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FINITE-DIMENSIONAL SIMPLE MODULES OVER
QUANTISED WEYL ALGEBRAS

NoBUYUK! FUuKuDA

We classify finite-dimensional simple modules over quantised n-th Weyl algebras A%
over an algebraically closed field under a certain condition on the parameters.

0. INTRODUCTION

Several authors have proposed various algebras as ¢g-analogues to the Weyl algebras.
See, for example, [3, 1, 5, 2]. Since the n-th Weyl algebra is the algebra of differential
operators on the n-dimensional affine space, these g-analogues to the n-th Weyl algebara
have been regarded as the algebras of quantised differential operators on n-dimensional
quantum affine spaces. In this paper we deal with the quantised Weyl algebras A%A
studied in [1, 5] et cetera.

Although the Weyl algebras (over a field of characteristic 0) have no non-zero finite-
dimensional module, the quantised Weyl algebras have them. The purpose of this paper
is to classify finite-dimensional simple modules over the quantised Weyl algebras A%*
under a certain condition on the parameters. For this end, the classification result for
n =1 due to Jordan [4] is crucial.

Throughout this paper, let k£ be an algebraically closed field of arbitrary character-

istic.

1. QUANTISED WEYL ALGEBRAS A%"

DeFINITION 1.1:  ([1].) Let A = ();;) be an n X n matrix over the multiplicative
group k* of k such that A; = 1 for each 4 and such that A;; = /\]-‘il for each 2, 7, and let
7= (q1,-,qn) be an n-tuple of elements of k \ {0,1}. The n-th quantised Weyl algebra
A%A is by definition the k-algebra generated by 2n elements vy, - -, yn, Z1," - -, Tn, With
relations

TiTj = QAT Ti,
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Yi¥i = Ai¥iYi

(1.2) Ty, = AjyiTi,
T, = g NiTiyi,
j-1

ziy;5 — Y%, = 1+ (@ — Dy,
=1

(zyy1 — iz = 1),

where 1 < i< j <n. Whenn =1, A= (1) and § = (g;), A?* is abbreviated to A,
where ¢ = ¢q;.

i
For1 <i < n,let zz =1+ (¢ — 1)y;z;. These elements of AZ* are called
j=1
the Casimir elements, and play an important role in investigating the quantised Weyl

algebras. By a direct computation we get the following result (see 5, 2.8]).

LEMMA 1.3. The Casimir elements z1,- -, 2, of A satisfy the following rela-
tions:
) vz If] <1, _ )Tz If] <1, _
A T T A P A L A A

forl1 €1i,57<n.

For 1 < i< m, let Vi = {y}jo1, X = {z};>1 and Z; = {z};51 in AZA. Note that
Vi,oo s Vny X, o0y Xny 21, -+, 2, and the product £ = Z;--- Z, are Ore sets in A%A.
We denote by B3 the localisation of A% at Z. It is proved in [5, Theorem 3.2] that, if
no ¢; is a root of unity, then B%* is simple, so that B¥* has no non-zero finite-dimensional
module, since B9 is infinite-dimensional over k.

2. FINITE-DIMENSIONAL SIMPLE MODULES OVER A%A

LEMMA 2.1. Fix1 < i € n. Suppose that ¢; is not a root of unity. Let V
be a finite-dimensional AZ*-module. If V is Z;-torsion-free for some j > i, then the
endomorphisms induced by z; and y; on V are nilpotent.

PROOF: If z; does not act on V as a nilpotent endomorphism, there is a non-zero
eigenvalue p € k for the action of z; on V. Let v € V be a eigenvector with the eigenvalue
. It follows from the assumption that vz} # 0 for each m > 0. Hence by Lemma 1.3
one sees that z; has infinitely many eigenvalues {¢; ™}m>o on V, which contradicts the
fact that V is of finite dimension. The same argument is valid for y;. 0

In [4] Jordan classified finite-dimensional simple modules over certain iterated skew
polynomial rings, which include the first quantised Weyl algebra Af. We shall describe
the classification result for A7 when g is not a root of unity.

https://doi.org/10.1017/50004972700031816 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700031816

(3] Finite-dimensional simple modules 405

DEFINITION 2.2: [4] Let ¢ € k\ {0,1}, R = A}. For u € k*, denote by C(u) the
right R-module
R/(zR + (y — p)R).

