THE MULTIPLIER ALGEBRA AND BSE PROPERTY OF THE DIRECT SUM OF BANACH ALGEBRAS

ZEINAB KAMALI ^{\boxtimes} and MAHMOOD LASHKARIZADEH BAMI

(Received 13 August 2012; accepted 12 September 2012; first published online 7 February 2013)

Abstract

The notion of BSE algebras was introduced and first studied by Takahasi and Hatori and later studied by Kaniuth and Ülger. This notion depends strongly on the multiplier algebra $\mathcal{M}(\mathcal{A})$ of a commutative Banach algebra \mathcal{A} . In this paper we first present a characterisation of the multiplier algebra of the direct sum of two commutative semisimple Banach algebras. Then as an application we show that $\mathcal{A} \oplus \mathcal{B}$ is a BSE algebra if and only if \mathcal{A} and \mathcal{B} are BSE. We also prove that if the algebra $\mathcal{A} \times_{\theta} \mathcal{B}$ with θ -Lau product is a BSE algebra and \mathcal{B} is unital then \mathcal{B} is a BSE algebra. We present some examples which show that the BSE property of $\mathcal{A} \times_{\theta} \mathcal{B}$ does not imply the BSE property of \mathcal{A} , even in the case where \mathcal{B} is unital.

2010 *Mathematics subject classification*: primary 46J05; secondary 22D15. *Keywords and phrases*: commutative Banach algebra, multiplier algebra, BSE algebra, direct sum.

1. Introduction

Let \mathcal{A} be a commutative Banach algebra. Throughout this paper $\Delta(\mathcal{A})$ denotes the set of all nonzero multiplicative linear functionals on \mathcal{A} . Then $\Delta(\mathcal{A})$ is a topological space with the Gelfand topology, called the Gelfand spectrum of \mathcal{A} .

A bounded continuous function σ on $\Delta(\mathcal{A})$ is called a *BSE function* if there exists a constant C > 0 such that for every finite number of $\varphi_1, \ldots, \varphi_n$ in $\Delta(\mathcal{A})$ and the same number of complex numbers c_1, \ldots, c_n , the inequality

$$\left|\sum_{j=1}^{n} c_{j} \sigma(\varphi_{j})\right| \leq C \left\|\sum_{j=1}^{n} c_{j} \varphi_{j}\right\|_{\mathcal{A}^{4}}$$

holds. The BSE norm of σ , $\|\sigma\|_{BSE}$, is defined to be the infimum of all such *C*. The set of all BSE functions is denoted by $C_{BSE}(\Delta(\mathcal{A}))$. Takahasi and Hatori [14] showed that under the norm $\|\cdot\|_{BSE}$, $C_{BSE}(\Delta(\mathcal{A}))$ is a commutative semisimple Banach algebra.

A bounded linear operator on \mathcal{A} is called a *multiplier* if it satisfies xT(y) = T(xy) for all $x, y \in \mathcal{A}$. The set $M(\mathcal{A})$ of all multipliers of \mathcal{A} is a closed unital commutative subalgebra of the operator algebra $B(\mathcal{A})$, called the *multiplier algebra* of \mathcal{A} .

^{© 2013} Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

For each $T \in M(\mathcal{A})$ there exists a unique continuous function \widehat{T} on $\Delta(\mathcal{A})$ such that $\widehat{T(a)}(\varphi) = \widehat{T}(\varphi)\widehat{a}(\varphi)$ for all $a \in \mathcal{A}$ and $\varphi \in \Delta(\mathcal{A})$. See [9] for a proof. Write

$$\widehat{M(\mathcal{A})} = \{\widehat{T} : T \in M(\mathcal{A})\}$$

We say that a commutative Banach algebra \mathcal{A} without order is a *BSE algebra* (or it is said to have the *BSE property*) if \mathcal{A} satisfies the condition

$$C_{BSE}(\Delta(\mathcal{A})) = \widehat{M}(\widehat{\mathcal{A}}).$$

REMARK 1.1. Let \mathcal{A} be a semisimple Banach algebra and $\Phi : \Delta(\mathcal{A}) \to \mathbb{C}$ be a continuous function such that $\Phi \cdot \widehat{\mathcal{A}} \subseteq \widehat{\mathcal{A}}$. We call Φ a multiplier of \mathcal{A} . This is another definition of a multiplier of a Banach algebra. In the presence of semisimplicity this definition is equivalent to the above definition, by considering $\Phi = \widehat{T}$; see [9] for more details. Define

$$\mathcal{M}(\mathcal{A}) = \{ \Phi : \Delta(\mathcal{A}) \to \mathbb{C} : \Phi \text{ is continuous and } \Phi A \subseteq A \}.$$

When \mathcal{A} is a semisimple Banach algebra, $\widehat{\mathcal{M}(A)} = \mathcal{M}(A)$.

