) yields 

(1) M J u ( y ) ) + M00(u(z)) £ M J u ( x ) ) . 

By the same argument as in the proof of Theorem 2.5, we obtain 

r(x) = dim {ikf_i(x)T H ilfo(x)} 

> dim {{ikf_1(y) in Mo(y)} + {Jlf- iCz^n Mo(z)}} 

= dim {M_i(y)x H ikfo(y)} + dim {Jkf_i(z)x n Afo(z)} = r(y) + r(z). 

That the converse of Theorem 2.6 is false is shown in Example 7.2. As 
Theorem 2.5 suggests, there are orthogonal decompositions x = y + z such 
thatr(x) < r(y) + r(z) (cf. Example 7.2). 

2.7. COROLLARY. If x = y + z is a subordinate orthogonal decomposition of 
theS.P.x,thenr(x) = r(y) + r(z) if and only if xx(x) = u(y) + u(z). 

Proof. From equation (1) in the proof of Theorem 2.6 and from Lemma 2.4 
(a) we see that r(x) = r(y) + r(z) if and only if Mœ(u(x)) = Mco(u(y)) 
+ Mœ(u(z)). By Lemma 2.3 (b) Mœ(u(x)) = Mœ(u(y)) + Mœ(u(z)) if and 
only if v(x) = v(y) + v(z), which, of course, is true if and only if u(x) = u(y) 
+ u(z). 

Example 7.3 shows that there are subordinate decompositions with 
r(x) > r(y) + r(z). 
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2.8. THEOREM. If x = y + z is a dominated orthogonal decomposition of the 
S.P. x, then r(x) = r(y) + r(z). 

Proof. Since M„(x) = Mn(y) + M,(z) for all n, we have 

M_i(x) + {M_!(x)A n M,(x) | = M0(x) 

= M0(y) + M0(z) 

= M_1(y) + { M _ 1 ( y ) i n M „ ( y ) } 

+ M_i(z) + { M _ 1 ( z ) i n M 0 ( z ) } 

= M_1(x) + |M.1(y) inM,(y) | 
+ {M_1(z)inM0(z)l. 

Since the terms of the sums are orthogonal, we obtain 

M_i(x)AnM„(x) = {M_1(y)J-nM0(y)l + { M ^ z ^ H M0(z)}. 

Hence r(x) = r(y) + r(z). 

That the converse of Theorem 2.8 is false is shown in Examples 7.2 and 7.4. 

2.9. COROLLARY. If x = y + z is a dominated orthogonal decomposition of 
the S.P .x, thenu{x) = u(y) + u(z) andv(x) = v(y) + v(z). 

Corollary 2.9 follows immediately from Theorem 2.8 and Corollary 2.7. 

3. Characterization of the Wold decomposition. In this section we 
shall use the results of the last section to characterize the Wold decomposition. 

3.1. THEOREM. Let x = y + z be an orthogonal decomposition of the S.P. x. 
x = y + z is the Wold decomposition of x if and only if y is purely non-deter­
ministic, x = y + zwfl subordinate decomposition, and r(x) = r(y). 

Proof. That the Wold decomposition has the desired properties is well 
known. Suppose, therefore, that x = y + z is a subordinate orthogonal 
decomposition of the S.P. x where y is purely non-deterministic and r(x) =r(y) . 
Then by Theorem 2.6 z is deterministic and r(x) = r(y) + r(z). Thus by 
Corollary 2.7 u(x) = u(y) + u(z) = y and v(x) = v(y) + v(z) = z. 

The next theorem is well known (cf. e.g. (2, Theorem 1)). 

3.2. THEOREM. Let x = y + z be an orthogonal decomposition of the S.P. x. 
x = y + z is the Wold decomposition of x if and only if y is purely non-deter­
ministic, z is deterministic, and x = y -\- zis a dominated decomposition. 

Proof. As in Theorem 3.1 we shall only prove the "if part." Since z = y + z 
is a dominated decomposition and z is deterministic, Theorem 2.8 yields 
r{x) = r(y). Thus the conditions of Theorem 3.1 are fulfilled. 

