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Abstract

The notion of BSE algebras was introduced and first studied by Takahasi and Hatori and later studied
by Kaniuth and Ülger. This notion depends strongly on the multiplier algebra M(A) of a commutative
Banach algebra A. In this paper we first present a characterisation of the multiplier algebra of the direct
sum of two commutative semisimple Banach algebras. Then as an application we show that A⊕ B is a
BSE algebra if and only ifA and B are BSE. We also prove that if the algebraA×θ B with θ-Lau product
is a BSE algebra and B is unital then B is a BSE algebra. We present some examples which show that the
BSE property ofA×θ B does not imply the BSE property ofA, even in the case where B is unital.
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1. Introduction

LetA be a commutative Banach algebra. Throughout this paper ∆(A) denotes the set
of all nonzero multiplicative linear functionals onA. Then ∆(A) is a topological space
with the Gelfand topology, called the Gelfand spectrum ofA.

A bounded continuous function σ on ∆(A) is called a BSE function if there exists
a constant C > 0 such that for every finite number of ϕ1, . . . , ϕn in ∆(A) and the same
number of complex numbers c1, . . . , cn, the inequality∣∣∣∣∣ n∑

j=1

c jσ(ϕ j)
∣∣∣∣∣ ≤C

∥∥∥∥∥ n∑
j=1

c jϕ j

∥∥∥∥∥
A∗

holds. The BSE norm of σ, ‖σ‖BS E , is defined to be the infimum of all such C. The set
of all BSE functions is denoted by CBS E(∆(A)). Takahasi and Hatori [14] showed that
under the norm ‖ · ‖BS E , CBS E(∆(A)) is a commutative semisimple Banach algebra.

A bounded linear operator on A is called a multiplier if it satisfies xT (y) = T (xy)
for all x, y ∈ A. The set M(A) of all multipliers of A is a closed unital commutative
subalgebra of the operator algebra B(A), called the multiplier algebra ofA.
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For each T ∈ M(A) there exists a unique continuous function T̂ on ∆(A) such that
T̂ (a)(ϕ) = T̂ (ϕ)â(ϕ) for all a ∈ A and ϕ ∈ ∆(A). See [9] for a proof. Write

M̂(A) = {T̂ : T ∈ M(A)}.

We say that a commutative Banach algebra A without order is a BSE algebra (or it is
said to have the BSE property) ifA satisfies the condition

CBS E(∆(A)) = M̂(A).

R 1.1. Let A be a semisimple Banach algebra and Φ : ∆(A)→ C be a
continuous function such that Φ · Â ⊆ Â. We call Φ a multiplier ofA. This is another
definition of a multiplier of a Banach algebra. In the presence of semisimplicity this
definition is equivalent to the above definition, by considering Φ = T̂ ; see [9] for more
details. Define

M(A) = {Φ : ∆(A)→ C : Φ is continuous and ΦÂ ⊆ Â}.

WhenA is a semisimple Banach algebra, M̂(A) =M(A).

The abbreviation BSE stands for Bochner–Schoenberg–Eberlein and refers to the
famous theorem, proved by Bochner and Schoenberg [2, 13] for the additive group of
real numbers and by Eberlein [3] for general locally compact abelian groups G, saying
that, in the above terminology, the group algebra L1(G) is a BSE algebra. (See [11] for
a proof.)

The notions of BSE algebra and BSE functions were introduced and studied by
Takahasi and Hatori [14, 15] and later by Kaniuth and Ülger [8].

A bounded net (eα)α in A is called a bounded approximate identity for A if
it satisfies ‖eαa − a‖ → 0 for all a ∈ A. A bounded net (eα)α in A is called a ∆-
weak bounded approximate identity for A if it satisfies ϕ(eα)→ 1 (equivalently,
ϕ(eαa)→ ϕ(a) for every a ∈ A) for all ϕ ∈ ∆(A). Such approximate identities were
studied in [6], where the first example was given of a semisimple commutative Banach
algebra which has a ∆-weak approximate identity but does not possess a bounded
approximate identity. As is shown in [14, Corollary 5], A has a ∆-weak bounded
approximate identity if and only if M̂(A) ⊆CBS E(∆(A)).

In this paper we first present a characterisation of the multiplier algebra of the direct
sum of two semisimple Banach algebras. Then as an application we show that for two
semisimple Banach algebrasA and B,A⊕ B is BSE if and only ifA and B are.

