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INTEGRAL GROUP RINGS WITH NILPOTENT
UNIT GROUPS

CESAR POLCINO MILIES

Introduction. Let R be a ring with unit element and G a finite group. We
denote by RG the group ring of the group G over R and by U(RG) the group
of units of this group ring.

The study of the nilpotency of U(RG) has been the subject of several papers.

First, J. M. Bateman and D. B. Coleman showed in [1] that if G is a finite
group and K a field, then U(KG) is nilpotent if and only if either char K = 0
and G is abelian or char K = p # 0 and G is the direct product of a p-group
and an abelian group.

Later K. Motose and H. Tominaga [6] corrected a small gap in the proof of
the theorem above and obtained a similar result for group rings of finite groups
over artinian semisimple rings (which must be commutative for U(RG) to be
nilpotent).

For group rings over commutative rings of non-zero characteristic it is pos-
sible to obtain a natural generalization of the theorem in [1]. (See I. I. Khripta
[5] or C. Polcino [7]).

In this paper we study the nilpotency of U(ZG) where Z is the ring of
rational integers. In Section 2 we consider also group rings over rings of p-adic
integers. A brief account of the results in that section was given in [7].

1. Units of integral group rings.

ProposITION 1. Let G be a non abelian finite group. If U(ZG) is nilpotent then
G s a Hamailtonian group.

Proof. Suppose that G is not Hamiltonian. Then, there exist elements «,
b € G such that a~'a is not a power of b. Let n be the order of b and u =
(1 —b)al +b+...4+ 1),

Now, # ## 0 and u? = 0 so a9y = 1 + u is a unit in ZG whose inverse is
ao! = 1 — u. Inductively, we define:

(1) o = o1, b] = op—1bay_1 717
It follows, by an induction argument, that:
@) a-1=14+ 1A — b))
Set ' =a(l +b+4 ...+ b"1!). We then have:

B Q-0"w=Qaq-br=r-— (k>br + ...+ (—=D% 1.

1

Received July 8, 1975 and in revised form, May 4, 1976.
954

https://doi.org/10.4153/CJM-1976-092-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-092-4

GROUP RINGS 955

For an arbitrary elementa =3 ,c0q, - ¢ € ZG let the support of a be the set:
supp (@) = {g € Gla, # 0}.

Now, if » = min{x € Z|x > 0, b*T = T'} it is easy to see that supp(d*) M
supp (b*T') # ¢ if and only if & = k (mod 7) and in this case b"T' = b*T. So (3)
may be written in the form:

4) 1 =0V u=ux+ x0T+ ...+ x,_:0™'T,

with Xy = Zigo(—l)'H'” (

such that s + 7 =< k.

Now, since all summands in the right-hand member of (4) have disjoint
support, if we prove that all coefficients x,,0 < s < r — 1, cannot vanish
simultaneously, it will follow that (1 — )%t 5 0.

To see this, let £ be a primitive root of unity of order ». Then

I =& =xg+xE+ ...+ x,0£L

If they could vanish simultaneously we would have ¢ = 1.
Finally, (2) shows that we have found a sequence of commutators that are
never 1 so U(ZG) is not nilpotent. This completes the proof.

k . .
. ), where the sum runs over all integers 7 = 0
s+ w

Every Hamiltonian group G can be written as a direct product G = 77 X
Ty X Q where T is an abelian group such that every element in 77 is of odd
order, T’ is an abelian group of exponent 2 and Q a quaternion group of order
8. In what follows ¢ and b will denote two elements of G that are generators of
Q, verifying the relations:

a* = 1;a%=0%b""ab = a 1.
LEmMMA 1. Let G = T X Q where T s an abelian group and Q a quaternion
group of order 8. If T contains an element of order 3 then U(ZG) is not nilpotent.

Proof. Suppose T contains an element g of order 3. Then
(5)  w=1+4 (225(2 — g — ¢*) + 390(bg* — bg)) (1 — b?)
is a unit in ZG whose inverse is

wl =1+ (225(2 — g — g%) — 390(bg*> — bg)) (1 — b?%)

(See A. A. Bovdi [3, Lemma 10]).

Since g commutes with ¢ and aba~! = b3, ab?a~! = b?, it follows that
au—la~! = u. Thus, setting a; = [u, a], oy = [ax_1, @] it is easily seen by induc-
tion that oy = u?".

Finally if # were a unit of finite order, writing # = _,cqu,g we would have
u, = 0 (see S. D. Berman [2, Lemma 2]) or S. Takahashi [9]) but formula (5)
shows that this is not the case.

Thus we have found a sequence of commutators that is never equal to 1;
hence U(ZG) is not nilpotent.
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LEMMA 2. Let G = T X Q where T 1s an abelian group and Q a quaternion
group of order 8. If T contains an element of prime order p > 3, then U(ZG) is
not nilpotent.