If in Theorem 3.2 "dominated" is replaced by "subordinate," the resulting 
statement is true for univariate processes (for a = 1, r(x) = r(y) = 1), but is 
false in general as is shown by Example 7.5. 

https://doi.org/10.4153/CJM-1968-033-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-033-x


STOCHASTIC PROCESSES 375 

4. Spectral analysis of subordinate orthogonal decompositions. In 
this section we shall first discuss a theorem proved recently by M. Rosenberg 
(10) on the isomorphism between the spectral domain L2>F(0, 2T) and the time 
domain Mœ(x) of an S.P. x. With the aid of this isomorphism we shall study the 
relationship between the spectral distributions F^, F^, and F z of the S.P. x, y, 
and z where x = y + z is a subordinate orthogonal decomposition. 

Let x be an S.P. with shift operator V. Let 

J»2TT 

0 

dEe 

be the spectral representation of V and define F(0) = 27r(Ee, x0, x0). The 
matrix-valued function F is called the spectral distribution function of x. 
M. Rosenberg (10, §3) has defined the integral 

Ji2?r 

<PdFW* 
0 

of q X q matrix-valued functions<I> and*F with respect to F. With his definition 
the set of all q X q matrix-valued functions 4> such that <ï> is measurable and 
(<!>,<I>)F is finite is a (complete) Hilbert space L2)jP(0, 2ir) with inner product 
((&,W))F = tr (&,W)F (cf. (10, 3.9)). He is then able to define the stochastic 
integral 

J»2TT 

*(0) dEe(x0) 
o 

of a functions in L 2 > F(0 , 2TT) with respect to the process of orthogonal incre­
ments {Ee(x0), 0 < 6 < 2TT}. <j> is a vector in XQ, and he then proves (cf. (10, 
4.6)): 

4.1. ISOMORPHISM THEOREM. Let x, E9, and F be as above. Then the corre­
spondence between <I> and 

J»2TT 

*(6) dEe(x0) 
o 

is an isomorphism from the Hilbert space L 2 > F(0 , 2T) onto the Hilbert space 
Mœ(x). Moreover (fb,W) F = (<j>, ijr) whenever O and W correspond to § and i|r 
respectively. 

We shall also use the following result which can be derived from Theorem 4.1 
(cf. (11,7.24)). 

4.2. THEOREM. Let x be an S.P. with shift operator V and spectral distribution 
Ex. 

(a) Ifyo is in Mœ(x) and ify0 corresponds to® under the isomorphism between 
Mœ(x) and L2|F^(0, 2TT), then the S.P. yn = Vw(y0) has a spectral distribution Fy 

satisfying 
F'y(e) =<P(6)F'x(d)*(e)* a.e.(Leb.), 

where F' indicates the derivative of F with respect to Lebesgue measure on (0, 2-w). 
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(b) Let y o and z0bein M00(x) and correspond to&y and®z respectively under the 
isomorphism, and let y n = Yn(yo) andzn = Vw(z0). Thenym J_ znfor allmandn 
implies that 

<Py(d)F'x(d)Wz(d)* = Oa.e.(Leb.). 

If A is a q X q matrix, let R(A) = {b: b = Aa for some a in CQ} be the 
range of A. 

4.3. LEMMA. Let x = y + z be an orthogonal decomposition of the S.P. x. Then: 
(a) Fx(d) = Fy(d) + Fz(d), 
(b) R(F'X(6)) =R(F'y(d)) + i?(F'2(0))a.e.(Leb.). 

Proof, (a) is well known (cf. e.g. (13, §7)). 
(b) Differentiating (a) we get F'x(d) = Ff

y(d) + F'2(0) a.e.(Leb.). Since 
F'x(d), F'y(d), and F'2(0) are non-negative hermitian matrices (cf. e.g. (13)), 
(b) follows from elementary considerations. 

4.4. LEMMA. Let x = y + z be a subordinate orthogonal decomposition of the 
S.P. x. Then: 

(a) R(F'y(0))nR(F'z(0)) = {0} a.e.(Leb.). 
(b) Let®y and<bz correspond to y0 and z0 respectively under the isomorphism 

between L 2 ,FZ(0, 2T) and Mœ(x). Let&y(d) and&z(d) denote the restrictions of the 
operators Q>y(d) and&z(d) respectively to R(F'x(d)). Then®y(d) is the projection 
ofR(Ff

x(d)) ontoR(Ff
y\d) along R(F'z(6)) a.e.(Leb.), andêz(d) is the projection 

from R(Ff
x(6)) onto R{Ff

z{6)) along R{F'y{6)) a.e.(Leb.) (cf. Halmos (3, §30) 
for terminology). 

