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On the complex nonlinear

complementary problem

J. Parida and B. Sahoo

The complex nonlinear complementarity problem considered here is

the following: <find 2z such that
glz) €5*, =z €5,

Re(g(z), 2) =0,

vhere S 1is a polyhedral cone in Cn , S* the polar cone, and

g 1is a mapping from Cn into itself. We study the extent to
which the existence of a 2z € § with g(z) € S* (feasible point)
implies the existence of a solution to the nonlinear
complementarity problem, and extend, to nonlinear mappings, known
results in the linear complementarity problem on positive semi-

definite matrices.

1. Introduction
Given g : Cn > Cn , the nonlinear complementarity problem consists of
finding a =z such that
g(z) €8*, z¢€85,

(1.1)
Re(g(z), z) =0,

where S is a polyhedral cone in " and S* the polar cone of S .

Problems of the form (1.1), where g(z) is the affine transformation

Mz + g , have already appeared in the literature. McCallum [4] showed that
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when M ¢ Can is positive semi-definite, S and S* are sectors in
complex space, and the constraints are feasible; then a solution exists to
the corresponding linear complementarity problem. Mond [5] extended this
result to the more general complex linear complementarity problem, where

the constraints are restricted to polyhedral cones.

In this paper, we have studied the existence of a solution to (1.1)
under feasibility assumptions. Theorems analogous to those proved by
McCal tum [4] and Mond [5] in the complex linear case, and Moré [6] and
Cottle [2] in the real case are obtained by considering monotone functions.

These mappings are nonlinear versions of positive semi-definite matrices.

2. Notations and preliminaries

Denote by ol [Rn] n-dimensional complex [real] space; denote by
X X:
C’m i [Rm n] the vector space of all m X n complex [reall matrices;

.

denote by Rn_'_ = {x € Rn : xi 20,1=17= n} the non-negative orthant of

Rn', and for any x,yERn, x z y denotes x—yéRf. If A is a

complex matrix or vector, then AT, A , and AH denote its transpose,

complex conjugate, and conjugate transpose. For x, y € C' , (x, y) = yHac

denotes the inner product of x and y .

A nonempty set S5 C @ is a polyhedral cone if for some positive

X
integer k and A € an .
S = {Ax :x € R]:} .
The polar of S is the cone S* defined by

st = {y ECn:x€S=’Re(x,y)20},

or equivalently by

st ={y e : Re(ay) = 0} .

The interior of S$* , int S* , is given by

int §* = {y ¢ 5* : Re(AHy) > 0}
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A mapping g : Cn - Cn is said to be monotone on S if
Re(g(zl)-g(zz), 21-32 =z 0 for each zl, 22 € S5 , and strictly monotone if
the strict inequality holds whenever zl # 22 .

We shall make use of the following definition of convexity [1] of a
complex-valued function with respect to a cone.

A mapping g : - " is concave with respect to the polyhedral cone

5 if, for a1l 2%, z° € ¢ and for all A € [0, 1] ,
g[)\zl+(l-)\)22) - Ag[zl] - (l—)x)g(zz) €3 .

Given a mapping g : >, Re zHg(z) is convex with respect to

R, if, for all 25, 22 €® and A € [0, 1],

A Re(g(2), 2%) + (1-M)re(g(z9), 2°)

- Re(g(Aat+(1-0)2%), Azt+(1-2)2%) = 0 .

3. Solutions of variational inequalities
Hartman and Stampacchia [3] have proved the following result on
variational inequalities: 1if F : Rn *'Rn is a continuous mapping on the

nonempty, compact, convex set XK < Rn , then there is an xo in X such

that
(3.1) #(°), z-=°) = o

for all x € K . Since Cn can be identified with R2n , a natural

extension of this result to complex space can be obtained as follows.

THEOREM 3.1. If g : C* » * is a continuous mapping on the

nonempty, compact, convex set S C 7 , then there is a zo in S with
(3.2) Re(g(zo), 2-2°) = 0

for all =z €5 .

A polyhedral cone is a closed, convex set, but not bounded. We shall

show that Theorem 3.1 holds for polyhedral cones under a very weak
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restriction on the growth of the mapping g .

Let S be a polyhedral cone in Cn . Then there is a positive

integer k and a matrix A4 € Cnxk such that S = {Ax tx € Rﬁ} . For a

constant p > 0 , we denote z(p) = {4z : x, =p,l=1s k} and for any

z =Ax €S , we write z =< z(p) if Hme < p , where

Hme = max{|xi| : 1 =4 <k},

LEMMA 3.2. Let yO € " be given, and assume S 1is a polyhedral

cone in . Then an element zo € S satisfies

(3.3) Re[yo, 2-2%) =z 0

0

for all z € S provided there is a vector z(p) >z  in S such that

(3.3) holds for all

z € Sp ={z €5 :z2=zp)}.

Proof. Let =z € 5 , and write u = Az + (l—)\)z0 for 0 <A<1.
Since S is a polyhedral cone, u € S , and also it follows that there

k 0 0

. nx 0 Rk _
exist A € C and x, x € . such that z = Ax and =2z = Ax . Then

u € Sp if Hlx+(l—)\)x0|!oo <=p . Since ”xoll°° < p , we can choose A

sufficiently small so that u lies in Sp . Then

0= Re(yo, u-zo) =2 Re(yo, z—zo) s
and consequently, zO satisfies (3.3) for all z € S .

THEOREM 3.3. Let g : '+ be a continuous mapping on the
polyhedral cone S . If there are vectors z(p) , u €S , with z(p) > u
such that Re(g(z), z-u) =2 0 for all =z = z(p) in S , them there is a

20 =< z(p) in S with

(3.4) Re(g(zo], z-zo] 20
for all =z €S .