We also prove that ifA and B are Banach algebras such that B is unital andA×θ B
is BSE, then B is a BSE algebra, and we present some examples showing that the BSE
property ofA×θ B does not imply that ofA.

2. Direct sum of Banach algebras

LetA and B be two commutative Banach algebras. The direct sum algebraA⊕ B
ofA and B is defined as the Cartesian productA× B with the algebra multiplication

(a, a′) · (b, b′) = (aa′, bb′) (a, a′ ∈ A, b, b′ ∈ B),
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and with norm

‖(a, b)‖ = ‖a‖ + ‖b‖ (a ∈ A, b ∈ B).

In this section we will give a characterisation of the multiplier algebra of the direct sum
algebra A⊕ B, M(A⊕ B), and then prove that for two semisimple Banach algebras
A and B, A⊕ B is a BSE algebra if and only if A and B are BSE algebras. First we
need to prove the following lemma.

L 2.1. LetA and B be two Banach algebras and

E = {(ϕ, 0) : ϕ ∈ ∆(A)}, F = {(0, ψ) : ψ ∈ ∆(B)}.

Then ∆(A⊕ B) = E ∪ F.

P. It is obvious that E ∪ F ⊆ ∆(A⊕ B). For the reverse inclusion suppose that
(ϕ, ψ) ∈ ∆(A⊕ B) ⊆A∗ ⊕ B∗. Then, for every a1, a2 ∈ A and b1, b2 ∈ B,

(ϕ, ψ)(a1a2, b1b2) = (ϕ, ψ)(a1, b1) · (ϕ, ψ)(a2, b2).

This means that, for all a1, a2 ∈ A and b1, b2 ∈ B,

ϕ(a1a2) + ψ(b1b2) = (ϕ(a1) + ψ(b1)) · (ϕ(a2) + ψ(b2))

= ϕ(a1)ϕ(a2) + ϕ(a1)ψ(a2) + ψ(b1)ϕ(a2) + ψ(b1)ψ(b2).
(I)

If we take b1 = b2 = 0, it follows that ϕ(a1a2) = ϕ(a1)ϕ(a2) for all a1, a2 ∈ A.
And similarly, if we take a1 = a2 = 0 it follows that ψ(b1b2) = ψ(b1)ψ(b2). Then
ϕ ∈ ∆(A) ∪ {0} and ψ ∈ ∆(B) ∪ {0}. Now if ϕ = 0, then (ϕ, ψ) = (0, ψ) ∈ F. If ϕ , 0,
then (I) implies that

ϕ(a1)ψ(a2) + ψ(b1)ϕ(a2) = 0,

for all a1, a2 ∈ A and b1, b2 ∈ B. If we set a1 = 0 and a2 such that ϕ(a2) , 0, it follows
that ψ(b1) = 0 for all b1 ∈ B and then ψ = 0. This means that (ϕ, ψ) = (ϕ, 0) ∈ E. So
∆(A⊕ B) ⊆ E ∪ F. �

R 2.2. Since E ∪ F ⊂ (A⊕ B)∗ =A∗ ⊕ B∗, its topology is the one induced from
A∗ ⊕ B∗ and is precisely the Gelfand topology of ∆(A⊕ B).

Note that Lemma 2.1 implies thatA⊕ B is semisimple if and only if bothA and B
are semisimple.

T 2.3. LetA and B be semisimple Banach algebras. Then

M(A⊕ B) = {(Φ, Ψ) : Φ ∈M(A), Ψ ∈M(B)},

where (Φ, Ψ)(ϕ, 0) = Φ(ϕ) and (Φ, Ψ)(0, ψ) = Φ(ψ) for all (ϕ, 0) ∈ E and (0, ψ) ∈ F.
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P. Let Φ ∈M(A) and Ψ ∈M(B). Since ΦÂ ⊆ Â and ΨB̂ ⊆ B̂, then for all
(ϕ, 0) ∈ E and (a, b) ∈ A ⊕ B, there are elements a′ ∈ A and b′ ∈ B such that

((Φ, Ψ) · (̂a, b))(ϕ, 0) = (Φ, Ψ)(ϕ, 0)(̂a, b)(ϕ, 0)