Proof. Suppose that T contains an element g of prime order p > 3. Let
H = (g) X (a). The decomposition of QH as direct sum of bilateral ideals is

QH=1,® ...® I

where the idempotent elements ¢; such that I; = QH ¢, 1 <17 < 6, are:
1 _
el=4~P(1—l—a+a2+a3)(1—l—g—l-...—I-g” M,
1 _
e2=4—p(1—a+a2—a3)(1+g+...+g" ,

eg=$(1—az)(1+g+...+g”—l),

(6)
e4=4—}5(1+a+a2+ag)(z>—l—g—'---—g”‘l),
es=f§(1—a+a2~ag)(;b—l—g—u-—g"_l),
1 _
eﬁ=%(1~a2)(p-—l—g—...—-gp h.

Berman has also shown that ¢ = gaes € I is a primitive root of unity of
order 4p and that identifying Q = Qes C I we have Is = Q(¢). He also ob-
served that if s stands for the number of residue classes modulo 4p in Q(¢) that
are relatively prime with 4p, then:

@) wu=er+...+e+ 1+ gae+ g2a)% =e + ...+ e;
4+ (14 &+ £2)%;s

is a unit in ZH.
Since [Q(¢) : Q] = 2(p — 1), u can be written in the form:

8) wu=-e~+...4 e + f(&)es

where f € Z[X] with degree(f) < 2(p — 1) and f contains non zero terms of
both odd and even order (see again Berman [2, Lemma 9]).
We shall now show that:

w7 ub = e; + ...+ e5 + f1(§)es,

where f1 € Z[X] satisfies the same conditions as f above.
In fact, it is easy to see that b=eb = ¢;, 1 <17 < 6, thus:

9) b7wb =e1 4+ ...+ es + b7 (§)bes.
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Let b € Z[X] be the polynomial formed by the odd terms of f. Since b~la’ =
atif 1is even, b~lah = a**?if ¢ is odd and (1 — a?)es = 2¢s, it follows that:
(10) bbb =e1 4+ ...+ e+ (f(§) — 2h(§))es.

Now, u=1 € ZH so it is integral over Z and there exists f* € Z[X] such that
degree(f*) < 2(p — 1), f(&) - f*(§) = 1 and

(11) ul=e +...4+ e +f*(£)86

From (10) and (11) we get:

12) wbub =er+ ...+ e+ (1 — 2f*(E)h())es

Let f1(¢) = 1 — 2f*(£)h(¢) (after reducing to a polynomial of degree less
than 2(p — 1)). We must still show that f; has non-zero terms of both even
and odd degree.

First, suppose that f; contains no terms of odd order. Then, we would have

J1®) = fi(=§), iex

(13) 1 =2f*©Oh(E) = 1 + 2f*(—Hh(&)

where degree(k) < 2(p — 1); hence k(¢) # 0 and (13) gives:
(14)  —f*E) = (=9

Since £ is a primitive root of unity of order 4p, there exists a Q-automorphism
¢ of Q(¢) that takes £ to —¢ so f*(—¢) = f(—¢)~! and (14) gives f(§) =
—f(—%), a contradiction.

Now suppose f1(£) contains no terms of even order. We would then have

fi(&) = —fi(—=¥§), i.e.:
1 = 2f*(O)h(E) = —1 — 2f*(=E)h(8),

SO

(15) 1= (f*©&) — f*(=£)n®)

If £ € Z[X] denotes the polyniomial formed by the even terms of f*, (15)
can be written in the form

1 = 2k(£)h(E)
and 1/2 would be an algebraic integer.
Finally, if we define uy = u, u; = [u,—1~1, b~'] a repetition of the argument
above shows that this is a sequence of commutators that are never equal to 1 so
U(ZG) is not nilpotent.

THEOREM 1. Let G be a finite group. Then U(ZG) s nilpotent if and only if G
is commutative or a Hamiltonian 2-group.

Proof. If U(ZG) is nilpotent, from Proposition 1, G is either commutative
or a Hamiltonian group of the form G = T1 X T3 X Q. Lemmas 1 and 2 show
that 7Ty must be trivial, hence G is a 2-group.
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Now, if G is commutative so is U(ZG), and G. Higman ([4, Theorem 11])
has shown that, for non-abelian groups, U(ZG) = {#+1} X G if and only if G
is a Hamiltonian 2-group. Thus, the converse follows trivially.

THEOREM 2. Let G be a non-abelian finite group. Then the following are
equivalent:
(1) U(ZG) 1s nilpotent.
(i1) U(ZG) 1is periodic.
(iii) U(ZG) = {£1} X G.

(iv) G is a Hamailtonian 2-group.

Proof. After the previous results it remains only to prove that if U(ZG) is
periodic, then G is a Hamiltonian 2-group.