Proof. To prove the theorem we shall establish in succession the following 
results: 

(1) <Py(d) +<PZ(6) = 7oni?(F'x(0))a.e.(Leb.). 
(2) F'v(e) = <i>y(d)F'x(d)<Py(d)* = <Py(d)F'x(d) = F',(0)*,(0)*a.e.(Leb.). 
(3) 4>„(0) mapsR(F'X(6)) onto R(F'y(0)) a.e.(Leb.). 
(4) éz(6) mapsl^F'^fl)) ontoR(F' 2(0)) a.e.(Leb-). 
(5) éy(6Y =<&„(#) a.e.(Leb.). 
(1) To prove (1) observe that y0 + z0 = x0 and that J corresponds to x0 

under the isomorphism in question. 
(2) By Theorem 4.2(a) 

F \ (0) =*y(e)F'x(0)*y(6)* a.e.(Leb.), 

and by part (b) of that theorem, we have 

<Py(6)F'x(d)(I - *y(6))* = » a.e.(Leb.). 

Hence the second equality in (2). The last equality in (2) is obtained by taking 
conjugate transposes on both sides of the second equality. 

(3) Follows at once from the equation 

Ff
y(d) =*y(0)F'x(6) a.e.(Leb.). 
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(4) Follows from the equations 

F',(0) = F'x(0) - ¥'v(d) 

= (J - *,(0))F'.(0) = *.(0)F'X(0) a.e.(Leb.). 

(5) Using (2) we get 

*,(e)*F'x(e) = *,(*) (*,(*)F',(»)) 
= *,(0)F',(0)*,(0)* 

= F',(0) = *,(0)F'X(0) a.e.(Leb.), 

which yields (5). 
Conditions (l)-(5) and Lemma 4.3(b) imply thatô^tf) is the projection from 

R(F'X(6)) onto R(F'v(0)) along R(Ff
 z(d)) a.e.(Leb.), and a similar statement is 

obtained by interchanging y and z (cf. Halmos (3, §30)). But these, in turn, 
imply (a). 

Notice that it is not true that R(F'y(d)) JL R(F'z(d)) a.e.(Leb.) (cf. the 
example given by Masani in (5)). We summarize the results of the last two 
lemmas as follows: 

4.5. THEOREM. Let x = y + z be a subordinate orthogonal decomposition of 
theS.P.x. Then: 

(a) R(F'x(0)) = *(F',(0)) + i?(F'2(0))a.e.(Leb.). 
(b) R(F'v(e)) r\R(F'2(d)) = {0} a.e.(Leb.). 
(c) rank F'x(6) = rank F'„(0) + rank F'2(0) a.e.(Leb-). 

5. The Wold decomposition and the Lebesgue-Cramér decomposi­
tion. The Wold decomposition of a process x into its purely non-deterministic 
part u and its deterministic part v satisfies (1.1), i.e. xn = un + vn and 
Um _L v„, — oo < m, m < oo. In addition u is dominated by x. Thus by 
Lemma 4.3 we have a decomposition Fx = Fu + Fv of the spectral distribution 
of x. We also have the Lebesgue-Cramér decomposition F^ = Fa + F&, where 
F a is the absolutely continuous part (with respect to Lebesgue measure) and F& 

is the jump-singular part of F^ (cf. Cramer (1)). In this section we shall give a 
necessary and sufficient condition for the concordance of these two decom­
positions, i.e. for FM = F a and Fv = F&. 

The following lemma is well known (cf. e.g. Masani (6)). 

5.1. LEMMA. Let x and Fu be as above, then 
(a) Fu is absolutely continuous. 
(b) rankFr

M(60 = r(x) a.e.(Leb.). 

