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Splitting, Bounding, and Almost
Disjointness Can Be Quite Different

Vera Fischer and Diego Alejandro Mejia

Abstract. 'We prove the consistency of
add(N) <cov(N) <p=5=g<add(M) =cof (M) <a=tr=non(N) =¢

with ZFC, where each of these cardinal invariants assume arbitrary uncountable regular values.

1 Introduction

The splitting, the bounding, and the almost disjointness numbers, denoted s, b, and
a respectively, have been of interest for already a long time. The splitting and the
bounding numbers, as well as the splitting and the almost disjointness numbers, are
independent, while an easy ZFC argument shows that b < a (see [Blal0]). The consis-
tency of s < b = a holds in the Hechler model (see [BD85]). In 1984, introducing the
powerful technique of creature forcing, S. Shelah [She84] obtained a generic extension
in which cardinals are not collapsed and b = ®; < a = 5§ = R;. As this is a countable
support iteration of proper forcing argument (thus, restricted to force ¢ at most &),
it remained interesting to generalize these results on models of larger continuum, i.e.,
models of ¢ > ®,. Almost 15 years later, ]. Brendle [Bre97] showed that consistently
b = x < a =«", while in 2008 the first author jointly with J. Steprans [FS08] obtained
the consistency of b = x < 5 = ™, where « is an arbitrary regular uncountable car-
dinal. Even though the constructions can be combined to produce the consistency of
b =« < a=s=«", they cannot be further generalized to produce a model in which
there is an arbitrarily large spread between the relevant cardinal characteristics.

To show the consistency of ®; < 9 < a (without the assumption of a measurable),
where 0 is the dominating number, S. Shelah [She04] introduced a ground-breaking,
new technique, known as template iterations. Since this technique is central to the
current paper, we will add a few more lines regarding this construction. In his work,
Shelah generalizes the classical fsi (finite support iteration) of Suslin ccc posets to
the context of a finite-supported iteration along an arbitrary linear order, where the
iteration is constructed from a well-founded structure of subsets of the linear order,
known as a template. As an application, assuming CH and ®; < y < A regular cardinals
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with A™ = A, he constructs a template so that the iteration using Hechler forcing (the
standard ccc poset adding a dominating real) along this template produces a y-scale
in the extension to get b = 0 = y and, on the other hand, by an isomorphism-of-
names argument, there are no mad (maximal almost disjoint) families of size between
p (including it) and A (excluding it), so a = ¢ = A in the extension (because b < a). In
this model s = ®; and so all of 5, b, and a are distinct in Shelah’s template extension.
The same consistency result was obtained for A singular with uncountable cofinality
and, later, for instances of A of countable cofinality by Brendle [Bre03].

In [BreFl11], using a method known as matrix iteration, the first author jointly with
J. Brendle, established the consistency of a = b = k¥ < s = A, where k¥ < A are ar-
bitrary regular uncountable cardinals. This result depends heavily on a new method
of preserving the maximality of a certain maximal almost disjoint family along such
an iteration. In the same paper, it is shown that b = ¥ < § = a = A, where « is
above a measurable in the ground model, thus generalizing Shelah’s creature posets
result mentioned earlier. The authors ask if any of the following two constellations
b<a<s, aswellas b < s < aare consistent. Both remain very interesting open
questions.

As an attempt to get a model of ®; < § < b < a, the second author [Mejl5] in-
troduced the iteration of non-definable ccc posets along a template. He proved that if
6 < k < u < A are uncountable regular cardinals, x is measurable, 8<% = 6, and
A¥ = A, then there is a ccc poset forcings =p=g=0,b=0=py,and a = ¢ = A. Also,
non(N) =t = A and (by a slight modification of the forcing) add(N)) = cov(N) = 6
hold in the extension. The forcing construction is a matrix iteration involving paral-
lel template iterations, as in Shelah’s original template model, modulo a measurable
cardinal.

