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FURTHER ACCURACY VERIFICATION OF A 2D ADAPTIVE
MESH REFINEMENT METHOD USING STEADY FLOW
PAST A SQUARE CYLINDER
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Abstract

The study applies a two-dimensional adaptive mesh refinement (AMR) method to esti-
mate the coordinates of the locations of the centre of vortices in steady, incompressible
flow around a square cylinder placed within a channel. The AMR method is robust and
low cost, and can be applied to any incompressible fluid flow. The considered channel
has a blockage ratio of 1/8. The AMR is tested on eight cases, considering flows with
different Reynolds numbers (5 < Re < 50), and the estimated coordinates of the location
of the centres of vortices are reported. For all test cases, the initial coarse meshes are
refined four times, and the results are in good agreement with the literature where a very
fine mesh was used. Furthermore, this study shows that the AMR method can capture
the location of the centre of vortices within the fourth refined cells, and further confirms
an improvement in the estimation with more refinements.

2020 Mathematics subject classification: primary 65N50; secondary 35Q30, 68U20.

Keywords and phrases: two-dimensional flow over square cylinder, adaptive mesh
refinement, centre of vortices.

1. Introduction

In the domain of computational fluid dynamics (CFD), the pursuit of simulating
complex fluid flows with high accuracy and efficiency has been a driving force behind
technological advancements in various industries, from aerospace and automotive
engineering to environmental science and biomedical research. However, fine discrete
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computational meshes are often used to develop accurate numerical solutions for CFD
problems using high-performance computing. Accurate numerical solutions usually
require higher-order discretization schemes for complex partial differential equations,
which are prone to produce oscillations [10].

An important technique that has revolutionized the capabilities of complex CFD
simulations, to improve the efficiency of flow solvers and the accuracy of numerical
solutions, is adaptive mesh refinement (AMR). AMR is a computational approach that
enables users to optimize their simulations by dynamically adjusting the resolution
of the computational mesh in response to evolving flow features and phenomena, and
reducing the computational cost [15].

Early studies in the field of adaptive mesh refinement for CFD problems can
be traced to the 1980s and 1990s, including the works of Berger and Oliger [4],
Bell et al. [2], Friedel et al. [9], and Berger and Leveque [3]. The development of
AMR has continued to evolve with advancements in numerical methods, computer
hardware and software tools, and it has been applied to a variety of fluid dynamics and
computational science problems [1].

Li [13] developed a two-dimensional (2D) AMR method derived from the qual-
itative theory of differential equations. The AMR method refines a given mesh
based on the numerically computed velocity fields. The efficiency and accuracy of
the AMR method has been verified using the accurate locations of singular points,
asymptotic lines and closed streamlines [12], and against widely used CFD benchmark
experiments including the lid-driven cavity flow [11], the 2D unsteady flow past
a square cylinder [14], the backward-facing step flow [17] and 2D flow over a
wall-mounted plate [16]. In particular, the AMR method has been shown to be useful
for capturing localized flow features such as accurate location of the centre of vortices
within the refined cells [11, 16]. The AMR method is robust [11], low-cost [15] and
can be applied to any incompressible fluid flow [18]. The previous works, for example,
[14, 17], considered the accuracy of the 2D AMR method with two refinements and
used the finite volume methods. We showed that the twice-refined cells contain the
centre of vortices. Since the 2D AMR can be applied a finite number of times, more
accurate centre of vortices can be obtained if the numerical velocity fields are accurate
enough and more refinements are carried out. The accuracy of the AMR method
depends only on the accuracy of the numerical methods used.

Flow around a square cylinder is a classic CFD problem and has been studied by
many researchers (see, for example, [7, 8, 19]). The flow pattern characteristics are
related to factors such as the Reynolds number (Re) of fluid, the dimension of the
square cylinder and the space size. The complex flow characteristics in the vicinity
of a square cylinder have always been a focus area and a challenge in academic
research. The outcomes of this study can be applied to problems in aerodynamics,
wind engineering and electronics cooling. One of the examples is the design of
a building. The flow around a building has high- and low-pressure areas. These
areas significantly affect building structural integrity, energy efficiency and indoor
comfort.
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It is noted in the literature that the flow around a square cylinder is steady for
5 < Re < 60 and a fixed blockage ratio of 1/8 [7, 19]. Accordingly, the present study
aims to use the AMR method of Li [13] and provide estimates of coordinates of the
locations of the centre of vortices for steady incompressible flow past a square cylinder.
The AMR method is tested on eight cases considering flows with different Reynolds
numbers, thatis, 5 < Re < 50. Hence, the main contribution of our work is showing the
accuracy of the AMR method using four refinements and the finite-element method.
Furthermore, we show that the AMR method can capture the location of the centre
of vortices within the fourth refined cell. The efficiency of the AMR method in
identifying accurate locations of the centre of vortices is validated against the available
numerical results found in the literature in which a much finer mesh was used for the
study. The methods in the literature investigating flow around a square cylinder (for
example, [8]) are limited to steady incompressible flow only. However, the AMR used
in this paper can be applied to both steady and unsteady incompressible flows.