5.2. THEOREM. FU = Fa and Fv = Fb if and only if rank F'x(d) = r(x) 
a.e.(Leb.). 
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Proof. Suppose Fu = Fa . Using the fact that F'6 = 0 a.e.(Leb.) and Theorem 
4.5(c), we obtain 

rankF'^fl) = rank F'a(0) = rank F'M(B) = r(x) a.e.(Leb.). 

Conversely, if rank F'x(6) = r(x) a.e.(Leb.), then using 4.5(c) again 

rankF',(0) = rank F'^fl) - rank F'w(#) 

= rankF'^fl) - r(x) = 0 a.e.(Leb.). 

Therefore, F'„(6) = 0 a.e.(Leb.), and hence F'x(d) = F'u(6) a.e.(Leb.). Since Fu 

is absolutely continuous, Fu = F a as desired. 

This theorem subsumes the results of various authors in special cases: 

5.3. COROLLARY (Rozanov (12, Theorem 1)). Suppose Fz is absolutely 
continuous and that rank F'x(0) = 1 a.e.(Leb.). Then x is either deterministic or 
purely non-deterministic. 

5.4. COROLLARY (Masani (5, Corollary 2.8 and Theorem 4.5)). Suppose x is 
a bivariate process and that r(x) = 1. Then Fu = Fa and Fv = F6 if and only if 
detF'z(0) = 0a.e.(Leb.). 

5.5. COROLLARY (Wiener and Masani (13, Theorem 7.11)). Suppose that x 
is a q-variate process and that r(x) = q. Then Fu = Fa and Fv = Fb. 

5.6. COROLLARY (Kolmogorov (4, Theorem 23)). Suppose that x is a uni­
variate non-deterministic (r(x) > 0) process. ThenFu = FaandFv — F&. 

6. Continuous parameter processes. This section is devoted to describing 
a procedure for extending results concerning discrete-parameter S.P. to 
continuous-parameter ones. Gladyshev (2) has also given such a procedure. 
However, his procedure was entirely in the spectral domain while we treat 
time-domain results by purely time-domain techniques. As the results given 
here are direct generalizations of those in (8), we shall omit the proofs. 

A q-variate, continuous-parameter, weakly stationary stochastic process on Xq is 
a function x from the real lineR to Xq such that (x(s), x(t)) = T(s — t) depends 
only on s — t and not on 5 and t separately. This is equivalent to saying that 
there exists a one-parameter group { Ut, t real} of unitary operators on X such 
that x(t) = U*(x(0)). Throughout we shall assume that { Ut} t real} is strongly 
continuous, i.e. for each x in X \\ Us+t(x) — Ut(x)\\ —» 0 as 5 —> 0. This is the 
same as requiring that the process x be a continuous function from R to XQ. 

Let { Ut, t real} be a strongly continuous one-parameter group of unitary 
operators on X. It is known that { Ut, t real} has an infinitesimal generator* 

(6.1) iH = lim^o (1/0{ Ut - I) on D, 

3Limits in this section are to be understood in the strong sense, i.e. for every a in D 
\\{(l/t)(Ut - I) - * £ r } ( a ) | | - » 0 a s * - 0 . 
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where if is a self-ad joint operator with domain D, and D is a linear manifold 
everywhere dense in X. 

Now let V be the Cayley transform of H: 

(6.2) V = c{H) = (H - U)(H + il)~l on X. 

Then F is a unitary operator on X such that 

(a) H = i(I +V)(I- V)-1 on D, 
^ ((b) Ut Vn = VnUt on X, - oo < ntt < » , n an integer. 

The relationships between Ut and F n for arbitrary t and » are given by the 
following equations (cf. (8, 2.7 and 2.8)): 

(6.4) 

and 

(6.5) 

Ùi kl \n + 1/ t/±, = e"i + Hm 2) ^ Ir^rrJ {(J + .4±„r - /}, * >o, 

where A±n = ^ É ( j + j ) ' V ' , » > 0, 

F±w = / + 2 f °°L9
n{2£)e-%U±tdt, n > 0, 

whereZn(/) = ^ -̂ -f— \ L )**» ^ > 0 (wthLaguerre polynomial). 

Using these equations, the following basic lemma may be derived (cf. (8, 2.9) 
for the case g = 1). 