In this paper we show that X; < 5§ < b < a consistently without the assumption
of measurability, which solves [Mejl5, Question 8.1]. In addition, answering [Mej15,
Question 8.2], we show that given arbitrary regular uncountable cardinals 8, < 6; <
0 < u < A, there is a ccc generic extension in which

add(N) = 0y <add(N) =0, <p=s5=g=0<add(M) = cof (M)
=p<a=tv=non(N)=c.
First, we want to address the consistency of X < s = 0 <b =y < a = A (al

-1
regular cardinals) without the assumption of a measurable. Let (L*,J") denote the
template used in Shelah’s original consistency proof of 9 < a. To obtain the desired

constellation, it seems natural to iterate along (L’\,ﬁ/\)-HeChler forcing for adding a
dominating real and use Mathias—Prikry posets to guarantee that s = 6. To force
0 < p (< 5), we use Mathias-Prikry posets (of size < 6) to add a pseudo-intersection
to every filter base of size < 0 (by a quite standard counting argument adapted to
the context of template iterations). To force s < 0, we aim to preserve a splitting
family of size 8 that is generated in some middle step of the iteration (actually, this
splitting family is formed by 0-many Cohen reals). The preservation results from
[Mej15, Sect. 5] and the fact that Hechler forcing preserves some sort of splitting
families (see [BD85]) provide ®; < s < b < ¢. However, with the use of Mathias—
Prikry posets, the construction is not uniform enough for an isomorphism of names

https://doi.org/10.4153/CJM-2016-021-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-021-8

504 V. Fischer and D. A. Mejia

argument to go through, and it is not clear how to provide b < a. Noticing that Shelah’s

template (Ll,ﬁA) is not only equipped with a length but with a width, we construct a
poset by recursion on the width in such a way that small mad families are eliminated
at successor steps. To be more precise, for 8 < A, let (L%, 7" ) be Shelah’s template with
width § (see Section 6). We construct an increasing sequence of template iterations
(using Hechler forcing and Mathias—Prikry posets) along these tempgates by recursion
on §. In the_successor steps, we expand the iteration along (L%, ) to an iteration
along (L%,7" ) for some &’ € (8, 1) such that one a.d. (almost disjoint) family of size
v € [u, 1) in the generic extension at § is not mad in the generic extensjon at 8’ By
a book-keeping device for these a.d. families, the iteration along (L*,J" ), being the
direct limit of the previous iterations, forces that either a = A or a < y (but, as we aim
to force b = y, the only option would be a = 1).

In order to achieve the above recursive construction, we need a better understand-
ing of isomorphims between generalized template iterations, i.e., iterations along a
template that involve non-definable iterands (see Lemma 3.9). It is known that two
template iterations of Hechler posets are isomorphic if the template structures are iso-
morphic (or just innocuously different, as described in Definition 3.7), which is not
the case when non-definable posets are used in the iteration. In addition we need
to work with an extended notion of isomorphism between subsets of the underlying
template of generalized template iterations, see Definition 4.5.

The previous construction can be modified in a natural way to construct a model
of ®; < add(N) < cov(N) < s < b < a, but in order to preserve witnesses for add(N),
cov(N), and s (simultaneously) we need to further develop some already existing
preservation results regarding template iterations. There are two such results that are
of interest for us: [Mejl5, Theorems 5.8 and 5.10]. The first of those theorems can-
not be applied to preserve witnesses of different size along the same iteration, for
example, to preserve a witness to cov(N) that is smaller than a witness of 5. The
second theorem can be applied to standard fsi’s when they are viewed as template it-
erations, which is the reason why additional simpler consistency results, including
the groupwise density number, g, were obtained in [Mejl5]. However, we do not
know if this second preservation theorem can be applied to obtain the consistency
of ®; < add(N) < cov(N) < s < b < a modulo a measurable. In view of this, one im-
portant achievement of this paper is that the second preservation theorem (Theorem
5.5) works for iterations along Shelah’s template; see Lemma 5.8 and Theorem 5.6.

Relying on this new preservation theorem, Theorem 5.6, we can show that a cer-
tain class of template iterations, to which we refer as pre-appropriate iterations (see
Definition 6.2(i)~(vii)), can preserve witnesses for add(N) < 6, cov(N) < 6y, and
s < 0. In addition, our pre-appropriate iterations force that add(M) = cof (M) = u
and g = 0, the latter by an argument that already appears in [Mej15] using Lemma
2.1 (originally by Blass [Bla89]) and Theorem 5.10. Now, by a consequence (Theo-
rem 5.9) of the first preservation theorem above, we show that in generic extensions
obtained via pre-appropriate iterations, t = non(N) = ¢ = A. In addition, we can
guarantee that our iterations provide lower bounds for add(N), cov(N) and p (< 5)
(see the notion of appropriate iteration in Definition 6.2(8)-(10)). Thus, in generic
extensions obtained via appropriate iterations, all cardinal characteristics, except the
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almost disjointness number, have the desired values (see Lemma 6.4). The methods
which provide that a = A in our final extension, were discussed earlier. Thus, we can
state our main result.