The abbreviation BSE stands for Bochner–Schoenberg–Eberlein and refers to the famous theorem, proved by Bochner and Schoenberg [2, 13] for the additive group of real numbers and by Eberlein [3] for general locally compact abelian groups G, saying that, in the above terminology, the group algebra $L^1(G)$ is a BSE algebra. (See [11] for a proof.)

The notions of BSE algebra and BSE functions were introduced and studied by Takahasi and Hatori [14, 15] and later by Kaniuth and Ülger [8].

A bounded net $(e_{\alpha})_{\alpha}$ in \mathcal{A} is called a bounded approximate identity for \mathcal{A} if it satisfies $||e_{\alpha}a - a|| \to 0$ for all $a \in \mathcal{A}$. A bounded net $(e_{\alpha})_{\alpha}$ in \mathcal{A} is called a Δ weak bounded approximate identity for \mathcal{A} if it satisfies $\varphi(e_{\alpha}) \to 1$ (equivalently, $\varphi(e_{\alpha}a) \to \varphi(a)$ for every $a \in \mathcal{A}$) for all $\varphi \in \Delta(\mathcal{A})$. Such approximate identities were studied in [6], where the first example was given of a semisimple commutative Banach algebra which has a Δ -weak approximate identity but does not possess a bounded approximate identity. As is shown in [14, Corollary 5], \mathcal{A} has a Δ -weak bounded approximate identity if and only if $\widehat{M(\mathcal{A})} \subseteq C_{BSE}(\Delta(\mathcal{A}))$.

In this paper we first present a characterisation of the multiplier algebra of the direct sum of two semisimple Banach algebras. Then as an application we show that for two semisimple Banach algebras \mathcal{A} and \mathcal{B} , $\mathcal{A} \oplus \mathcal{B}$ is BSE if and only if \mathcal{A} and \mathcal{B} are.

We also prove that if \mathcal{A} and \mathcal{B} are Banach algebras such that \mathcal{B} is unital and $\mathcal{A} \times_{\theta} \mathcal{B}$ is BSE, then \mathcal{B} is a BSE algebra, and we present some examples showing that the BSE property of $\mathcal{A} \times_{\theta} \mathcal{B}$ does not imply that of \mathcal{A} .

2. Direct sum of Banach algebras

Let \mathcal{A} and \mathcal{B} be two commutative Banach algebras. The direct sum algebra $\mathcal{A} \oplus \mathcal{B}$ of \mathcal{A} and \mathcal{B} is defined as the Cartesian product $\mathcal{A} \times \mathcal{B}$ with the algebra multiplication

$$(a, a') \cdot (b, b') = (aa', bb') \quad (a, a' \in \mathcal{A}, b, b' \in \mathcal{B}),$$

and with norm

$$||(a, b)|| = ||a|| + ||b|| \quad (a \in \mathcal{A}, b \in \mathcal{B}).$$

In this section we will give a characterisation of the multiplier algebra of the direct sum algebra $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{M}(\mathcal{A} \oplus \mathcal{B})$, and then prove that for two semisimple Banach algebras \mathcal{A} and \mathcal{B} , $\mathcal{A} \oplus \mathcal{B}$ is a BSE algebra if and only if \mathcal{A} and \mathcal{B} are BSE algebras. First we need to prove the following lemma.

LEMMA 2.1. Let \mathcal{A} and \mathcal{B} be two Banach algebras and

$$E = \{(\varphi, 0) : \varphi \in \Delta(\mathcal{A})\}, \quad F = \{(0, \psi) : \psi \in \Delta(\mathcal{B})\}.$$

Then $\Delta(\mathcal{A} \oplus \mathcal{B}) = E \cup F$.

PROOF. It is obvious that $E \cup F \subseteq \Delta(\mathcal{A} \oplus \mathcal{B})$. For the reverse inclusion suppose that $(\varphi, \psi) \in \Delta(\mathcal{A} \oplus \mathcal{B}) \subseteq \mathcal{A}^* \oplus \mathcal{B}^*$. Then, for every $a_1, a_2 \in \mathcal{A}$ and $b_1, b_2 \in \mathcal{B}$,

$$(\varphi, \psi)(a_1a_2, b_1b_2) = (\varphi, \psi)(a_1, b_1) \cdot (\varphi, \psi)(a_2, b_2).$$

This means that, for all $a_1, a_2 \in \mathcal{A}$ and $b_1, b_2 \in \mathcal{B}$,

$$\varphi(a_1a_2) + \psi(b_1b_2) = (\varphi(a_1) + \psi(b_1)) \cdot (\varphi(a_2) + \psi(b_2))$$