If we denote by v the image of 1 via the canonical surjection B — C{u), one sees
that 1
C(p) = kv, VY = pu, VL = ————— V.
(k) w1 —q)
(In [4] the R-module C(r) is denoted by C(0, p).)

PROPOSITION 2.3. ([4].) Suppose that q is not a root of unity. Then every
finite-dimensional simple module over A is isomorphic to C(p) for some p € k*.

Next we consider finite-dimensional simple modules over n-th quantised Weyl alge-
bras AZA for n > 2.

LEMMA 2.4. Suppose that q is not a root of unity. Let V be a finite-dimensional
simple module over AT*.

(i) Both z,y, and y,z; act on V as the scalar (1 —q,)7",
(ii) Vzuy=Vyz;=0for2 i< n.

PROOF: Since A' is a subalgebra of AZ*, V contains C(u) for some p € k* by
Proposition 2.3. Thus there is a non-zero element v € V such that vy; = pv, vz; =
(u(1 - ql))_lv. In particular it follows that ¥, is not nilpotent on V, so that by Lemma
2.1, V is Z;-torsion, equivalently Vz; = 0 for j = 1,.--,n. By using the relations (1.2),
the lemma follows. |

COROLLARY 2.5. If ¢y is not a root of unity, then there exists no non-zero
finite-dimensional module over B3*.

PROOF: Suppose that there is a finite-dimensional non-zero B%*-module V. Since
2, is a unit in B3A, V is Z;-torsion-free, so that z; and y, act nilpotently on V by Lemma
2.1. On the other hand, it follows from Lemma 2.4(i) that V contains a non-X;-torsion
element, which is a contradiction. 0

From relation (1.2) and Lemma 2.4, we get the following lemma in the same way as
the proof of [6, Lemma 4].

LEMMA 2.6. Suppose that g, is not a root of unity. Let V be a finite-dimensional
simple module over A%*. Then the endomorphisms onV induced by T, *,Zn, Y1," - * » Un
are diagonalisable.

LEMMA 2.7. Suppose that q, is not a root of unity. Let V be a finite-dimensional
simple module over AT*. Fix1<i<j<n

(i) If X7} # 1 for any positive integer m < dimV/, then Vy; = Vz; = 0 or
Vyj =0.

https://doi.org/10.1017/50004972700031816 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700031816

406 N. Fukuda [4]

(if) If (g:Ai;)™ # 1 for any positive integers m < dimV, then Vy; = Vz; = 0
or Vz; = 0.

PROOF: Let W be a A?*-module. For 7 € A7A, u € k, write
W(r,p) ={w e W |wr = pw},

the eigenspace of r corresponding to the eigenvalue p. By a direct computation using
relations (1.2) it follows that for m > 0

W(zsmal C W(zi(ah)™n), Wiy m)zf C W (ys (ghi)™w),
Wz pyl € W(z:An), W (s )y C W (s ATs),

where ¢ < j. By taking W to be V in the above, the lemma follows immediately. 0

Put R = A?*, For an n-tuple = (uy, -, tts) of elements of k with p; # 0, denote
by D(p) (respectively D'(u)) the right R-module

R/ (i (i — )R+ (11 — (w1 - @) )R+ i::::ﬂ)

(respectively R/((yl - )R+ zn:y,-R + Zn: {z; — ui)R)).

1=2

These modules are of dimension € 1. Clearly D(y,0,---,0) = D¥(uy,0,---,0) is
1-dimensional. From Lemma 2.4 and Lemma 2.7 we deduce easily the following.

