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Abstract

Let (a, b, ¢) be a primitive Pythagorean triple satisfying a®> + b* = ¢>. In 1956, Je$manowicz conjectured
that for any given positive integer n the only solution of (an)* + (bn)’ = (cn)® in positive integers is
x=y=z=2. In this paper, for the primitive Pythagorean triple (a, b, ¢) = (4k* — 1, 4k, 4k* + 1) with
k=2° for some positive integer s >0, we prove the conjecture when n>1 and certain divisibility
conditions are satisfied.
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1. Introduction

Let (a, b, ¢) be a primitive Pythagorean triple satisfying a> + b> = ¢>. Apparently, for
any given positive integer n, the Diophantine equation

(na)* + (nby = (nc)* (1.1)

has the solution x=y=z=2. In 1956, Sierpinski [9] showed that (1.1) has no
other solution when n =1 and (a, b, ¢) = (3, 4, 5). JeSmanowicz [4] proved the same
conclusion for n=1 and (a, b, ¢) = (5, 12, 13), (7, 24,25), (9, 40, 41), (11, 60, 61),
and he conjectured that (1.1) has no positive integer solutions for any n other than
(x,¥,2) =(2,2,2). Since then many special cases of JeSmanowicz’ conjecture have
been solved for n=1. In 1959, Lu [6] proved that (1.1) has the only positive
integer solution (x,y,z)=(2,2,2) if n=1 and (a, b, c) = (4k> — 1,4k, 4k> + 1). In
1965, Demjanenko [1] extended the results of [9] and [4] by proving that if n =1
and (a, b, ¢) = 2k + 1, 2k(k + 1), 2k(k + 1) + 1), then JeSmanowicz’ conjecture is true.
In 2013, Miyazaki [8] extended the results of Lu and Demjanenko by proving that if
(a, b, ¢) is a primitive Pythagorean triple such that a = +1 (mod ) or c =1 (mod b),
then JeSmanowicz’ conjecture is true when n=1. For more results concerning
Jesmanowicz’ conjecture for n =1, see [7] and [8]. When n > 1, only a few results
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on this conjecture are known. Let > 1 be a positive integer, and let P(#) denote the
product of distinct prime factors of 7. In 1998, Cohen and the author [3] proved that
if (a,b,c)=Q2k+1,2k(k + 1), 2k(k + 1)+ 1), a is a prime power and either P(b) | n
or P(n) 1 b, then (1.1) has no positive integer solutions for any n other than (x, y, z) =
(2,2, 2). Thereby the result of JeSmanowicz is extended to any positive integer n > 1.
In the case where a is not a prime power, the author [2] verified the conjecture
for (a, b, c) = 2k + 1, 2k(k + 1), 2k(k + 1) + 1) = (15, 112, 113). In 1999, Le [5] gave
certain necessary conditions for (1.1) to have positive integer solutions (x, y, z) with
(x,y,2) #(2,2,2). Recently, some special cases of the Pythagorean triple (a, b, ¢) =
(4k? — 1, 4k, 4k*> + 1) have been considered. For instance, Yang and Tang [11] proved
that if k = 2, then (1.1) has only the positive integer solution (x, y, z) = (2, 2, 2), and
in [10] they further showed that if ¢ = F,, = 2% + 1 and 1 < m < 4, then JeSmanowicz’
conjecture is true. In this paper we study more cases of the Pythagorean triple
(a, b, c) = (4k* — 1, 4k, 4k* + 1), and the following results will be proved.

Tureorem 1.1. Let a = 4k*> — 1, b = 4k, ¢ = 4k> + 1, and k = 2° for some positive integer
s > 0. Suppose that the positive integer n is such that either P(a) | n or P(n) 1 a. Then
the only solution of (1.1)is x=y=z=2.

CoroLLARY 1.2 [10, first case of Theorem 2]. Let n be any positive integer. Then the
Diophantine equation (3n)* + (4n)” = (5n)* has no positive integer solution other than
(x,y,2=02,2,2).

Tueorem 1.3. Let a = 4k*> — 1, b = 4k, ¢ = 4k> + 1, and k = 2° for some positive integer
s> 0. Then for 1 < s <4, the only solution of (1.1)is x=y=2z=2.