= Φ(ϕ)̂a(ϕ) = â′(ϕ),

for all ϕ ∈ ∆(A), and

((Φ, Ψ) · (̂a, b))(0, ψ) = (Φ, Ψ)(0, ψ)(̂a, b)(0, ψ)

= Ψ(ψ)̂b(ψ) = b̂′(ψ),

for all ψ ∈ ∆(B). Then ((Φ, Ψ) · (̂a, b))(ϕ, 0) = ̂(a′, b′)(ϕ, 0) and ((Φ, Ψ) · (̂a, b))(0, ψ) =
̂(a′, b′)(0, ψ). This implies that

(Φ, Ψ) · Â ⊕ B ⊆ Â ⊕ B

and (Φ, Ψ) ∈M(A⊕ B).
Now let F ∈M(A⊕ B). Define Φ(ϕ) = F(ϕ, 0) and Ψ(ψ) = F(0, ψ), for all ϕ ∈

∆(A) and ψ ∈ ∆(B). So F = (Φ, Ψ). It is enough to show that Φ ∈M(A) and
Ψ ∈M(B). For all a ∈ A, there exists (a′, b′) ∈ A ⊕ B such that

Φ(ϕ)̂a(ϕ) = (Φ, Ψ)(ϕ, 0)(̂a, 0)(ϕ, 0) = ̂(a′, b′)(ϕ, 0) = â′(ϕ).

Then ΦÂ ⊆ Â and Φ ∈M(A). Similarly, Ψ ∈M(A). �

T 2.4. Let A and B be two semisimple Banach algebras. Then A⊕ B is BSE
if and only ifA and B are BSE.

P. First suppose that A and B are BSE. Then by [14, Corollary 5] A and B have
∆-weak bounded approximate identities. Let {eα}α and { fβ}β be ∆-weak bounded
approximate identities of A and B, respectively. Then {(eα, fβ)}(α,β) is a ∆-weak
bounded approximate identity forA⊕ B. Indeed, for all ϕ ∈ ∆(A) and ψ ∈ ∆(B),

lim
(α,β)

(ϕ, 0)(eα, fβ) = lim
α
ϕ(eα) = 1

and
lim
(α,β)

(0, ψ)(eα, fβ) = lim
β
ψ( fβ) = 1,

so that, for all Φ ∈ E ∪ F = ∆(A⊕ B),

lim
(α,β)

F(eα, fβ) = 1,

and {(eα, fβ)}(α,β) is a ∆-weak approximate identity for A⊕ B. Then by [14,
Corollary 5]

M(A⊕ B) ⊆CBS E(∆(A⊕ B)).

For the reverse conclusion, let σ ∈CBS E(∆(A⊕ B)). Then, by [14, Theorem 4(ii)],
σ ∈Cb(∆(A⊕ B)) ∩ (A⊕ B)∗∗|∆(A⊕B) = Cb(∆(A⊕ B)) ∩ (A∗∗ ⊕ B∗∗)|∆(A⊕B). Then
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there are σ1 ∈ A
∗∗ and σ2 ∈ B

∗∗ such that σ1|∆(A) ∈Cb(∆(A)) ∩A∗∗|∆(A), σ2|∆(B) ∈

Cb(∆(B)) ∩ B∗∗|∆(B) and σ = (σ1, σ2)|∆(A⊕B). On the other hand, since σ ∈
CBS E(∆(A⊕ B)), there exists β > 0 such that, for every finite number of c1, . . . , cn ∈ C
and (ϕ1, ψ1), . . . , (ϕn, ψn) ∈ ∆(A⊕ B),∣∣∣∣∣ n∑

i=1

ciσ(ϕi, ψi)
∣∣∣∣∣ ≤ β∥∥∥∥∥ n∑

i=1

ci(ϕi, ψi)
∥∥∥∥∥
A∗⊕B∗

.

In particular, for every (ϕ1, 0), . . . , (ϕn, 0) ∈ E and c1, . . . , cn ∈ C,∣∣∣∣∣ n∑
i=1

ciσ(ϕi, 0)
∣∣∣∣∣ =

∣∣∣∣∣ n∑
i=1

ciσ1(ϕi)
∣∣∣∣∣

≤ β

∥∥∥∥∥ n∑
i=1

ci(ϕi, 0)
∥∥∥∥∥
A∗⊕B∗

= β sup
{∣∣∣∣∣ n∑

i=1

ci(ϕi, 0)(a, b)
∣∣∣∣∣ : ‖a‖ + ‖b‖ ≤ 1

}
≤ β sup

{∣∣∣∣∣ n∑
i=1

ciϕi(a)
∣∣∣∣∣ : ‖a‖ ≤ 1

}
= β

∥∥∥∥∥ n∑
i=1

ciϕi

∥∥∥∥∥
A∗
.