We first observe that if U(ZG) is periodic and «, 8 € ZG are elements such
that a8 = 0 then Ba = 0. In fact, if Ba # 0, since (Ba)? = 0 it follows that
u =1+ Ba is a unit in ZG and it is easy to see that " = 1 + nBa. Thus u
would be a unit of infinite order. Now, the proof of Theorem 10 in Higman (4]
can be carried out in this case to show that G must be Hamiltonian.

Finally, write G = 17 X T2 X Q as above. If T; were not trivial, it would
contain an element g of order p = 3 and taking H = (g) X (a), it follows from
[4, Theorems 3 and 6] that ZH would contain a unit of infinite order.

2. Units of group rings over p-adic integers. In this section we shall
denote by J,» the ring of integers modulo p". If p > 0isa prime number and G is
a finite p-group, it follows from I. I. Khripta [5] or C. Polcino [7] that U(J,»G)
is nilpotent.

LEmMA 3. Let p > 0 be a prime number and G a finite p-group. The epimor-
phism ¢ny* 1 TpnG — JmG induced by the natural morphism ¢y, : T — Tym
yields by restriction an epimorphism of the groups of unats.

Proof. Let « be a unit in J,»G with inverse o' and let a* be any inverse
image of a. We will show that o* is a unit in J;G.
In fact, if o’ is any inverse image of a~! we have:

oFa' =14+ u
ada*=1+4v

where both % and v belong to Ker(¢,,,*) = p™J,»G; thus # and v are both nil-
potent, so 1 4+ u, 1 4+ v are invertible elements. Let 8 and v be their respective
inverses Then:

(va")a* = a*(@'B) = 1,
so yo' = o'B = o* 1 and o* is a unit in J,»G.

LeMmMA 4. Let G be a non-abelian, finite, p-group and n = 2m > 0 an integer.
Then the class of nilpotency of U(JxG) is greater than m/2.
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Proof. It is easy to see that there exist ¢, b € G such that ab? = b%a and
ab® # b'a for all integers 4,1 <7 < p — 1.
We define:
(16) (@ — b)® = ab — ba
(@ —b)® = (a — b)*Db — b(a — b)*=D

An induction argument shows that:

k
2

Since b7ab*~" = b%ab** if and only if » = s (mod p) we can write:

(18) (a — b)® = xab® + xibab*! + ... 4 x,_1bPlabFP+!

an @—-n® =a - (];)bab"-l + ( )b“’abk‘2 + .+ (-

. §4-1; k
with x; = 30 iz0(—1)"t? (s + ip)

such that s + 7p < k. Again, notallx,,0 < s < p — 1, vanish simultaneously

so, if p¢ is the greatest power of p that divides every coefficient in the right-
hand member of (18), we have:

(19) (@ — b)® = p°y where y € p - JnG,

, where the sum runs over all integersz = 0

with e < k since |x,| < 35 (f) = 2F < pt.
Set:

20) @ =1—p™, =1 — pb,
oy = [o7h, 87, o = [ag—17t, B7Y]

Again, an induction argument shows that:

21) = 14 (=1)M1pm (1 + 07 xp™") (@ — b)®

where x, € J;n, 1 <= b < 2m — 1. It follows from Lemma 3 that
1+ S " € U(pG),

thus o, = 1 if and only if p™+t*(a — b)® = 0.

From (19) we have p™t*(a — b)® = pm+t+e. o where v € pJ»G; thus
ar = lifandonlyif m 4+ & + e = 2m. Hence, if & < m/2 then a; ¥ 1 and the
class of nilpotency of U(ZG) is greater than m/2.

THEOREM 3. Let Z, be the ring of p-adic integers and G a finite group. Then
U(Z,G) is nilpotent if and only if G s abelian.

Proof. Since Z, = lim {Jpn}, it follows as in Raggi [8] that Z,G = lim {J,+G}
and U(Z,G) = lim {U(J»G)}.

Suppose that U(Z,G) is nilpotent. Then G is also nilpotent and it will suf-
fice to show that every Sylow subgroup of G is abelian. Since we have shown in

https://doi.org/10.4153/CJM-1976-092-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-092-4

960 CESAR POLCINO MILIES

Lemma 3 that the morphisms ¢,, : U(J»G) — U(J,»G) are onto, the mor-
phisms:

¢n : U(ZIIG) - U(JP”G)

are also onto.

The nilpotency of U(J,G) implies that all ¢g-Sylow subgroups of G, with
g # p, must be abelian (see J. M. Bateman and D. B. Coleman [1]). Also, the
class of nilpotency of all the groups U(J,»G) is bounded above by the class of
nilpotency of U(Z,G); hence, after Lemma 4, also the p-Sylow subgroup of G
must be abelian. The converse is trivial.
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