= $\varphi(a_1)\varphi(a_2) + \varphi(a_1)\psi(a_2) + \psi(b_1)\varphi(a_2) + \psi(b_1)\psi(b_2).$ (I)

If we take $b_1 = b_2 = 0$, it follows that $\varphi(a_1a_2) = \varphi(a_1)\varphi(a_2)$ for all $a_1, a_2 \in \mathcal{A}$. And similarly, if we take $a_1 = a_2 = 0$ it follows that $\psi(b_1b_2) = \psi(b_1)\psi(b_2)$. Then $\varphi \in \Delta(\mathcal{A}) \cup \{0\}$ and $\psi \in \Delta(\mathcal{B}) \cup \{0\}$. Now if $\varphi = 0$, then $(\varphi, \psi) = (0, \psi) \in F$. If $\varphi \neq 0$, then (I) implies that

$$\varphi(a_1)\psi(a_2) + \psi(b_1)\varphi(a_2) = 0,$$

for all $a_1, a_2 \in \mathcal{A}$ and $b_1, b_2 \in \mathcal{B}$. If we set $a_1 = 0$ and a_2 such that $\varphi(a_2) \neq 0$, it follows that $\psi(b_1) = 0$ for all $b_1 \in \mathcal{B}$ and then $\psi = 0$. This means that $(\varphi, \psi) = (\varphi, 0) \in E$. So $\Delta(\mathcal{A} \oplus \mathcal{B}) \subseteq E \cup F$.

REMARK 2.2. Since $E \cup F \subset (\mathcal{A} \oplus \mathcal{B})^* = \mathcal{A}^* \oplus \mathcal{B}^*$, its topology is the one induced from $\mathcal{A}^* \oplus \mathcal{B}^*$ and is precisely the Gelfand topology of $\Delta(\mathcal{A} \oplus \mathcal{B})$.

Note that Lemma 2.1 implies that $\mathcal{A} \oplus \mathcal{B}$ is semisimple if and only if both \mathcal{A} and \mathcal{B} are semisimple.

THEOREM 2.3. Let \mathcal{A} and \mathcal{B} be semisimple Banach algebras. Then

$$\mathcal{M}(\mathcal{A} \oplus \mathcal{B}) = \{(\Phi, \Psi) : \Phi \in \mathcal{M}(\mathcal{A}), \Psi \in \mathcal{M}(\mathcal{B})\},\$$

where $(\Phi, \Psi)(\varphi, 0) = \Phi(\varphi)$ and $(\Phi, \Psi)(0, \psi) = \Phi(\psi)$ for all $(\varphi, 0) \in E$ and $(0, \psi) \in F$.

252

253

PROOF. Let $\Phi \in \mathcal{M}(\mathcal{A})$ and $\Psi \in \mathcal{M}(\mathcal{B})$. Since $\Phi \widehat{\mathcal{A}} \subseteq \widehat{\mathcal{A}}$ and $\Psi \widehat{\mathcal{B}} \subseteq \widehat{\mathcal{B}}$, then for all $(\varphi, 0) \in E$ and $(a, b) \in \mathcal{A} \oplus \mathcal{B}$, there are elements $a' \in \mathcal{A}$ and $b' \in \mathcal{B}$ such that

$$((\Phi, \Psi) \cdot (\widehat{a, b}))(\varphi, 0) = (\Phi, \Psi)(\varphi, 0)(\widehat{a, b})(\varphi, 0)$$
$$= \Phi(\varphi)\widehat{a}(\varphi) = \widehat{a'}(\varphi),$$

for all $\varphi \in \Delta(\mathcal{A})$, and

$$\begin{split} ((\Phi, \Psi) \cdot \widehat{(a, b)})(0, \psi) &= (\Phi, \Psi)(0, \psi)\widehat{(a, b)}(0, \psi) \\ &= \Psi(\psi)\widehat{b}(\psi) = \widehat{b'}(\psi), \end{split}$$

for all $\psi \in \Delta(\mathcal{B})$. Then $((\Phi, \Psi) \cdot (\widehat{a, b}))(\varphi, 0) = (\widehat{a', b'})(\varphi, 0)$ and $((\Phi, \Psi) \cdot (\widehat{a, b}))(0, \psi) = (\widehat{a', b'})(0, \psi)$. This implies that

$$(\Phi, \Psi) \cdot \widehat{\mathcal{A} \oplus \mathcal{B}} \subseteq \widehat{\mathcal{A} \oplus \mathcal{B}}$$

and $(\Phi, \Psi) \in \mathcal{M}(\mathcal{A} \oplus \mathcal{B})$.