The remainder of this paper is structured as follows. Section 2 outlines the
methodology, presenting the governing equations, the computational mesh and the
flow solver. The numerical results of the eight test cases and the accuracy verification
of the 2D AMR method are presented and discussed in Section 3. The conclusion
follows in Section 4.

2. Methodology

This section briefly describes the governing equations, the computational domain
and the mesh structure, and the flow solver.

2.1. Governing equations We consider the finite-element discretizations of the 2D
unsteady, incompressible Navier—Stokes equations [5], which contain the continuity
equation and the momentum equations in two directions defined by

V-V=0,
ov

1
— +V-VV=—-VP+yV?V,
ot Jol

where V = (u,v) denotes the velocity field in 2D with u and v as the velocity
components in the x- and y-directions, respectively, v is the kinematic viscosity, p
is the fluid density, and P represents the scalar pressure.

2.2. Computational domain and boundary conditions The geometry of the
computational domain was set as a 2D rectangular channel with length L and width H,
as shown in Figure 1. The two ends of the channel were the inlet and outlet. A square
cylinder with a side length of D =1 is placed in the middle of the channel centred
on the y-axis such that the blockage ratio of the channel, D/H, equals 1/8. To ensure
that the distance from the computational inlet to the cylinder does not influence the
accuracy of the numerical solution, an essential inlet location of approximately 10 has
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FIGURE 1. Schematic diagram of the computational domain and boundary conditions.
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FIGURE 2. The initial mesh (Meshy) of 3824 quadrilateral cells with 3984 nodes.

been reported [20]. Thus, we set the inlet length L; = 10. The channel length L is set
to 30.

The boundary conditions used are described in Figure 1. Following [8], the inlet
velocity field was specified as a parallel flow with a parabolic horizontal component
given by u = U(y) = 1 — (y — 4)?/16. The outlet was set as the free outflow boundary
(P =0). The channel’s top and bottom boundaries and the square cylinder walls
are imposed as rigid surfaces with the no-slip condition (¥ = v = 0). The Reynolds
number is considered the main parameter that changes the flow behaviour and is
defined as Re = Uy D/v, where Up, = 1 and v is the kinematic coefficient of
the viscosity [8, 19]. Eight test cases for flows with different Reynolds numbers
(Re = 5,10, 15, 20, 25, 30,40 and 50) are considered in this study.

2.3. Computational mesh and the flow solver For all test cases involving different
Reynolds numbers, the spatial step size in both the x and y directions is 1/4. The initial
mesh (Meshg) has 3824 quadrilateral cells (size 1/4 x 1/4) with 3984 nodes. Figure 2
shows the initial mesh Meshy. The Finite Element Analysis simulation
Toolbox (FEATool, version 1.16.3, https://www.featool.com/) in MATLAB (R2023a)
was used to numerically solve the unsteady 2D Navier—Stokes equations [5] for the
eight test cases.

This study aims to verify the accuracy of the existing adaptive mesh refinement
method with accurate numerical velocity fields. The time-dependent Navier—Stokes
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equations are solved using FEATool until both velocity fields and pressures
converge to a steady state. The highest-order scheme implemented in FEATool is
a second-order implicit Crank—Nicolson time-stepping scheme [6], which was used
for the time-dependent settings. We assumed that the convergence is achieved when the
numerical solutions (velocity fields) are computed with residuals smaller than 10~ for
both u and v. Thus, the time-dependent simulations terminated when either the central
processing unit (CPU) time reached the specified simulation time or the normed
changes in the dependent solution variables were smaller than the time-stopping
criteria (tolerance = 107'9), and at the same time, we make sure velocity fields and
pressure show the steady state. Therefore, in this work, only steady-state solutions are
considered.

3. Numerical results and accuracy verification

In the present study, we apply the same AMR method from Li and Lal [16]. We refer
the reader to the work of Li and Lal [16, Section 3] for a detailed description of the
method. A cell-by-cell AMR approach is followed on the quadrilateral meshes. A cell
is refined by connecting the mid-points of opposite sides into four equally smaller
quadrilateral cells. Applying the AMR method to the initial mesh, Meshg, produces
the first refined mesh, Mesh;, and by repeating the procedure three more times, we
obtain the fourth refined mesh, Meshy. The coordinates of the centre of the isolated
refined cells in the area of interest are then used to estimate the centre of vortices.

The results of the eight test cases are presented in this section. We verify
the accuracy of the AMR method by comparing it with the reference centre of
vortices, (Xf, Vref), presented by Erturk and Gokcol [8]. There, the authors used the
streamfunction and vorticity formulation of the Navier—Stokes equations and employed
a very fine mesh with close to 1 040 000 nodes.

3.1. Refined meshes Figure 3 shows the fourth refined mesh (Meshs with 13 223
nodes) for the flow with Re = 5. The mesh is refined mostly near the channel’s top and
bottom boundaries and near the square cylinder.