6.6. LEMMA. Let X be a subset of X\ then: 
(a) a{Vt(X)} t > 0} = er{V»(X), n > 0}.4 

(b) cr{U-,(X)f t > 0} = er{V-*(X), * > 0}. 

Now let x be a g-variate, continuous-parameter, weakly stationary stochastic 
process with a strongly continuous shift group { Ut, t real}, and letx' denote the 
discrete-parameter process determined by x'n = Vw(x(0)) where V is given by 
(6.1) and (6.2). x' is called the discrete-parameter process associated with x. The 
subspaces determined by x' will be denoted by M'-^, M'n , and M'œ. Using 
Lemma 6.6, we can establish the following theorem by a direct generalization 
of the proof given in (8, 4.4 ) for the case q = 1. 

6.7. THEOREM, (a) M0 = M'0. (b) Mœ = M'œ. (c) M_œ = M'_^. 

The following corollary is an immediate consequence of Theorem 6.7 and the 
relevant definitions. 

6.8. COROLLARY, (a) The discrete-parameter process associated with the purely 
non-deterministic part (deterministic part) of x is the purely non-deterministic part 
(deterministic part) ofx'. 

(b) y is subordinate to (dominated by) x if and only if y' is subordinate to 
(dominated by )x\ 

4<r{ . . . j denotes the smallest closed subspace containing the vectors ( . . . } . 
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Corollary 6.8 makes it natural to define the rank of a continuous-parameter 
process x to be equal to the rank of its associated discrete-parameter process. 
With this definition of rank and with Corollary 6.8, the results of §§2, 3 carry 
over immediately to the continuous-parameter case. 

We shall now show how continuous-parameter moving averages may be 
obtained (cf. (8, §6)). Let h be a g-variate, continuous-parameter, weakly 
stationary stochastic process with h ' as its associated discrete-parameter 
process. Then h ' is an orthogonal process, i.e. (h'm, h'n) = 8mn K where K is a 
q X a non-negative hermitian matrix, if and only if (h(2)|Ms(h)) = es~lh(s) 
for 5 < /. With such a process h we may associate a new (non-stationary) 
process 

Ut) = ̂  \h(t) - h(0) + J\(s) dsj . 

{£(£), 2 real} is a process with stationary and orthogonal increments and 
\{%(t) — l(s)\2 = \t — s|K. The h process may be recovered from {£(£), t real} 
by 

h(0 = V2 f e'-'dXs). 

One can now show that M ,(h) is equal to the set of all stochastic integrals 

' C(s)dHs) 

where C is a measurable q X q matrix-valued function such that 

C(s)KC(s)*ds < oo. 

Finally one obtains: x is a (one-sided) moving average, i.e. 

x(o = Jm c(s) dta - s) (x(t) = J00 c{s) dta - s)j 
if and only if its associated discrete parameter process is also, i.e. 

CO / CO \ 

X n — 2ij kfc h n-jc I X n = 2^i Gjc U. n-k J . 
- c o \ 0 / 

The following version of the Wold decomposition now follows from the 
discrete case. 

6.9. THEOREM. Let x be a q-variate, mean-continuous, continuous-parameter 
weakly stationary stochastic process. Then x{t) = u(t) + v(/), where 

(a) v is a deterministic process and M t(\) = M_œ(x)for allt, 
(b) u is purely non-deterministic process and M t(u) = M_œ(x)x C\ M t(x) for 

all t, 

(c) u(t) = I C(s) d^(t — s) where {£(/), t real} is a process with stationary 

and orthogonal increments and Mt(£) — M *(u) for all t. 

s: 
s: 
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Having so completed the requisite time-domain analysis of our S.P., we can 
pursue its spectral analysis in a coherent way. If { Ut, t real} is a strongly 
continuous one-parameter group of unitary operators on X, then by Stones 
theorem, 

Ut= PV'dEx 
«J-co 

where {Ex, X real} is a resolution of the identity on X. F(X) = 27r(E\(x(0)), 
x(0)) is defined to be the spectral distribution of x where x(t) = U*(x(0)). If G is 
the spectral distribution of the associated discrete-parameter process, then 
F(X) = G(0) where eie = c(X) = (X - i)/(\ + i) is the Cayley transform. We 
then have 

6.10. THEOREM. Let F be the spectral distribution of a continuous-parameter 
process and G the spectral distribution of its associated discrete-parameter process. 
Let FUi Fv, Fa, and Fb be the spectral distributions of the purely non-deterministic 
part and deterministic part, and the absolutely continuous and singular part of x 
respectively. Define Gu

f, Gv>, Ga, and G& similarly. Then: (a) FM(X) = GM/(c(X)), 
(b) F,(X) = GAcM), (c) Fa(X) = Ga(c(X)), (d) F6(X) = G6(c(X)). 