Now let $F \in \mathcal{M}(\mathcal{A} \oplus \mathcal{B})$. Define $\Phi(\varphi) = F(\varphi, 0)$ and $\Psi(\psi) = F(0, \psi)$, for all $\varphi \in \Delta(\mathcal{A})$ and $\psi \in \Delta(\mathcal{B})$. So $F = (\Phi, \Psi)$. It is enough to show that $\Phi \in \mathcal{M}(\mathcal{A})$ and $\Psi \in \mathcal{M}(\mathcal{B})$. For all $a \in \mathcal{A}$, there exists $(a', b') \in \mathcal{A} \oplus \mathcal{B}$ such that

$$\Phi(\varphi)\widehat{a}(\varphi) = (\Phi, \Psi)(\varphi, 0)(\widehat{a}, \widehat{0})(\varphi, 0) = (\widehat{a'}, \widehat{b'})(\varphi, 0) = \widehat{a'}(\varphi).$$

Then $\Phi\widehat{\mathcal{A}} \subseteq \widehat{\mathcal{A}}$ and $\Phi \in \mathcal{M}(\mathcal{A})$. Similarly, $\Psi \in \mathcal{M}(\mathcal{A})$.

THEOREM 2.4. Let \mathcal{A} and \mathcal{B} be two semisimple Banach algebras. Then $\mathcal{A} \oplus \mathcal{B}$ is BSE if and only if \mathcal{A} and \mathcal{B} are BSE.

PROOF. First suppose that \mathcal{A} and \mathcal{B} are BSE. Then by [14, Corollary 5] \mathcal{A} and \mathcal{B} have Δ -weak bounded approximate identities. Let $\{e_{\alpha}\}_{\alpha}$ and $\{f_{\beta}\}_{\beta}$ be Δ -weak bounded approximate identities of \mathcal{A} and \mathcal{B} , respectively. Then $\{(e_{\alpha}, f_{\beta})\}_{(\alpha,\beta)}$ is a Δ -weak bounded approximate identity for $\mathcal{A} \oplus \mathcal{B}$. Indeed, for all $\varphi \in \Delta(\mathcal{A})$ and $\psi \in \Delta(\mathcal{B})$,

$$\lim_{(\alpha,\beta)}(\varphi,0)(e_{\alpha},f_{\beta}) = \lim_{\alpha}\varphi(e_{\alpha}) = 1$$

and

$$\lim_{(\alpha,\beta)} (0,\psi)(e_{\alpha},f_{\beta}) = \lim_{\beta} \psi(f_{\beta}) = 1,$$

so that, for all $\Phi \in E \cup F = \Delta(\mathcal{A} \oplus \mathcal{B})$,

$$\lim_{(\alpha,\beta)} F(e_{\alpha}, f_{\beta}) = 1$$

and $\{(e_{\alpha}, f_{\beta})\}_{(\alpha,\beta)}$ is a Δ -weak approximate identity for $\mathcal{A} \oplus \mathcal{B}$. Then by [14, Corollary 5]

$$\mathcal{M}(\mathcal{A} \oplus \mathcal{B}) \subseteq C_{BSE}(\Delta(\mathcal{A} \oplus \mathcal{B})).$$

For the reverse conclusion, let $\sigma \in C_{BSE}(\Delta(\mathcal{A} \oplus \mathcal{B}))$. Then, by [14, Theorem 4(ii)], $\sigma \in C_b(\Delta(\mathcal{A} \oplus \mathcal{B})) \cap (\mathcal{A} \oplus \mathcal{B})^{**}|_{\Delta(\mathcal{A} \oplus \mathcal{B})} = C_b(\Delta(\mathcal{A} \oplus \mathcal{B})) \cap (\mathcal{A}^{**} \oplus \mathcal{B}^{**})|_{\Delta(\mathcal{A} \oplus \mathcal{B})}$. Then

there are $\sigma_1 \in \mathcal{A}^{**}$ and $\sigma_2 \in \mathcal{B}^{**}$ such that $\sigma_1|_{\Delta(\mathcal{A})} \in C_b(\Delta(\mathcal{A})) \cap \mathcal{A}^{**}|_{\Delta(\mathcal{A})}, \sigma_2|_{\Delta(\mathcal{B})} \in C_b(\Delta(\mathcal{B})) \cap \mathcal{B}^{**}|_{\Delta(\mathcal{B})}$ and $\sigma = (\sigma_1, \sigma_2)|_{\Delta(\mathcal{A} \oplus \mathcal{B})}$. On the other hand, since $\sigma \in C_{BSE}(\Delta(\mathcal{A} \oplus \mathcal{B}))$, there exists $\beta > 0$ such that, for every finite number of $c_1, \ldots, c_n \in \mathbb{C}$ and $(\varphi_1, \psi_1), \ldots, (\varphi_n, \psi_n) \in \Delta(\mathcal{A} \oplus \mathcal{B})$,

$$\left|\sum_{i=1}^{n} c_{i} \sigma(\varphi_{i}, \psi_{i})\right| \leq \beta \left\|\sum_{i=1}^{n} c_{i}(\varphi_{i}, \psi_{i})\right\|_{\mathcal{A}^{*} \oplus \mathcal{B}^{*}}.$$