Figures 4(a)—4(e) show the zoomed-in sections of Meshy to Meshy in the vicinity of
the square cylinder for the flow with Re = 5. In Meshy, a cell to the right of the square
cylinder is marked with a red square. The first refinement of the cell marked with a red
square is shown in the once-refined mesh, Mesh;. Similarly, the cell’s second, third and
fourth refinements are shown in Mesh,, Meshs and Meshy, respectively. Figure 4(f)
shows the zoomed-in section of the cell marked with a red square in Meshy, which
contains an isolated refined cell. The coordinates of the isolated refined cell’s centre
(X1, Yy) are used to estimate the centre of the vortices. The centre is marked with a blue
dot in Figure 4(f) for illustration purposes. The marked red boxes in Figure 4(a)-4(e)
demonstrate that the AMR method can capture the location of the centre of vortices
within the fourth refined cells.

Erturk and Gokcol [8] illustrated that the coordinates of centres of location of the
primary vortices are stated from the centre of the square cylinder, as shown in Figure 5.
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FIGURE 3. Fourth refined mesh, Meshy, for the flow with Re = 5. Number of nodes = 13 223.

Hence, all estimated coordinates for the centres of vortices, (x;,y;), are the results
of (X1,Y;)—(10.5,4), where (X, Y;) is the coordinate of the centre of the iso-
lated refined cell. The estimated centre of vortices for the flow with Re =35 is
(x1,y1) = (0.609, 0.172). We note that the estimated coordinate of the centre of vortices
obtained with Meshy is in good agreement with (Xt, yrer) = (0.610, 0.180) as reported
by Erturk and Gokcol [8].

For the flow with the remaining cases, 10 < Re < 50, a similar mesh refinements
pattern, as for the flow with Re = 5, was observed, for example, Mesh, was refined
mostly near the channel’s top and bottom boundaries, in the vicinity of the square
cylinder and the horizontal centre line. It is observed that the x and y values of the
coordinates of the centre of vortices gradually increase as the Reynolds numbers
increase. The setting for the flows in this study is symmetric, but the refined meshes
are not. For all the cases, the lack of symmetry in the refined meshes indicates the
nonsymmetrical profile of the velocity field. Hence, the calculated velocity fields are
not accurate enough. The number of nodes in Meshy for the flow with 10 < Re < 50
ranged from 12 989 to 13 914, which were relatively similar to the case with Re = 5.

3.2. Estimated location of centre of vortices Table 1 presents the number of
nodes in the fourth refined meshes and the estimated coordinates of vortex centres
for the eight test cases. The table also compares the estimated coordinates with the
reference centre locations, as reported by Erturk and Gokcol [8]. For each case,
the errors e, = x1 — X and e, = x; — yr were found to be within 5%. The errors
relative to the reference vortex centres, computed as

[1Cx1, Y1) — (Xref> Yref)”
[1Crret, yref)”

H

were less than 2.5% for all cases. The results obtained by the present method are in
good agreement with those obtained by Erturk and Gokcol [8] using a finer mesh.
Moreover, we note that further mesh refinements may be needed to obtain coordinates
as close as the actual locations of the vortex centres. Figure 6 shows streamline
contours and the flow features near the vortex centre for the case with Re =5 and
Re = 50. The red dots in Figure 6 indicate the location of the centre of vortices.
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FIGURE 4. Flow with Re = 5: (a)—(e) zoomed-in sections of Mesh, to Meshy; (f) zoomed-in section of
the cell marked with a red square in panel (e), where the blue dot represents the centre of the vortices’
estimated location.
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FIGURE 5. Schematic view of the location of coordinates (x;, y;) of the primary vortices.

TABLE 1. Number of nodes in Meshy, estimated centre locations, (xj,y;), and the computed errors
relative to the reference vortex centres, (Xref, Yref). The number of nodes in [8] is approximately 1 040 000.

No. of nodes in

Re Meshy (x1,y1) (Xrefs Yref) [8] Relative errors
5 13 223 (0.609, 0.172) (0.610, 0.180) 0.0127

10 12 989 (0.734, 0.203) (0.740, 0.210) 0.0120

15 13914 (0.828, 0.234) (0.840, 0.240) 0.0154
20 13 824 (0.953, 0.261) (0.940, 0.260) 0.0134
25 13 451 (1.047, 0.266) (1.030, 0.280) 0.0206
30 13 671 (1.109, 0.291) (1.120, 0.290) 0.0095
40 13 900 (1.297, 0.328) (1.300, 0.320) 0.0064
50 13 605 (1.469, 0.344) (1.490, 0.340) 0.0140

. Re=5 Re =50

8 10 12 14 16 8 10 12 14 16

FIGURE 6. Streamline contours. The red dots indicate the estimated vortex location.

4. Conclusion

In this study, we verify the accuracy of the 2D AMR with four refinements using
the steady flow past a square cylinder. The accuracy is demonstrated by the estimated
location of the centre of vortices contained in the first, second, third and fourth refined
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cells. Since the 2D AMR can be applied a finite number of times, we can perform more
refinements if the results are not accurate enough for some cases.
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