
Canad. Math. Bull. Vol. 26 (3), 1983 

A LEMMA ON PROJECTIVE GEOMETRIES AS 
MODULAR AND/OR ARGUESIAN LATTICES 

BY 

A L A N DAY ( * ) 

ABSTRACT. A projective geometry of dimension (n - 1 ) can be 
defined as modular lattice with a spanning n-diamond of atoms (i.e.: 
n 4-1 atoms in general position whose join is the unit of the lattice). 
The lemma we show is that one could equivalently define a projec­
tive geometry as a modular lattice with a spanning n -diamond that 
is (a) is generated (qua lattice) by this n -diamond and a coordinat ­
ing diagonal and (b) every non-zero member of this coordinatizing 
diagonal is invertible. The lemma is applied to describe certain 
freely generated modular and Arguesian lattices. 

§1. Introduction. A projective geometry of dimension (n — 1) can be defined 
as a modular lattice with a spanning n -diamond of atoms (see Crawley and 
Dilworth [2] or Day [4]). In this note we provide another necessary and 
sufficient condition for a modular lattice with a spanning n-diamond to be a 
projective geometry of dimension (n — 1) and apply it to prove that projective 
geometries of prime order and dimension >3 (respectively = 2) are projective 
modular (resp. Arguesian) lattices. The first aforementioned result is due to 
Freese [7]. 

Let M be a bounded modular lattice; a spanning n-diamond in M is a 
sequence d = ( d 1 ? . . . , dn+1) in M satisfying for all i ^ j = 1 , . . . , n + 1 , (nDl) 
V (dk : k T̂  i) = 1 and (nD2) dt A V (dk : k j= i, j) = 0. Although there is complete 
symmetry in the definition of a spanning n -diamond, we will write d = 
(x l 7 . . . , xn_l7 z, t), h = v(Xi ; i = 1 , . . . , n — 1), the "hyperplane at infinity", w = 
h A (z v t), the infinity point on the line zvt; A = {p G M: p v h = 1 and 
pAh = 0}, the affine plane; and D={aeA:a<zvt} = {aeL:avw = zvt and 
a A w = 0}, the coordinatizing diagonal which will become the (planar ternary) 
ring. The affine plane A can now be coordinatized by D in that there are 
inverse bijections between A and D n _ 1 viz: p »-> ((z v t) A (xt v p)) and 
(f lO^A (XiVdi) where xt=\/ (x,-:/^ 0-

We will need to examine the case where n = 2 (i.e. the projective plane) 
more closely, so let (x, y, z, t) be a spanning 3-diamond in a modular lattice M. 
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We can visualize this as the affine plane A with h = xvy, the line at infinity as: 

w 

ine of 
slopes yS ^ 

**x 

The projective isomorphism [0, z v w ] = [0, z v y ] defines for each beD a 

y-intercept point b0 = (zvy)A(Xvfe) satisfying for p < z v y , p = b0 for some 

beD if and only if p v y = z v y and p A y = 0 . Similarly the projective 
X Z 

isomorphisms [ 0 , z v w ] = [0 ,yv ( ] = [ 0 , x v y ] provide a "slope point at in-
A A 

X Z 

finity" b = b1 = bO0 for each beD. Note that zQO = x and tœ=w. Furthermore 
q < x v y is such a slope point if and only if it is a complement of y (in 
[0, x vy]). We now can define the ternary operator on D by: 

T(a, m, b) = (z v t) A {X V [(y v a) A (m*, v fr0)]}> a,b,ce D. 

Easy (modular) calculations show that T is indeed a function from D into D. 
We now can define multiplication and addition on D by: 

a®b = T{a,b,z) 

a®b = T(a,t,b). 

Left and right differences can now be defined by 

a AjC = (z W ) A { X v[(y V Z ) A { W v[(y va)A(x vc)]}]} 
and 

c Arb = (z vt)A{y V[(JC V C ) A ( W vb0)]}. 

These make (D;(B, z) into a loop since c = a®b iff a — c Arb iff b = a Atc. 
In general multiplication does not have left and right division as operations 

in D. One need only consider 5£(RR3), the lattice of left submodules of a given 
"bad" ring JR. If {e l5e2, e3} is the standard basis of R, x = ReÏ9 y = Re2, 
z=Re3 and t = JR(e1+e2 + e3), we obtain D ={â = 2^(aei + ae 2 + e3): aeR} 
with T(â, m, b) = am + b- aeR is then invertible if and only if z A â = 0 and 
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zvâ = zvt. In general we define Inv(D) = { a e D : z v a = z v t and ZACL = 0} 
and can show a eInd(D) if and only if there exists b,ceD with b®a = t = 
a®c (t is the unit of ®!). 