2. Lemmas

Lemma 2.1 [6, Theorem]. Let (a, b, ¢) = (4k* — 1, 4k, 4k*> + 1) and n=1. Then (1.1)
has the only positive integer solution (x, y, ) = (2, 2, 2).

Lemma 2.2 [5, Theorem]. If (x, v, ) is a solution of (1.1) with (x, y, z) # (2, 2, 2), then
one of the following conditions is satisfied:

(1) max{x, y} > min{x, y} >z, P(n) | ¢ and P(n) < P(c);

(2) x>z>yandP(n)|b;

3) y>z>xand P(n)|a.

Lemma 2.3. Let (a, b, ¢) be any primitive Pythagorean triple such that the Diophantine
equation a* + b’ = c* has the only positive integer solution (x,y,z)=(2,2,2). Then
(1.1) has no positive integer solution satisfying x >y >zory> x> z

Proor. Let (x, y, z) # (2, 2, 2) be any solution of (1.1). Since the Diophantine equation
a* + b’ = c* has the only positive integer solution (x, v, z) = (2,2, 2), we must have
n>1. By Lemma 2.2, P(n)|c and P(n) < P(c). Suppose n=[];_, qlB c=TI, q,
1 < s <t. There are two cases to be considered.
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Case 1. x>y > z. In this case, from (1.1),

s t
nx—yax + by — l_[ q;IiZ—ﬁi(y—Z) . l_[ q;Y,'z.
i=1

i=s+1

If there is an i satisfying «;z —B;(y —2) >0, then we must have g;|b, which is
impossible since ged(b, ¢) = 1. It follows that

t
na*+ b = 1_[ qi". 2.1)

i=s+1

Since a? + b* = ¢2, we obtain that ¢ < 3a or ¢ < 3b. Otherwise we would have ¢ > 3a,
¢ > 3b, and then ¢? > (%(a +b))? > a® + b?, which is a contradiction. Therefore,

J c\° c\*
[Ta<(L) <(S) <o e <nrar s
qs 3

i=s+1

which contradicts (2.1).

Case 2. y> x> z. As in the argument for Case 1,

13
a +np = | g~ (2.2)

i=s+1

As in Case 1, from ¢ < 3a or ¢ < 3b,

: c\ (cY
l_[ q?’zg(—) S(—) <d+b<d +nPp,
qs 3

i=s+1
which contradicts (2.2). O
By Lemmas 2.2 and 2.3, we have the following corollary.

CoRroLLARY 2.4. Let (a,b,c) be any primitive Pythagorean triple such that the
Diophantine equation a* + b’ = c* has the only positive integer solution (x,y,z) =
(2,2,2). If (x,y,2) is a solution of (1.1) with (x,y,z) # (2,2, 2), then one of the
following conditions is satisfied:

(1) x>z>yand P(n)|b;

2) y>z>xand P(n)|a.

For the Pythagorean triple (a, b, ¢) = (4k> — 1, 4k, 4k> + 1), we have the following
result.

CoroLLARY 2.5 [10, Theorem 1]. If 4k* + 1 is a Fermat prime, then (1.1) has no
positive integer solution satisfying x >y >zory> x> z
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3. Proof of the main results

Proor oF THEOrREM 1.1. We suppose that (1.1) has a solution (x, y, z) # (2, 2, 2), and
will prove that this leads to a contradiction. By Lemma 2.1, n > 1. There are two cases
to the proof.

Case 1. If P(n){a, we must have x>z>y and P(n)|b by Lemma 2.2 and
Corollary 2.4. From (1.1), n*7Ya* + b’ =n*>c*. Because b = 4k = 2**?, we may
suppose n = 28 with 8> 1. Then 26¢g* 4 20+2 = 26@V¢Z Since x —y > 7 — v,

2BO=2) x| A(s+2y=Pa=y) — oz 3.1

Clearly (s +2)y —B8(z—y) =2 0. Since x>z, from (3.1), (s +2)y—B(z—y)=0. We
rewrite (3.1) as

209 = ¢t - 1. 3.2)
Since a =4 =1 =0 (mod 3) and ¢ =4°*" + 1 = -1 (mod 3), taking (3.2) modulo
3 gives (—=1)* =1 =0 (mod 3). It follows that z=0 (mod 2). Writing z =2z;, we
have 26¢-9g* = (¢ — 1)(¢* + 1). Let a = aya, with ged(a;, ax) = 1, aj|c® +1 and
a; | ¢ — 1. We observe that either a; > 25*1 4+ 1 or @y > 2**! + 1. Suppose this is not
true. Then, from a; <2°*!' — 1 and a, < 257! — 1,

a=aam <2 - D <2 - DR + 1) =a,

which is a contradiction. If a; >2"'+1, then, from af > (2" + 1) =41 4+
1+2%2>c+1, we get af >da}=(a})* > (c+ 1) >c"+1, which is again a
contradiction.  If a»>2*' +1, we similarly get ay>c" +1>c% -1, which
contradicts aj | ¢ — 1.