This means that σ1 ∈CBS E(∆(A)). Now since A is a semisimple BSE algebra,
σ1 ∈M(A). In a similar way (by considering (0, ψ1), . . . , (0, ψn)) we conclude that
σ2 ∈M(B). So σ = (σ1, σ2) ∈M(A⊕ B). Then CBS E(∆(A ⊕ B)) ⊂M(A⊕ B) and
A⊕ B is a BSE algebra.

Now suppose that A ⊕ B is BSE and let {(eα, fα)}α be a ∆-weak bounded
approximate identity forA⊕ B. Then, for all ϕ ∈ ∆(A),

lim
α
ϕ(eα) = lim

α
(ϕ, 0)(eα, fα) = 1.

So {eα}α is a ∆-weak bounded approximate identity for A, and similarly { fα}α is
a ∆-weak bounded approximate identity for B, and [14, Corollary 5] implies that
M(A) ⊆CBS E(∆(A)) andM(B) ⊆CBS E(∆(B)).

Now let σ1 ∈CBS E(∆(A)) and σ2 ∈CBS E(∆(B)). Then by [14, Theorem 4(i)] there
are nets {xλ}λ ⊂A and {yµ}µ ∈ B such that limλ x̂λ(ϕ) = σ1(ϕ) and limµ ŷµ(ψ) = σ2(ψ),
for all ϕ ∈ ∆(A) and ψ ∈ ∆(B). If we consider the net {(xλ, yµ)}(λ,µ) ⊂A ⊕ B, then

lim
(λ,µ)

̂(xλ, yµ)(ϕ, 0) = lim
(λ,µ)

(ϕ, 0)(xλ, yµ) = lim
(λ,µ)

ϕ(xλ) + 0

= lim
(λ,µ)

x̂λ(ϕ) + 0 = σ1(ϕ) + 0

= (σ1, σ2)(ϕ, 0),
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for all ϕ ∈ ∆(A). And similarly, for all ψ ∈ ∆(B),

lim
(λ,µ)

̂(xλ, yµ)(0, ψ) = (σ1, σ2)(0, ψ).

This means that if we let σ = (σ1, σ2) then

lim
(λ,µ)

̂(xλ, yµ)(Φ) = σ(Φ),

for all Φ ∈ E ∪ F = ∆(A⊕ B). Then σ = (σ1, σ2) ∈CBS E(∆(A⊕ B)). Now since
A⊕ B is a BSE algebra, σ = (σ1, σ2) ∈M(A⊕ B) and, by Theorem 2.3, σ1 ∈M(A)
and σ2 ∈M(B). SoA and B are BSE algebras. �

Let G be a locally compact abelian group and M(G) the Banach algebra of bounded
regular measures on G. The set of continuous measures in M(G) is denoted by Mc(G).
This is a closed ideal in M(G), and

M(G) = Md(G) ⊕ Mc(G) = l1(G) ⊕ Mc(G).

When G is not discrete, Mc(G) , {0}. It is shown in [14] that M(G) is a BSE algebra if
and only if G is discrete. So we have the following result.

C 2.5. For a nondiscrete locally compact abelian group G, Mc(G) is not a
BSE algebra.

C 2.6. Let G be a locally compact abelian group and µ ∈ M(G) be a measure
which factors as a product of an invertible measure and an idempotent measure. Then
µ ∗ L1(G) is a BSE algebra.

P. Define Tµ( f ) = µ ∗ f . Then Tµ is a multiplier of the Banach algebra L1(G). It is
shown in [16] that T (L1(G)) = µ ∗ L1(G) is closed in L1(G). By [4, Theorem 3.4], since
L1(G) is a commutative semisimple amenable Banach algebra, it factors as follows:

L1(G) = Tµ(L1(G)) ⊕ Ker(Tµ) = (µ ∗ L1(G)) ⊕ Ker(Tµ).