In particular, for every $(\varphi_1, 0), \ldots, (\varphi_n, 0) \in E$ and $c_1, \ldots, c_n \in \mathbb{C}$,

$$\begin{split} \sum_{i=1}^{n} c_{i} \sigma(\varphi_{i}, 0) \bigg| &= \bigg| \sum_{i=1}^{n} c_{i} \sigma_{1}(\varphi_{i}) \bigg| \\ &\leq \beta \bigg\| \sum_{i=1}^{n} c_{i}(\varphi_{i}, 0) \bigg\|_{\mathcal{A}^{*} \oplus \mathcal{B}^{*}} \\ &= \beta \sup \bigg\{ \bigg| \sum_{i=1}^{n} c_{i}(\varphi_{i}, 0)(a, b) \bigg| : ||a|| + ||b|| \le 1 \bigg\} \\ &\leq \beta \sup \bigg\{ \bigg| \sum_{i=1}^{n} c_{i} \varphi_{i}(a) \bigg| : ||a|| \le 1 \bigg\} \\ &= \beta \bigg\| \sum_{i=1}^{n} c_{i} \varphi_{i} \bigg\|_{\mathcal{A}^{*}}. \end{split}$$

This means that $\sigma_1 \in C_{BSE}(\Delta(\mathcal{A}))$. Now since \mathcal{A} is a semisimple BSE algebra, $\sigma_1 \in \mathcal{M}(\mathcal{A})$. In a similar way (by considering $(0, \psi_1), \ldots, (0, \psi_n)$) we conclude that $\sigma_2 \in \mathcal{M}(\mathcal{B})$. So $\sigma = (\sigma_1, \sigma_2) \in \mathcal{M}(\mathcal{A} \oplus \mathcal{B})$. Then $C_{BSE}(\Delta(A \oplus B)) \subset \mathcal{M}(\mathcal{A} \oplus \mathcal{B})$ and $\mathcal{A} \oplus \mathcal{B}$ is a BSE algebra.

Now suppose that $A \oplus B$ is BSE and let $\{(e_{\alpha}, f_{\alpha})\}_{\alpha}$ be a Δ -weak bounded approximate identity for $\mathcal{A} \oplus \mathcal{B}$. Then, for all $\varphi \in \Delta(\mathcal{A})$,

$$\lim_{\alpha} \varphi(e_{\alpha}) = \lim_{\alpha} (\varphi, 0)(e_{\alpha}, f_{\alpha}) = 1.$$

So $\{e_{\alpha}\}_{\alpha}$ is a Δ -weak bounded approximate identity for \mathcal{A} , and similarly $\{f_{\alpha}\}_{\alpha}$ is a Δ -weak bounded approximate identity for \mathcal{B} , and [14, Corollary 5] implies that $\mathcal{M}(\mathcal{A}) \subseteq C_{BSE}(\Delta(\mathcal{A}))$ and $\mathcal{M}(\mathcal{B}) \subseteq C_{BSE}(\Delta(\mathcal{B}))$.

Now let $\sigma_1 \in C_{BSE}(\Delta(\mathcal{A}))$ and $\sigma_2 \in C_{BSE}(\Delta(\mathcal{B}))$. Then by [14, Theorem 4(i)] there are nets $\{x_\lambda\}_\lambda \subset \mathcal{A}$ and $\{y_\mu\}_\mu \in \mathcal{B}$ such that $\lim_\lambda \widehat{x_\lambda}(\varphi) = \sigma_1(\varphi)$ and $\lim_\mu \widehat{y_\mu}(\psi) = \sigma_2(\psi)$, for all $\varphi \in \Delta(\mathcal{A})$ and $\psi \in \Delta(\mathcal{B})$. If we consider the net $\{(x_\lambda, y_\mu)\}_{(\lambda,\mu)} \subset \mathcal{A} \oplus \mathcal{B}$, then

$$\lim_{(\lambda,\mu)} (\widehat{x_{\lambda}}, \widehat{y_{\mu}})(\varphi, 0) = \lim_{(\lambda,\mu)} (\varphi, 0)(x_{\lambda}, y_{\mu}) = \lim_{(\lambda,\mu)} \varphi(x_{\lambda}) + 0$$
$$= \lim_{(\lambda,\mu)} \widehat{x_{\lambda}}(\varphi) + 0 = \sigma_1(\varphi) + 0$$
$$= (\sigma_1, \sigma_2)(\varphi, 0),$$

for all $\varphi \in \Delta(\mathcal{A})$. And similarly, for all $\psi \in \Delta(\mathcal{B})$,

$$\lim_{(\lambda,\mu)} \widehat{(x_{\lambda}, y_{\mu})}(0, \psi) = (\sigma_1, \sigma_2)(0, \psi).$$