Proof. Consider the set Sp ={z €S5S :2z=<z(p)}. Since S is a
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polyhedral cone, we can write Sp = {4x : z € Rﬁ, flzll , = p} which is
obviously a compact, convex set in Cn . Therefore by Theorem 3.1, there
is a zo € Sp satisfying (3.4) for all 3z ¢ Sp . If zo < z(p) , then
taking yo = g(zo) in Lemma 3.2, we get the desired result. If

zo = z(p) , then by the hypothesis, Re(g(zo), zo—u) > 0 . Since

Re(g ("), 2-2°) = 0 for all =z ¢ S, » it follows that

Re(g[zo), z—u) > 0 for all z € Sp . But u < z(p) , and thus by Lemma

3.2, Re(g(zo), z-u) >0 for all z €S . Also u € Sp , and so

v

Re(g(zo), u—zo) 0 . Now adding the last two inequalities, we obtain

re(g(s%), -2°)

v

0 for all z €S .

4. Solvability of the complementarity problem

We now prove a lemma which gives the connection between variational
inequalities discussed in Section 3 and the nonlinear complementarity

problem (1.1).

LEMMA 4.1. Let S be a polyhedral cone in b, and let

g : A > " be continuous on S . If there is a 20 € 5 such that

(4.1) Re(g(zo), z—zo) =0

for all =z € S, then

g(zo) € S* and Re(g(zo), zo) =0 .

Thus zo is a solution to (1.1).

Proof. Ir Re(g(z®), z-2°) 2 0 for all z € § , then

Re(g(zo), z) = Re[g[zo), zo) for all z €S . Since S§ 1is a polyhedral
cone, z+£€5 for all 2z € S . Then m@&%,mﬁ)zk@@%,f)
for all =z € S and consequently, Re(g(zo), z] 20 for all z € S and,

in particular, Re[g(zo), zo) Z20. So g(zo) € 5* . GSince 0 €S , from

https://doi.org/10.1017/50004972700024898 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024898

134 J. Parida and B. Sahoo

(L.1) we get Re[g(zo), zo] = 0 , and hence Re(g(zo), zo) =0.

THEOREM 4.2. Let g : "+ " be a continuous monotone funetion on
S , a polynedral cone in . If there is8 a u €S with
g(u) € int S* , then (1.1) has a solution zo €S .
Proof. Since g(z) is monotone on S ,

Re(g(z), 2~u) = Re(g(u), z-u)
If z3=4x, u=4y , x,y € Rﬁ , then
Re(g(u), z—u) = (x—y)TReLAHg(u)) .

Since g(u) € int S* , Re[AHg(u)) >0 . It is then clear that there is a
vector z(p) > u in S such that (x—y)TRe[AHg(u)) = 0 for all =z = z(p)
in S . Theorem 3.3 with Lemma 4.1 now gives the result.
Xn
REMARKS 4.3, M ¢ (" is said to be positive semi-definite if
Re 2'Mz = 0 for all z € C' . If g(2) is defined by g¢g(z) = Mz + q for

some matrix M and q in o , then g is monotone on S if ¥ is
positive semi-definite. Thus Theorem 4.2 is a generalization to nonlinear
mappings of the results of McCallum [4, Theorem L4.5.1] and Mond [5,
Theorem 5] in the complex linear complementarity problem on positive semi-

definite matrices.
Recently, Moré [6] has extended the result of Cottle [2] on linear
complementarity problem in real space to nonlinear mappings. If S = Rz

and g : Rn *'Rn is a continuous mapping on Rf , then Theorem 4.2 reduces
to the result of Moré [6, Theorem 3.21].

If g 1is strictly monotone on S , then there is at most one
29 € S which satisfies (1.1). For if zo and w° are two solutions,
then Re(g[zo)-gﬁao), zo—wo) = -Re[g(zo), wo) - Re(gﬁuo), zo) =0, and

consequently, zo = wo .

LEMMA 4.4. Let S Dbe a polyhedral cone in . If g : loddR N de

https://doi.org/10.1017/50004972700024898 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024898

Complex nonlinear complementarity | 35

is a continuous function concave with respect to S* and Re zHg(z) is

convex with respect to R, , then g(z) <is monotone on S .
. . 1 2
Proof. Concavity of g(z) with respect to S* and 2z, 2° ¢S

imply that for X € (0, 1) ,

(4.2) Re(g(kzl+(l—k)32), Azl+(l—k)22)

- Re(kg[zl)+(l—k)g(22), Azl+(l—A)z2) zZ0.
Convexity of Re zHg(z) gives
(4.3) A Re(g(et), 21)+(1-1)Re(g(z), 29)
- Re(g(Ae™+(1-0)z%) , Azte(1-2)5°) =z 0 .

From (4.2) and (4.3),

M1-MRe(g(zH)-g (%), 2-2°) = 0 ,
and consequently, g(z) is monotone on S .

Now we are able to give a different version of Theorem 4.2.

THEOREM 4.5. Let g : " > " be continuous on S and concave with
respect to S* on " . Let Re zHg(z) be convex with respect to R_ on

¢ . If there is a u € S with glu) € int S* , then (1.1) has a solution

zo in S .

REMARKS 4.6. It is proved by the first author [7] that if g , in
addition to satisfying the hypotheses of Theorem 4.5, is analytic, then the

nonlinear program

(P): minimize Re zHg(z)
subject to g(z) € S* , =z €5 ,
is a self-dual problem with zero optimal value. Thus an optimal point of

(P) under the said restrictions on the growth of g is a solution to
(1.1).

Moreover, any feasible solution to (P) which makes the objective
function vanish is necessarily a solution to (1.1). So a critical study of

(P) may shed more light on this problem of existence of a solution to (1.1)
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under feasibility assumptions.
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