
BULL. AUSTRAL. MATH. SOC. 90C25

VOL. 14 (1976) , 129-136.

On the complex nonlinear

complementary problem

J. Parida and B. Sahoo

The complex nonlinear complementarity problem considered here is

the following: find z such that

g{z) € S* , z Z S ,

Ee[g(z), z] = 0 ,

where S is a polyhedral cone in C , S* the polar cone, and

g is a mapping from C into itself. We study the extent to

which the existence of a z € S with g(z) € S* (feasible point)

implies the existence of a solution to the nonlinear

complementarity problem, and extend, to nonlinear mappings, known

results in the linear complementarity problem on positive semi-

definite matrices.

1 . Introduction

Given g : Cr ->• C , the nonlinear complementarity problem consists of

finding a z such that

g{z) iS*, z Z S ,
(1.1)

Re[g(z), z) = 0 ,

where S is a polyhedral cone in CT and S* the polar cone of S .

Problems of the form (l.l), where g{z) is the affine transformation

Mz + q , have already appeared in the literature. McCaI I urn [4] showed that
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when M € C is positive semi-definite, S and S* are sectors in

complex space, and the constraints are feasible; then a solution exists to

the corresponding linear complementarity problem. Mond [5] extended this

result to the more general complex linear complementarity problem, where

the constraints are restricted to polyhedral cones.

In this paper, we have studied the existence of a solution to (1.1)

under feasibility assumptions. Theorems analogous to those proved by

McCalI urn [4] and Mond [5] in the complex linear case, and More [6] and

Cottle [2] in the real case are obtained by considering monotone functions.

These mappings are nonlinear versions of positive semi-definite matrices.

2. Notations and preliminaries

Denote by U [i?J n-dimensional complex [real] space; denote by

C [R ] the vector space of a l l m x n complex [real] matrices;

denote by R = \x € R : x . - Q , l - i - n \ the non-negative orthant of+ I •*- J

FT ; and for any x, y € R , x 2 y denotes x - y (. R^_ . If A i s a
rp zj

complex matrix or vector, then A , A , and A denote i t s transpose,

complex conjugate, and conjugate transpose. For x, y € u , {x, y) = y x

denotes the inner product of x and y .

A nonempty set S c (f1 i s a polyhedral cone i f for some positive

integer k and A € C ,

S = {Ax : x € ify .

The polar of S i s the cone S* defined by

5* = {y € J1 : x € S =» Re(x, y) > o} ,

or equivalently by

5* = {y € C" : Re [AHy] > 0} .

The in te r io r of 5* , in t S* , i s given by

i n t S* = {y € S* : Re [AHy] > 0} .
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A mapping g : C •*• C i s said to be monotone on S i f

ReG?(s )-d{3 )> z ~z ) - 0 for each z , z € S , and s t r i c t l y monotone i f

1 2
the s t r i c t inequality holds whenever z # z

We shall make use of the following definition of convexity [/] of a

complex-valued function with respect to a cone.

A mapping g : C -»• (j i s concave with respect to the polyhedral cone

5 if, for a l l z1, z2 € (f1 and for a l l X € [0, 1] ,

) € S .

Given a mapping g : C •*• C , Re z g(z) is convex with respect to

R+ if, for all z1, z2 € c" and X £ [0, 1] ,

X Reigiz1), a1) + (l-X)Re [g[z2) , z2)

J s 2 ) , X31+(1-X)s2) > 0 .

3. Solut ions o f v a r i a t i o n a l i n e q u a l i t i e s

Hartman and Stampacchia [3] have proved the following result on

variational inequalities: if F : K •*• n is a continuous mapping on the

nonempty, compact, convex set K c R , then there is an a; in J such

that

(3.1) [F{x°), x-x°) > 0

for all x i. K . Since d1 can be identified with R n , a natural

extension of this result to complex space can be obtained as follows.