Now if M is a projective plane then Inv(D) = D\{z} since the meet of any 
two distinct points is 0. Furthermore one can obtain every point of the 
geometry by lattice operations from the points DU{x1,..., xn-i}. Our lemma 
is the converse. 

LEMMA. Let M be a modular lattice with spanning n-diamond 
\ % i , . . . , %n_i, z, X) ana suppose M = ( D U { x l J . . . , xn-i}) the lattice generated by 
D U{x 1 ? . . . , xn_!J; then M is a projective geometry of dimension (n — 1) if and 
only i /Inv(D) = D\{z} . 

§2. The case n = 3 

CLAIM 1. For a,beD, the following are equivalent: 
(1) aAb = 0 and avb = zvt 

(2) a Aib e Inv(D) 

(3) bA raeInv(D). 

Proof. Modular lattice calculations give z A (a Atb) = z A (b Ara) = 
z A (w v (a A b)) and zv(a Atb) = zv(b Ara) = z v (w A (a v b)). Therefore a Ajb 
(resp. b Ara) is in Inv(D) if and only if w A (a v b) < w < w v (a A b) are comple­
ments of z in [0, z v t] if and only if w A (a v b) = w = w v (a A b) by modularity 
if and only if avb = zvt and a A b = 0. 

COROLLARY 1. If D = Inv(D) U {z}, then {0, z v t, w} U D is a sublattice of M 
isomorphic to Ma where a = 1+'|D|. 

COROLLARY 2. If D = Inv(D) U {z}, then {0, y v z, y} U D 0 is a sublattice of M 
isomorphic to MŒ where a = 1 + \D\ and D0 = {a0 : a e D}. 

COROLLARY 3. If D = Inv(D) U {z}, then {0, xvy,y}U D^ is a sublattice of M 
isomorphic to Ma where a = 1 + |D| and D^ = {aœ: aeD}. 

We now need to represent M as a projective plane by defining points, lines 
and incidences. We let 

P = AU{y}UDoo 

L ={h = x vy}U{y v a : a eD}U{moovb0: m, beD} 

and pll iff p < L To complete the proof for n = 3 we must show that (P, L, <) is 
a projective geometry and that M = {0,1}UPUL. 

CLAIM 2. p < h iff p e i y j U D , . 

Proof. Trivial as p A h = 0 for all p G A. 
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CLAIM 3. p < y v a iff pe{y}U{(y va)A(x v b ) : beD}. 

Proof. Easy. 

CLAIM 4. p<moovb0 iff pe{moo}U{(y va)A(x vT(a , m, fr)):aeD}. 

Proof. Clearly any point on m^vbo besides m^ must come from A, and for 
such a point 

(y v a) A (x v c) < moo v bo iff (y v a) A (x v c) < (y v a) A (m^ v b0) 

iff x v c < x v [ ( y v a ) A (m^ v b0)] 

iff c < x v [(y v a) A (m^ v b0)] 

iff c < T(a, m, b) 

iff c = T(a, m, b) by modularity. 

CLAIM 5. For any peP and / G L either p < Z, or pvl = l and p AI = 0. 

Proof. We will prove this claim only for p — (y va)A(XVC) and / —moovbg 
where c^ T(a, m, b). 

p vl = p v[(y va)A(moovb0)]vmoo 

= pv[(y v a ) A (x v T(a, m, b))] v mœ 

= [(y v a) A (x v c v T(a, m, b))] v m^ 

= yvavmO0 since ci= T(a, m, b) 

= 1 

p AI = (X vc)A(y v a) A (moo v fr0) 

= (y v a) A (x v c) A (X V T(a, m, b)) 

= (yva)Ax, since c ̂  T(a, m, b) 

= 0 

CLAIM 6. The join (in M) of distinct points is a line. 

Proof. We will consider the two non-trivial cases and leave the rest to the 
reader. If p .= (y va) A(X vb) and q = (y vc) A(X v d) are distinct then 
(a,b)^(c,d). If a = c, p v a = y v a e L or if b = d, p v q = x v b = z^vb^eL. 
Therefore we may assume a^c and b^ d. With these assumptions one can 
easily show that 

(i) (y V Z ) A ( P vq)eD0, as a complement of y 
(ii) (y V X ) A ( P vq)eD00 and 

(iii) pvq = [(yvz)A(pvq)]v[(yvx)A(pvq)]eL. 
If p = (y v a) A (x v b) and q = mO0 then easily (y v z) A (p v q) e D 0 and pvq = 

[(yvz)A(pvq)]vqeL. 