Since L1(G) is a BSE algebra, by Theorem 2.4, µ ∗ L1(G) is BSE as well. �

3. θ-Lau product of Banach algebras

The productsA×θ B of Banach algebrasA and Bwere first introduced and studied
by Lau [10]. The Banach algebra B inherits some properties ofA×θ B. For instance,
from [7, Proposition 2.1], for n ∈ N, n-ideal amenability of A×θ B implies that of B.
In this section we prove that if the θ-Lau product of two Banach algebras A and B,
A×θ B, withB unital, is BSE, thenB is a BSE algebra. Before that we need to present
some definitions and preliminaries. More results on this product can be found in [12].
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D 3.1. LetA andB be two commutative Banach algebras for which ∆(B) , ∅.
Let θ ∈ ∆(B). The θ-Lau product A×θ B is defined as the Cartesian product A× B
with the algebra multiplication

(a1, b1)(a2, b2) = (a1a2 + θ(b1)a2 + θ(b2)a1, b1b2)

and norm ‖(a, b)‖ = ‖a‖ + ‖b‖.

Obviously if B is a unital Banach algebra, then A×θ B is a unital Banach algebra
for any Banach algebraA.

R 3.2. The space A×θ B is a Banach algebra. If we allow θ = 0, we obtain the
usual direct sum of Banach algebras. If B = C and θ : C→ C is the identity map, then
A×θ C coincides with the unitisationAe ofA.

The dual of the space A×θ B can be identified with A∗ ⊕ B∗ in the natural
way: (ϕ, ψ)(a, b) = ϕ(a) + ψ(b). The dual norm on A∗ ⊕ B∗ is the maximum norm
‖(ϕ, ψ)‖ = max{‖ϕ‖, ‖ψ‖}. OnA∗ ⊕ B∗, the weak* topology coincides with the product
of the weak* topologies ofA∗ andB∗. The following theorem, which is proved in [12],
identifies the Gelfand spectrum ∆(A×θ B) ofA×θ B.

T 3.3. LetA and B be Banach algebras with ∆(B) , ∅. Let θ ∈ ∆(B) and

E = {(ϕ, θ) : ϕ ∈ ∆(A)}, F = {(0, ψ) : ψ ∈ ∆(B)}.

Set E = ∅ if ∆(A) = ∅. Then ∆(A ×θ B) = E ∪ F.

Note that the topology on E ∪ F = ∆(A×θ B) is the weak* topology induced from
(A×θ B)∗ =A∗ ⊕ B∗ and it is precisely the Gelfand topology on ∆(A×θ B).

T 3.4. Let A and B be two commutative Banach algebras. Suppose that
A×θ B is a BSE algebra. Then B is a BSE algebra.

P. Let σ ∈CBS E(∆(B)). Then by [14, Theorem 4(i)], there exists a bounded net
{yλ}λ ⊂ B such that limλ ŷλ(ψ) = σ(ψ), for all ψ ∈ ∆(B). If we consider the bounded
net {(0, yλ)}λ ⊂A ×θ B,

lim
λ
̂(0, yλ)(0, ψ) = lim

λ
(0, ψ)(0, yλ) = lim

λ
0 + ŷλ(ψ)

= σ(ψ) = (0, σ)(0, ψ),

for all (0, ψ) ∈ E. Also, for all (ϕ, θ) ∈ F,

lim
λ
̂(0, yλ)(ϕ, θ) = lim

λ
(ϕ, θ)(0, yλ) = lim

λ
ŷλ(θ)

= σ(θ) = (0, σ)(ϕ, θ).

Consequently, for all Φ ∈ E ∪ F = ∆(A×θ B),

lim
λ
̂(0, yλ)(Φ) = (0, σ)(Φ).

https://doi.org/10.1017/S0004972712001001 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712001001


[8] The direct sum of Banach algebras 257

Then (0, σ) ∈CBS E(∆(A×θ B)) and sinceA×θ B is BSE, (0, σ) ∈ ̂(A×θ B). So there
exists (a, b) ∈ A ×θ B such that (̂a, b) = (0, σ). Then, for all ψ ∈ ∆(B),

σ(ψ) = (0, σ)(0, ψ) = (̂a, b)(0, ψ) = (0, ψ)(a, b) = b̂(ψ).

This means that σ ∈ B̂ and since B is unital, B is a BSE algebra. �

The following examples show that if A×θ B, for B unital, is BSE we cannot
conclude that A is BSE in general. Before that we need to present a result proved
by Kaniuth and Ülger, [8, Theorem 4.8].