COROLLARY 2.8. Suppose that q; is not a root of unity. If neither Ay; nor g\
is a root of unity for each j > 2, then every finite-dimensional simple module over ATA
is isomorphic to D(u,0,---,0) for some p € k*.

COROLLARY 2.9. Suppose that q; is not a root of unity. If X\;; =1 for all 1,7,
then every finite-dimensional simple module over A%* is isomorphic to D(u) for some
1 € k™ with puy #0.

PRrOOF: Since ¥, -, Yn, 1 commute with each other, the endomorphism induced
by ¥1, -, ¥n,Z1 On V are simultaneously diagonalisable by Lemma 2.6. Then the result
follows easily. 1]

Finally we shall consider the case when n = 2.
We say that u € k* is a root of unity of order m if m is the least positive integer
such that y™ = 1.
Put R = Ag'A, A = Ap. For p,0 € k* and a positive integer m, we denote by
E(p,m, a) (respectively Ef(u, m,a)) the right R-module
R/((n — WR+ (z1 = (#(1 — @1)) )R+ (4" — )R+ z2R)

(respéctively R/((y1 - KR+ (xl — (p(1 - ql))_l)R + R+ (= — a)R)).
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Note that E(p,1,a) = D(u, @), Ef(g,1,a) = Dy, a). It is easy to see that E(u,m,a)
(respectively Et(u,m,a)) is simple if and only if A = 1 (respectively A = ¢;’!), @ = 0
or A (respectively ¢;)) is a root of unity of order m. We remark that EM(u, m,0) =
EM(u,1,0) for m > 1. For p, i/, a,a’ € k%, if X (respectively g;A) is a root of unity of
order m > 2, then the simple R-module EM)(y, m,a) is isomorphic to EM (u',m, o) if
and only if @ = o and i = Ay (respectively p' = (g A)%u) for some non-negative integer
d<m-1.
THEOREM 2.10. Suppose that q; is not a root of unity. Put A = Ay,.
(i) If neither A nor g, is a root of unity, then every finite-dimensional simple
module over AY* is isomorphic to E(u,1,0) (= Et(u, 1,0)) for some p €
k*.
(ii)) If X\ is a root of unity of order m, then every finite-dimensional simple
module over A} is isomorphic to either E(u,1,0) for some p € k* or
E(u,m, @) for some p,a € k*.
(iii) If ¢\ is a root of unity of order m, then every finite-dimensional simple
module over AY* is isomorphic to either Et(u,1,0) for some p € k* or
E'(u,m, ) for some u,a € k*.
ProOOF:
(i) ‘This is a special case of Corollary 2.8.
(i) Put R = A?". Let V be a finite-dimensional simple R-module. Since g;
is not a root of unity, it follows from Lemma 2.7(ii) that Vz, = 0. Suppose
. that V is not of the form E(g,1,0). In particular, Vy; # 0 by Lemma 2.5.
Thus it suffices to show that yJ* acts on V as a non-zero scalar a. Note
that V is a simple module over S = R/(z;y; — ¥:2; | 1 € 7 < n) by Lemma
2.5. From relations (1.2), the image of yJ* in S is contained in the centre
of S, which shows the above claim.

(ii) Similar to (ii). 0
REMARK 2.11. For arbitrary parameters § and A, no finite-dimensional module over
the quantised Weyl algebra A%” is semisimple. For right A%*-modules V and W, we
denote by Ext (V, W) the group of all equivalence classes of extensions of W by V. This
additive group Ext (V, W) is naturally a k-vector space. One can directly see that, for
uE k>

dimy Ext (C(p), C(k)) = 1 (when n = 1),
dim; Ext (D{u,0,---,0), D(,0,---,0)) =7 (when n > 2),

where 7 is the number of 7 such that A;; = 1 or g;. In the case when n = 1, moreover, it
is easy to see that, for p, ' € k* such that ' # p and p' # qu,

dimy Ext (C(u), C(qu)) =1, dimx Ext (C(u), C(x)) = 0.
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