CLAIM 7. The meet (in M) of distinct lines is a point. 

https://doi.org/10.4153/CMB-1983-046-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1983-046-1


1983] PROJECTIVE GEOMETRIES 287 

Proof. We have used already that (y v a) A (m^ v b0) = (y v a) A (X V T(a, m, b)) 
and therefore are left with only one other non-trivial case: m^vbo and 
MOOVCQ with (m, b) ^ (n, c). If however m = n, then the meet of the lines is m^. 
Therefore assume m^n. We complete the proof by showing that (raooVfr0)

A 

(riooVc0) e A ^ P. 

/iA(moov60)A(noovc0) = [moov(5ûAfi)]A[noov(c0Ah)] 

= moo A Moo 

= 0 as m T̂  n 

^ v [(m,, v b0) A (/too v c0)] = (moo v noo) v[(moo v 50) 

A(nooVC0)] as m ^ n 

= [moovnO0vb0]A[noovmoovc0] 

= 1 

We have therefore that {0, 1}UPUL is a sublattice of M containing D U 
{x, y}. Since M is assumed to be generated by DU{x, y}, M = {0,1}UPUL 
and M is a projective plane. 

§3. The case n > 4 . The proof this case is by induction on the statement: 
If y = ( y 2 , . . . , yn, z, t) is an n-diamond in a modular lattice M with 

(1) hy = V ( V i : 2 < i < n ) 

(2) w y =h y A(zW) 

(3) Ay = {p 6 M: p v hy = z v hy, p A hy = 0} 

(4) Dy = { p e A y : p < z v t } = Iny(Dy)U{z} 

then the sublattice of M generated by D U{y2,. . . , yn} is a projective geometry 
of dimension (n —1) whose point (qua geometry) set includes AyU 
{hyA(pvq):p, qeAy}. 

This statement is true for n = 3 so let x = (x1? JC2, . . . , *n> z> t) be an (n +1)-
diamond in a modular lattice M, and let y2 = (xxvx2)A(X12Vzvt) and yt = ^ 
for 3 < i < n . 

The reader may easily verify that y = (y2,. . . , yn, z, t) is an n -diamond in M 
with 

(1) hy= hxA(x1 2vz vt) = h A ( X 1 2 V Z vt) 

(2) wy - wx( = w) 

(3) Ay = {(Jc12va2)AA (XiVai:3<i<n): a2, a< G D } 

(4) Dy = Dx = D = Inv(D)U{z} 

By induction hypothesis we have that M12 = (DU{y 2 , . . . ' , yn}) is a projective 
geometry of dimension n. Also M 1 2 <[0 , x 1 2 vz vt]. 
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1 

Now consider the projective isomorphism c/> : [0, xX2 v z v t] = [0, xx v t] = 
A A 

[0, h]-$[M1 2] = H is therefore a projective geometry of dimension ( n - 1 ) 
generated by {h A[Z[(XX V t) A (*! v a)]] : a G D} U{X2, • • •, *n}- Note that this set 
includes xx = cf)(z) and w = 4>(t). Moreover the set Ay is mapped precisely onto 
the complements of xx in [0, h] since <f)(hy) = x1. 

CLAIM 1. For p,qeA(=Ax), hA(pvq) is a point of H. 

Proof. If p,qeA then there exists a, b e D n with p = /\(xivai) and q = 
/\(XiVbi). Moreover if ax^bx xxv[hA(Pvq)] = h and xxA(HA(Pvq)) = 0. 
Therefore h A (p v q) is a point in H. 

If a1 = b1 = c, then p vq ^[A 2 ' " C^vaO vA 2 , n (x iv^)]A (^i vc) and hA 
(p v q) = xx A [ A2,n(x; vaO v A2 'n(^ vfy)] = (hy A (py v qy)) where py = (x12 v a2) A 
A 3 n (^vai) and qy is similarly defined. This proves the claim. 

Now let U = {p v s : p G A U {0} and S G H } Ç M We want that U is a sublat-
tice of M and in fact a projective geometry of dimension n. 

CLAIM 2. P ivs 1 <p 2 v . s 2 if and only if sx<s2 and h A(p x vp 2 )<s 2 for px,p2e 
A and s1? s2eH. 