Case 2. If P(a) | n, we must have x < z <y by Corollary 2.4. From (1.1), a* + »’=b” =
n“*ct. Since y — x>z — x>0, we have P(n)|a and n*~* | a*, which implies P(a) =
P(n) and n*~* = a*. It follows that

i =t - 1. (3.3)

Since P(a) = P(n), n=a=0 (mod 3). Taking (3.3) modulo 3 gives (—-1)*-1=0
(mod 3), which implies that z is even. Write z =2z;. Since c =1 (mod b), ¢ +1=2
(mod b), so that gcd(c® + 1, b) = 2. Then, from (3.3), (b"/2) | ¢** — 1. But

124 S ﬁ _(c—a)*(c+a)

2 2 2
which is a contradiction. O

> +a” > -1,

Proor oF CoroLLARY 1.2 By Lemma 2.1, n > 1. Since a = 3, we must have P(a) | n or
P(n) 1 a, which completes the proof of Corollary 1.2 by Theorem 1.1. m|

Proor or THEOREM 1.3. Suppose that (1.1) has a solution (x, y, z) # (2, 2, 2). We prove
that this will lead to a contradiction. By Lemma 2.1, n>1. By Theorem 1.1 and
Corollary 2.4, we may suppose y >z > x, P(n) | a and P(n) < P(a). Then, from (1.1),
a*+n'b’ =n"""c*. Since y — x>z — x and ged(a, ¢) = 1, we must get a* =n*""aj
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with ged(n, a;) = 1, so that
ay + b = (3.4)

First, we observe that if x=z=0 (mod 2), then (3.4) cannot hold. To see this,
let x=2x; and z=2z;. From (3.4), "7 = (c¢” + a,")(¢* —a'). As ged(c® +a',
¢ —a)') =2 implies (b*/2) | ¢* + a}' or (b”/2) | ¢ — a}', but on the other hand

y 221
> > - > 8k =(c+a) = + al' > —ay,

we get a contradiction.
Second, we show that if s = 1, 2, 3 or 4, then we must have x =z=0 (mod 2).
We consider the cases s = 2 and s = 4 first.
If s=2, then a=7-9, b=16, ¢=65, so that n=3% a;=7 or n=78,a, =9.
From (3.4),
7% 4+ 3°07916 = 65° (3.5)

or
9% + 707916 = 657, (3.6)

Considering (3.5) and (3.6) modulo 8, 16, respectively, we have x =0 (mod 2). Taking
modulo 3, we get =0 (mod 2).

If s=4, then a=3-11-31, b=64, c=1025, n=3211%,317,3%115,3°317, or
118317, and, accordingly, a; = 341,93, 33, 31, 11, or 3. From (3.4),

341% + 3907964 = 10257, (3.7)
93* + 11079647 = 10257, (3.8)
33 4+ 317079647 = 10257, (3.9)
31% + 3007911507964 = 10257, (3.10)
117 + 3907931707964 = 10257, (3.11)
3% 4+ 11P0793107964) = 10257, (3.12)

From (3.7), (3.8), (3.10)—(3.12), taking modulo 8, we have x=0 (mod 2). Taking
modulo 64, (3.9) gives x =0 (mod 2). Taking modulo 3, we get z=0 (mod 2) from
(3.7), (3.9), (3.11) and (3.12). Taking modulo 11, (3.8) and (3.10) give 93* =31* = 2¢
(mod 11), thereby 1 = (%)z = (—1)%, where (-) is Legendre’s symbol. Hence z=0
(mod 2).

For the cases s =1 and s = 3, the proofs are similar to the above proofs of cases
s =2 and s = 4. Moreover, the cases s = 1 and s = 3 have been solved in [10], so we
omit the details of the proofs. O
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