This means that if we let $\sigma = (\sigma_1, \sigma_2)$ then

$$\lim_{(\lambda,\mu)} \widehat{(x_{\lambda}, y_{\mu})}(\Phi) = \sigma(\Phi),$$

for all $\Phi \in E \cup F = \Delta(\mathcal{A} \oplus \mathcal{B})$. Then $\sigma = (\sigma_1, \sigma_2) \in C_{BSE}(\Delta(\mathcal{A} \oplus \mathcal{B}))$. Now since $\mathcal{A} \oplus \mathcal{B}$ is a BSE algebra, $\sigma = (\sigma_1, \sigma_2) \in \mathcal{M}(\mathcal{A} \oplus \mathcal{B})$ and, by Theorem 2.3, $\sigma_1 \in \mathcal{M}(\mathcal{A})$ and $\sigma_2 \in \mathcal{M}(\mathcal{B})$. So \mathcal{A} and \mathcal{B} are BSE algebras.

Let G be a locally compact abelian group and M(G) the Banach algebra of bounded regular measures on G. The set of continuous measures in M(G) is denoted by $M_c(G)$. This is a closed ideal in M(G), and

$$M(G) = M_d(G) \oplus M_c(G) = l^1(G) \oplus M_c(G).$$

When G is not discrete, $M_c(G) \neq \{0\}$. It is shown in [14] that M(G) is a BSE algebra if and only if G is discrete. So we have the following result.

COROLLARY 2.5. For a nondiscrete locally compact abelian group G, $M_c(G)$ is not a BSE algebra.

COROLLARY 2.6. Let G be a locally compact abelian group and $\mu \in M(G)$ be a measure which factors as a product of an invertible measure and an idempotent measure. Then $\mu * L^1(G)$ is a BSE algebra.

PROOF. Define $T_{\mu}(f) = \mu * f$. Then T_{μ} is a multiplier of the Banach algebra $L^{1}(G)$. It is shown in [16] that $T(L^{1}(G)) = \mu * L^{1}(G)$ is closed in $L^{1}(G)$. By [4, Theorem 3.4], since $L^{1}(G)$ is a commutative semisimple amenable Banach algebra, it factors as follows:

$$L^{1}(G) = T_{\mu}(L^{1}(G)) \oplus \operatorname{Ker}(T_{\mu}) = (\mu * L^{1}(G)) \oplus \operatorname{Ker}(T_{\mu}).$$

Since $L^1(G)$ is a BSE algebra, by Theorem 2.4, $\mu * L^1(G)$ is BSE as well.

3. θ -Lau product of Banach algebras

The products $\mathcal{A} \times_{\theta} \mathcal{B}$ of Banach algebras \mathcal{A} and \mathcal{B} were first introduced and studied by Lau [10]. The Banach algebra \mathcal{B} inherits some properties of $\mathcal{A} \times_{\theta} \mathcal{B}$. For instance, from [7, Proposition 2.1], for $n \in \mathbb{N}$, *n*-ideal amenability of $\mathcal{A} \times_{\theta} \mathcal{B}$ implies that of \mathcal{B} . In this section we prove that if the θ -Lau product of two Banach algebras \mathcal{A} and \mathcal{B} , $\mathcal{A} \times_{\theta} \mathcal{B}$, with \mathcal{B} unital, is BSE, then \mathcal{B} is a BSE algebra. Before that we need to present some definitions and preliminaries. More results on this product can be found in [12]. **DEFINITION 3.1.** Let \mathcal{A} and \mathcal{B} be two commutative Banach algebras for which $\Delta(\mathcal{B}) \neq \emptyset$. Let $\theta \in \Delta(\mathcal{B})$. The θ -Lau product $\mathcal{A} \times_{\theta} \mathcal{B}$ is defined as the Cartesian product $\mathcal{A} \times \mathcal{B}$ with the algebra multiplication

$$(a_1, b_1)(a_2, b_2) = (a_1a_2 + \theta(b_1)a_2 + \theta(b_2)a_1, b_1b_2)$$

and norm ||(a, b)|| = ||a|| + ||b||.

Obviously if \mathcal{B} is a unital Banach algebra, then $\mathcal{A} \times_{\theta} \mathcal{B}$ is a unital Banach algebra for any Banach algebra \mathcal{A} .