The transition from the results given in §§4, 5 for discrete-parameter 
processes to the corresponding results for continuous-parameter ones is now 
immediate. Indeed, in view of Theorem 6.10, Corollary 6.8, and the definition 
of rank, any theorems involving only concepts of domination, subordination, 
purely non-deterministic parts, deterministic parts, ranks, or certain properties 
of the spectral distributions which have been proved for discrete- (continuous-) 
parameter processes will automatically be true for continuous- (discrete-) 
parameter ones. 

7. Examples. In this section we shall give several examples to indicate the 
extent to which our results are the best possible. To this end we shall need the 
following result due to Kolmogorov (cf. (4, Theorem 23 )). 

7.1. LEMMA, (a) Let x be a univariate (q = 1) S.P. with absolutely continuous 
spectral distribution F. Then x is purely non-deterministic or deterministic 
according as log F' is in L\ or not. 

(b) Let f be any non-negative, integrable function on (0, 2w). There exist a 
univariate S.P. with absolutely continuous spectral distribution F given by Ff = f 
a.e. 

7.2. Example. Let y and z be mutually orthogonal univariate S.P. with the 
same absolutely continuous spectral distribution F. Theorem 4.5(c) shows that 
x = y + z cannot be a subordinate decomposition, while Lemma 4.3(a) and 7.1 
imply that r(x) = r(y) = r(z). Therefore, if log F7 is in Li, r(x) < r(y) + j(z), 
and if log F7 is not inZi, then r(x) = r(y) + r(z). 

https://doi.org/10.4153/CJM-1968-033-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-033-x


382 JAMES B. ROBERTSON 

7.3. Example. Let A and B be disjoint, non-degenerate, intervals contained 
in (0, 2ir). Let y and z be mutually orthogonal univariate S.P. with absolutely 
continuous spectral distributions given by F'v = l ^ a n d F ' g = Irrespectively. 
Theorem 12 of (4) shows that x = y + z is a subordinate decomposition, while 
7.1 implies that r(y) = r(z) = 0 and r(x) = 1 if and only if A VJ B = (0, 2TT). 
Thus, if A \J B = (0, 2TT), r(x) > r(y) + r(z), and if ÂXTB ^ (0, 2TT), 
r(x) = r(y) + r(z). 

7.4. Example. Let u and v be mutually orthogonal, orthonormal univariate 
S.P. Let x, y, and z be the bivariate (q = 2) S.P. given by 

un 

Lvn_ 
1 

, yn - 2 

Un + Vw+i 
_Uw_i + Vn-

1 
' Zn ~ 2 

u n — vw+i 

The relevant subspaces can easily be calculated directly to show that x = y + z 
is a subordinate orthogonal decomposition, which is not a dominated decom­
position, and that x, y, and z are all purely non-deterministic. r(x) = 2 = 1 
+ 1 = r(y) + r(z). 

7.5. Example. Let u and v be as in 7.4 and let v = v; + v" be an orthogonal 
subordinate decomposition of v into deterministic processes as in 7.3. Let x, y, 
and z be given by 

Y _ [un + v'„ 1 [Uni _ _ f v'n I 
Xn " Lun - v"J ' Yn " Lu J * Zn - L - v"J * 

Clearly Mœ(z) Q Mco(x), and thus x = y + z is a subordinate orthogonal 
decomposition. I t is also clear that y is purely non-deterministic with rank 1 
and that z is deterministic. The spectral distribution F of x is absolutely 
continuous and is given by 

F, Ti + 1. i 1 
L i I + 1BJ* 

Since log (det F') = 0 is in L\, x is purely non-deterministic with rank 2 (cf. e.g. 
Wiener and Masani (13, Theorem 7.10)). 
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