T 3.5. LetA be a nonunital commutative Banach algebra. Then the unitisation
Ae ofA is a BSE algebra if and only if

CBS E(∆(A)) ∩C0(∆(A)) = Â.

E 3.6.

(1) Let G be a second countable noncompact locally compact group whose regular
representation is not completely reducible and A(G) be the Fourier algebra of G.
Then A(G) , B(G) ∩C0(G) (see [1, 5, 8]). Thus if in addition G is amenable,
then A(G) is a BSE algebra [8], but A(G)e = A(G) ×θ C, such that θ : C→ C is
the identity map, is not BSE, by Theorem 3.5

(2) Let l1(N) be the semigroup algebra of the additive semigroup of natural numbers.
Then l1(N) is not a BSE algebra [14]. However, the semigroup algebra
l1(N ∪ {0}) = l1(N)e = l1(N) ×θ C, such that θ : C→ C is the identity map, is a
BSE algebra by [15, Theorem 6].

Acknowledgements

The authors would like to thank the Center of Excellence for Mathematics and the
office of Graduate Studies of the University of Isfahan for their financial support.

References

[1] L. Baggett and K. Taylor, ‘A sufficient condition for the complete reducibility of the regular
representation’, J. Funct. Anal. 34 (1979), 250–265.

[2] S. Bochner, ‘A theorem on Fourier–Stieltjes integrals’, Bull. Amer. Math. Soc. 40 (1934),
271–276.

[3] W. F. Eberlein, ‘Characterizations of Fourier–Stieltjes transforms’, Duke. Math. J. 22 (1955),
465–468.

[4] A. Fattahi, ‘Multiplier on character amenable Banach algebras’, Int. Math. Forum 42 (2010),
2085–2091.

[5] A. Figà-Talamanca, ‘Positive definite functions which vanish at infinity’, Pacific J. Math. 69
(1977), 355–363.

[6] C. A. Jones and C. D. Lahr, ‘Weak and norm approximate identities are different’, Pacific J. Math.
72 (1977), 99–104.

[7] Z. Kamali and M. Nemati, ‘On n-ideal amenability of certain Banach algebras’, Bull. Aust. Math.
Soc. 86 (2012), 90–99.

https://doi.org/10.1017/S0004972712001001 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712001001


258 Z. Kamali and M. Lashkarizadeh Bami [9]

[8] E. Kaniuth and A. Ülger, ‘The Bochner–Schoenberg–Eberlein property for commutative Banach
algebras, especially Fourier and Fourier–Stieltjes algebras’, Trans. Amer. Math. Soc. 362 (2010),
4331–4356.

[9] R. Larsen, An Introduction to the Theory of Multipliers (Springer, New York, 1971).
[10] A. T.-M. Lau, ‘Analysis on a class of Banach algebras with applications to harmonic analysis on

locally compact groups and semigroups’, Fund. Math. 118 (1983), 161–175.
[11] W. Rudin, Fourier Analysis on Groups (Wiley Interscience, New York, 1984).
[12] M. Sangani Monfared, ‘On certain products of Banach algebras with applications to harmonic

analysis’, Studia Math. 178 (2007), 277–294.
[13] I. J. Schoenberg, ‘A remark on the preceeding note by Bochner’, Bull. Amer. Math. Soc. 40 (1934),

277–278.
[14] S.-E. Takahasi and O. Hatori, ‘Commutative Banach algebras which satisfy a Bochner–

Schoenberg–Eberlin-type theorem’, Proc. Amer. Math. Soc. 110 (1990), 149–158.
[15] S.-E. Takahasi and O. Hatori, ‘Commutative Banach algebras and BSE-inequalities’, Math.

Japonica 37 (1992), 47–52.
[16] Y. Zaime, ‘Opérateurs de convolution d’image fermé et unité approchés’, Bull. Sci. Math 2e Sèr.

99 (1975), 65–74.

ZEINAB KAMALI, Department of Mathematics,
Faculty of Science, University of Isfahan, Isfahan, Iran
e-mail: ze.kamali@sci.ui.ac.ir

MAHMOOD LASHKARIZADEH BAMI, Department of Mathematics,
Faculty of Science, University of Isfahan, Isfahan, Iran
e-mail: lashkari@sci.ui.ac.ir

https://doi.org/10.1017/S0004972712001001 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712001001