Proof. If P i v s 1 < p 2 v s 2 then meeting with h produces sx<s2 and meeting 
Pivp2^P2VS2 with h produces h A(p 1 vp 2 )<s 2 . Conversely p 2 v s 2 = 
p2 v [h A (px v p2)] v s 2 - p 1 v p 2 v s 2 > p 1 v s 1 . 

COROLLARY. For any q e{xx,. . . , xn, z, f}, [0, q]CiU = {0, q}. 

Now since (p!vs x)v(p2vs2) = pxv(sxvs2v[hA(pxvp2)]) when P i^O, L/ is 
closed under joins (as H is). 

CLAIM 3. For distinct p,qeA, p A q = 0. 

Proof. We have a, b e Dn with p = A fevaO and q = A (^vfy), and 

p Aq = A (XiVai)A(Xj vbf) 

= A(^v(a i Ab i ) ) . 

Since p 7̂  q, a ^ b and therefore a( 7̂  bi for some i. For this i we obtain 

p A q = xt A A (*,- v (a, A fy)) 

- 0 . 

CLAIM 4. (7 is closed under meets. 

Proof. Since px A (p2 v s2) = Pi A (p2 v (s2 A h A (px v p2))) = px A p2 and (pxvsx)A 
S2 = SXAS2 we may assume without loss of generality that we have p^vs^e U, 
i = 1, 2 with Pj^Pt v st for i ± /. Since H is a projective geometry this is equivalent 
tO SX A (px V p 2 ) = S2 A (p1 V p 2 ) = 0 . 
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Now suppose there are points of H, aj<s, such that a1va2 = 
ax v [h A (px v p2)] = a2 v [h A (px v p2)]. Clearly p = (a1 v px) A (a2 v p2) G A and 
p v(s! As2) ^ (Pi vSi) A(p2vs2). However both of these expressions are comple­
ments of sx in [s1As2,s1vp]. Therefore we have equality and (PIVSX)A 

(p2vs2)eU. 
Now if no such at<Si exist, we can conclude, since H is a projective 

geometry, that siA(sjv[hA(p1vp2)]) = 0, i^j. These simplify to 
sx A (s2 v px v p2) = s2 A (sx v px v p2) = 0, which give 

(Pl V Sx) A ( p 2 V S2) = (p1VS1)A ( p 2 V S2) A (Si V Px V p 2 ) 

A ( s 2 V P x V p 2 ) 

= ( p i V [ S x A ( s 2 V P i V p 2 ) ] ) 

. A ( p 2 v [ s 2 A ( S x V P x V p 2 ) ] ) 

= P l A p 2 . 

This completes the proof. 

§5. Applications. Since the concept of an n-diamond is a projective config­
uration (Huhn [9], see also [3]) one can form "equations" of the form "If 
d = (dx,. . . , dn-i) is an n-diamond then p(d x , . . . , dn+1) = q(dx,. . . , dn + 1)" 
where p and q are lattice terms in (n +1) variables. If ( x 1 ? . . . , xn_l5

 z> 0 is a n 

n-diamond in a modular lattice one can define the natural number terms: 

0 = z 

k + l = k 0 f 

This allows one to define (among other things) the characteristic of an n-
diamond by (x1?. . . , xn_x, z, t) is of characteristic fc if k = 0. Versions of these 
characteristic equations have been given in Herrmann and Huhn [8] and Freese 
[6]. Freese also showed in [7] that: 

THEOREM. For any n,keN FM(nD[k]), the free modular lattice generated by 
an n-diamond of characteristic k, is a projective modular lattice. 

Let M be a modular lattice with n-diamond x = (xu . . . , xn_x, z, t). If n > 4 
we have from von Neumann that (D; ©, z, ®, t) is a ring (cf. Artmann [1]). If 
n > 3 and M is Arguesian we also have from Day and Pickering [5] that 
( D ; 0 , z, ®, t) is a ring. If x is an n-diamond of characteristic p, for prime p, 
then Zp < D , Inv(Zp) = Zp\{z} and T[Zp]çZp . We can now apply the lemma to 
obtain: 

THEOREM. For p prime FM(nD[p]) is a projective geometry for n>\ and 
FA(nD[p]) is a projective geometry for n > 3 . 

COROLLARY ([7]). FM(nD[p]) = ^(Zp) , n ^ 4 . 

COROLLARY. FA(nD[p]) = i?(Zp), n > 3 . 
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