THEOREM 3.1. If g : (f1 •* c" is a continuous mapping on the

nonempty, compact, convex set S c: (f1 , then there is a z in S with

(3.2) Re [g (a0), z-z°) > 0

for all z € 5 .

A polyhedral cone is a closed, convex set, but not bounded. We shall

show that Theorem 3-1 holds for polyhedral cones under a very weak
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r e s t r i c t i o n on the growth of the mapping g .

Let S be a polyhedral cone in C . Then there is a positive

integer k and a matrix Ate such that S = {Ax : X (. K^} . For a

constant p > 0 , we denote zip) = {Ax : x. = p , 1 5 t S );) and for any

z = Ax £ S , we write s 5 s(p) i f llxll^ 5 p , where

\\x\\

LEMMA 3.2. Let j / € <?" foe given, and assume S is a polyhedral

cone in C . Then an element z £ S satisfies

(3-3) Refe0, s-2°) > 0

/ o r aZ-Z- z d S provided there is a vector z{p) > z in S such that

(3.3) holds for all

3 € 5 = {z € 5 : 3 5 z(p)} .

Proof. Let z (. S , and write u = \z + (l-A)z° for 0 < A < 1 .

Since S i s a polyhedral cone, u € 5 , and also i t follows that there

ex is t A € C and cc, x € if/ such that s = Ax and z = Ax . Then

M € S if ||Xa;+(l-X)a; llm - p • Since ||a; \\m < p , we can choose \

suff ic ient ly small so that u l i es in S . Then

0 5 Re ( j / \ u-z°) = ARe(j/°, a - a ° ) ,

and consequently, s sa t i s f i e s (3-3) for a l l z € 5 .

THEOREM 3.3 . Let g : (P + d1 be a continuous mapping on the

polyhedral cone S . If there are vectors z(p) , u £ S , with z{p) > u

such that Be[g{z), s-u) > 0 for all z = zip) in S , then there is a

z 5 zip) in S with

(3.U) Refefe0), z-z°) > 0

for all z € 5 .

Proof. Consider the set 5 = {z € 5 : z 5 zip)} . Since 5 is a
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polyhedral cone, we can write S = {Ax : x d if", ||a;|| 5 p} which is
p + 0 0

obviously a compact, convex set in C . Therefore by Theorem 3-1, there

is a 3 d S satisfying (3.U) for a l l z € S . If z < z{p) , then

taking y = g[z ) in Lemma 3.2, we get the desired resul t . If

3 = z{p) , then by the hypothesis, Re[g[z ) , 2 -u) > 0 . Since

Re [g (2 ) , 2-2 ) > 0 for a l l z d 5 , i t follows that

Re (3 (2 ) , 3-w) - 0 for a l l z d S . But w < 3(p) , and thus by Lemma

3.2, Re (0(2 ) , 2-w) 2 0 for a l l 2 € 5 . Also u d S , and so

Re(g-(3 ) , u-z ) > 0 . Now adding the las t two inequal i t ies , we obtain

t < Oi Oi , , „
Re [g [z J , z-z J - 0 for a l l z i. S .

4. Solvability of the complementarity problem

We now prove a lemma which gives the connection between variational

inequalities discussed in Section 3 and the nonlinear complementarity

problem (1.1).

LEMMA 4.1. Let S be a polyhedral cone in u 3 and let

g : u -*• u be continuous on S . If there is a z (. S such that

(U.I) Re (ff(3°), 2-3°) > 0

for all 2 € S , then

g[z°) € S* and Re{g[z°) , z°) = 0 .

Thus z is a solution to (l.l).

Proof. If Re[g{z°), z-z°) > 0 for all z d S , then

Re [g [z ) , z) > Re [g (2 ) , z ) for all z d S . Since S is a polyhedral

cone, 2 + 2° d S for all 2 d S . Then Re [g[z ) , z+z ) i Be(j(3°) , 2°)

for all 2 d S and consequently, Re[g[z ) , z) > 0 for all z d S and,

in particular, Re[g[z ), z ) ± 0 . So ^(3 ) d S* . Since 0 d S , from
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(U.I) we get Re[g[z°), 2°) < 0 , and hence Ee{g[z°) , z°) = 0 .