REMARK 3.2. The space $\mathcal{A} \times_{\theta} \mathcal{B}$ is a Banach algebra. If we allow $\theta = 0$, we obtain the usual direct sum of Banach algebras. If $\mathcal{B} = \mathbb{C}$ and $\theta : \mathbb{C} \to \mathbb{C}$ is the identity map, then $\mathcal{A} \times_{\theta} \mathbb{C}$ coincides with the unitisation \mathcal{A}_{e} of \mathcal{A} .

The dual of the space $\mathcal{A} \times_{\theta} \mathcal{B}$ can be identified with $\mathcal{A}^* \oplus \mathcal{B}^*$ in the natural way: $(\varphi, \psi)(a, b) = \varphi(a) + \psi(b)$. The dual norm on $\mathcal{A}^* \oplus \mathcal{B}^*$ is the maximum norm $||(\varphi, \psi)|| = \max\{||\varphi||, ||\psi||\}$. On $\mathcal{A}^* \oplus \mathcal{B}^*$, the weak* topology coincides with the product of the weak* topologies of \mathcal{A}^* and \mathcal{B}^* . The following theorem, which is proved in [12], identifies the Gelfand spectrum $\Delta(\mathcal{A} \times_{\theta} \mathcal{B})$ of $\mathcal{A} \times_{\theta} \mathcal{B}$.

THEOREM 3.3. Let \mathcal{A} and \mathcal{B} be Banach algebras with $\Delta(\mathcal{B}) \neq \emptyset$. Let $\theta \in \Delta(\mathcal{B})$ and

$$E = \{(\varphi, \theta) : \varphi \in \Delta(\mathcal{A})\}, \quad F = \{(0, \psi) : \psi \in \Delta(\mathcal{B})\}.$$

Set $E = \emptyset$ if $\Delta(A) = \emptyset$. Then $\Delta(A \times_{\theta} B) = E \cup F$.

Note that the topology on $E \cup F = \Delta(\mathcal{A} \times_{\theta} \mathcal{B})$ is the weak* topology induced from $(\mathcal{A} \times_{\theta} \mathcal{B})^* = \mathcal{A}^* \oplus \mathcal{B}^*$ and it is precisely the Gelfand topology on $\Delta(\mathcal{A} \times_{\theta} \mathcal{B})$.

THEOREM 3.4. Let \mathcal{A} and \mathcal{B} be two commutative Banach algebras. Suppose that $\mathcal{A} \times_{\theta} \mathcal{B}$ is a BSE algebra. Then \mathcal{B} is a BSE algebra.

PROOF. Let $\sigma \in C_{BSE}(\Delta(\mathcal{B}))$. Then by [14, Theorem 4(i)], there exists a bounded net $\{y_{\lambda}\}_{\lambda} \subset \mathcal{B}$ such that $\lim_{\lambda} \widehat{y_{\lambda}}(\psi) = \sigma(\psi)$, for all $\psi \in \Delta(\mathcal{B})$. If we consider the bounded net $\{(0, y_{\lambda})\}_{\lambda} \subset \mathcal{A} \times_{\theta} \mathcal{B}$,

$$\lim_{\lambda} (\widehat{0, y_{\lambda}})(0, \psi) = \lim_{\lambda} (0, \psi)(0, y_{\lambda}) = \lim_{\lambda} 0 + \widehat{y_{\lambda}}(\psi)$$
$$= \sigma(\psi) = (0, \sigma)(0, \psi),$$

for all $(0, \psi) \in E$. Also, for all $(\varphi, \theta) \in F$,

$$\lim_{\lambda} (\widehat{0, y_{\lambda}})(\varphi, \theta) = \lim_{\lambda} (\varphi, \theta)(0, y_{\lambda}) = \lim_{\lambda} \widehat{y_{\lambda}}(\theta)$$
$$= \sigma(\theta) = (0, \sigma)(\varphi, \theta).$$

Consequently, for all $\Phi \in E \cup F = \Delta(\mathcal{A} \times_{\theta} \mathcal{B})$,

$$\lim_{\lambda} (\widehat{0, y_{\lambda}})(\Phi) = (0, \sigma)(\Phi).$$

[7]

Then $(0, \sigma) \in C_{BSE}(\Delta(\mathcal{A} \times_{\theta} \mathcal{B}))$ and since $\mathcal{A} \times_{\theta} \mathcal{B}$ is BSE, $(0, \sigma) \in (\mathcal{A} \times_{\theta} \mathcal{B})$. So there exists $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$ such that $(a, b) = (0, \sigma)$. Then, for all $\psi \in \Delta(\mathcal{B})$,

$$\sigma(\psi) = (0, \sigma)(0, \psi) = (\widehat{a, b})(0, \psi) = (0, \psi)(a, b) = \widehat{b(\psi)}.$$

This means that $\sigma \in \widehat{\mathcal{B}}$ and since \mathcal{B} is unital, \mathcal{B} is a BSE algebra.