THEOREM 4.2 . Let g : U •*• C1 be a continuous monotone function on

S 3 a polynedral cone in CT . If there is a u Z. S with

g(,u) € in t 5* j then ( l . l ) has a solution z € 5 .

Proof. Since g(z) i s monotone on 5 ,

Re{g(z), z-u) > Ee[g(u), z-u) .

If z = Ax , u = Ay , x, y Z Rr_ , then

Ee[g(u), z-u) = (x-y)TBe[AHg(u)) .

Since g{u) € int S* , Re(/1 g(ii)) > 0 . It is then clear that there is a

vector s(p) > u in S such that (x-y) B.e[A g(u)) i 0 for all z = z{p)

in S . Theorem 3-3 with Lemma k.l now gives the result.

REMARKS 4.3. M 6 c"*" is said to be positive semi-definite if

H jn
Re z Mz 2; 0 for all z 6 U . If g(z) is defined by g{z) = Mz + q for

some matrix M and q in C , then g is monotone on S if M is

positive semi-definite. Thus Theorem k.2 is a generalization to nonlinear

mappings of the results of McCallum [4, Theorem U.5.1] and Mond [5,

Theorem 53 in the complex linear complementarity problem on positive semi-

definite matrices.

Recently, More" [6] has extended the result of Cottle [2] on linear

complementarity problem in real space to nonlinear mappings. If 5 = K

and g : if -»• Ft is a continuous mapping on K , then Theorem k.2 reduces

to the result of More [6, Theorem 3.2].

If g is strictly monotone on S , then there is at most one

z i S which satisfies (l.l). For if z and W are two solutions,

then Re{g{z°)-g{»0), z°-w°) = -Re[g(a°) , w°) - MAA , A * 0 , and

consequently, s = w

LEMMA 4.4. Let S be a polyhedral cone in tf1 . If g : <f •* (f1
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u

is a continuous funotion concave with respect to S* and Re z g{z) is

convex with respect to R+ , then g{z) is monotone on S .

1 2
Proof. Concavity of g(z) with respect to 5* and z , z € S

imply that for X € (0, l) ,

(It.2) Ee[g[\z1+(1-X)z2) , Xs1+(l-X)2
2)

- Re(Xg(31)+(l-X)ff(2
2), Xs1+(l-\)z2) > 0 .

TJ

Convexity of Re z g(z) gives

(It.3) X Refeta1), s1)+(l-X)Re{g[z2) , z2)

- Re(g'(X31+(l-X)32) , X31+(l-X)s2) 2 0 .

From (It.2) and (U.3) ,

X{\-X)Ke{g{zX)-g{z2) , zX-z2) 2 0 ,

and consequently, g(z) is monotone on 5 .

Now we are able to give a different version of Theorem h.2.

THEOREM 4.5. Let g : U -»• <J he continuous on S and concave with

respect to S* on C . Let Re z g{z) be convex with respect to R+ on

d1 . If there is a u d S with g(u) € int 5* , then (1.1) has a solution

z° in S .

REMARKS 4.6. It is proved by the first author [7] that if g , in

addition to satisfying the hypotheses of Theorem U.5, is analytic, then the

nonlinear program

TJ

(P): minimize Re z g(z)

subject to g(z) (. S* , z € 5 ,

is a self-dual problem with zero optimal value. Thus an optimal point of

(P) under the said restrictions on the growth of g is a solution to

(1.1).

Moreover, any feasible solution to (P) which makes the objective

function vanish is necessarily a solution to (1.1). So a critical study of

(P) may shed more light on this problem of existence of a solution to (1.1)
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under feasibility assumptions.
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