The following examples show that if $\mathcal{A} \times_{\theta} \mathcal{B}$, for \mathcal{B} unital, is BSE we cannot conclude that \mathcal{A} is BSE in general. Before that we need to present a result proved by Kaniuth and Ülger, [8, Theorem 4.8].

THEOREM 3.5. Let \mathcal{A} be a nonunital commutative Banach algebra. Then the unitisation \mathcal{A}_e of \mathcal{A} is a BSE algebra if and only if

$$C_{BSE}(\Delta(\mathcal{A})) \cap C_0(\Delta(\mathcal{A})) = \mathcal{A}.$$

Example 3.6.

- (1) Let *G* be a second countable noncompact locally compact group whose regular representation is not completely reducible and A(G) be the Fourier algebra of *G*. Then $A(G) \neq B(G) \cap C_0(G)$ (see [1, 5, 8]). Thus if in addition *G* is amenable, then A(G) is a BSE algebra [8], but $A(G)_e = A(G) \times_{\theta} \mathbb{C}$, such that $\theta : \mathbb{C} \to \mathbb{C}$ is the identity map, is not BSE, by Theorem 3.5
- (2) Let $l^1(\mathbb{N})$ be the semigroup algebra of the additive semigroup of natural numbers. Then $l^1(\mathbb{N})$ is not a BSE algebra [14]. However, the semigroup algebra $l^1(\mathbb{N} \cup \{0\}) = l^1(\mathbb{N})_e = l^1(\mathbb{N}) \times_{\theta} \mathbb{C}$, such that $\theta : \mathbb{C} \to \mathbb{C}$ is the identity map, is a BSE algebra by [15, Theorem 6].

Acknowledgements

The authors would like to thank the Center of Excellence for Mathematics and the office of Graduate Studies of the University of Isfahan for their financial support.

References

- [1] L. Baggett and K. Taylor, 'A sufficient condition for the complete reducibility of the regular representation', *J. Funct. Anal.* **34** (1979), 250–265.
- [2] S. Bochner, 'A theorem on Fourier–Stieltjes integrals', Bull. Amer. Math. Soc. 40 (1934), 271–276.
- [3] W. F. Eberlein, 'Characterizations of Fourier–Stieltjes transforms', *Duke. Math. J.* 22 (1955), 465–468.
- [4] A. Fattahi, 'Multiplier on character amenable Banach algebras', *Int. Math. Forum* **42** (2010), 2085–2091.
- [5] A. Figà-Talamanca, 'Positive definite functions which vanish at infinity', *Pacific J. Math.* 69 (1977), 355–363.
- [6] C. A. Jones and C. D. Lahr, 'Weak and norm approximate identities are different', *Pacific J. Math.* 72 (1977), 99–104.
- [7] Z. Kamali and M. Nemati, 'On *n*-ideal amenability of certain Banach algebras', *Bull. Aust. Math. Soc.* 86 (2012), 90–99.

257

- [8] E. Kaniuth and A. Ülger, 'The Bochner–Schoenberg–Eberlein property for commutative Banach algebras, especially Fourier and Fourier–Stieltjes algebras', *Trans. Amer. Math. Soc.* 362 (2010), 4331–4356.
- [9] R. Larsen, An Introduction to the Theory of Multipliers (Springer, New York, 1971).
- [10] A. T.-M. Lau, 'Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups', *Fund. Math.* 118 (1983), 161–175.
- [11] W. Rudin, Fourier Analysis on Groups (Wiley Interscience, New York, 1984).
- [12] M. Sangani Monfared, 'On certain products of Banach algebras with applications to harmonic analysis', *Studia Math.* 178 (2007), 277–294.
- [13] I. J. Schoenberg, 'A remark on the preceeding note by Bochner', Bull. Amer. Math. Soc. 40 (1934), 277–278.
- [14] S.-E. Takahasi and O. Hatori, 'Commutative Banach algebras which satisfy a Bochner– Schoenberg–Eberlin-type theorem', Proc. Amer. Math. Soc. 110 (1990), 149–158.
- [15] S.-E. Takahasi and O. Hatori, 'Commutative Banach algebras and BSE-inequalities', Math. Japonica 37 (1992), 47–52.
- Y. Zaime, 'Opérateurs de convolution d'image fermé et unité approchés', *Bull. Sci. Math 2e Sèr.* 99 (1975), 65–74.

ZEINAB KAMALI, Department of Mathematics, Faculty of Science, University of Isfahan, Isfahan, Iran e-mail: ze.kamali@sci.ui.ac.ir

MAHMOOD LASHKARIZADEH BAMI, Department of Mathematics, Faculty of Science, University of Isfahan, Isfahan, Iran

e-mail: lashkari@sci.ui.ac.ir

258