Main Theorem  Let 0y < 0, < 0 < p < A be uncountable regular cardinals with
0<% = 0 and A<} = ). Then there is a ccc poset that forces add(N) = 6, cov(N) = 6,
p=s=g=0,add(M) = cof( M) =y, anda =non(N) =v=c= A

This paper is structured as follows. Sections 2 and 3 contain preliminary knowl-
edge of the paper, the latter section presented as a summary of the template iteration
theory in [Mej15, Sect. 3 and 4]. Additionally, we discuss isomorphisms of template it-
erations in Section 3. Section 4 defines Shelah’s templates and explains those features,
which are useful for our isomorphism-of-names arguments in the context of template
iterations with non-definable posets. In Section 5 we develop the preservation theory
for iterations along Shelah’s templates. Section 6 is devoted to the proof of the Main
Theorem, and Section 7 contains some open questions.

2 Preliminaries

2.1 Classical Cardinal Invariants

This section contains some definitions and basic facts regarding the cardinal charac-
teristics of the continuum that we are to consider. Further information about them
can be found, for example, in [BaJ95, Blal0].

For f,g € w®, we say that f is eventually dominated by g, denoted f <* g, if for
all but finitely many »n we have f(n) < g(n). We say that f is (totally) dominated by
g, denoted f < g, if for all n € w we have that f(n) < g(n). Then D ¢ w® is called
a dominating family if every function in w® is dominated by some element of D; b,
the (un)bounding number, is the least size of a subset of w® whose elements are not
dominated by a single real in w®. Dually, 0, the dominating number, is the least size
of a dominating family.

For a, x € [w]®, we say that a splits x if both a N x and x \ a are infinite. A subset
S of [w]? is called a splitting family if any infinite subset of w is split by some member
of S. For x € [w]® and F ¢ [w]“, we say that x reaps F if x splits all elements of F.
The splitting number, s is defined as the least size of a splitting family. Dually, ¢, the
reaping number, is defined as the least size of a subset of [w]* that cannot be reaped
by a single infinite subset of w.

A family A ¢ [w]® is said to be almost disjoint (a.d.) if the intersection of any two
different members of A is finite. An infinite almost disjoint family is called a maximal
almost disjoint family (mad family), if it is maximal under inclusion among such a.d.
families. By a we denote the least size of a mad family and refer to it as the almost
disjointness number. Following standard practice, whenever a, b are subsets of w, we
denote by a c* b the fact that a \ b is finite. For C ¢ [w]” say thatx € [w]” isa
pseudo-intersection of C if x €* a for any a € C. A family F € [w]” is called a filter
base if it is closed under intersections. The pseudo-intersection number p is defined as
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cov(N) non(M) cof(M) cof(N)

Figure I: Cichofi’s diagram

the least size of a filter base without a pseudo-intersection. The ultrafilter number u is
defined as the least size of a filter base that generates a non-principal ultrafilter on w.

A family G of infinite subsets of w is groupwise-dense if G is downward closed under
c* and, for any interval partition (I,),<, of w, there exists an A € [w]® such that
Unea In € G. The groupwise-density number g is the least size of a family of groupwise-
dense sets whose intersection is empty.

For an uncountable Polish space with a continuous (in the sense that the singletons
have measure zero) Borel probability measure, let M be the o-ideal of meager sets and
let N be the o-ideal of null sets. For J being M or N, the following cardinal invariants
are defined. Note that their values do not depend on the underlying Polish space:

add(J): The additivity of 3, which is the least size of a family F ¢ J whose union is
notin J.

cov(J): The covering of J, which is the least size of a family F ¢ J whose union
covers all the reals.

non(J): The uniformity of J, which is the least size of a set of reals not in J.

cof (J): The cofinality of J, which is the least size of a cofinal subfamily of (J, €).

We will use the following characterizations of add(N) and cof (N (see [BaJ95,
Thm. 2.3.9]). Recall that a function y: w - [w]<* is called a slalom. For x € w® and
a slalom vy, we say that y localizes x, denoted x €* v if for all but finitely many #,
x(n) € w(n). For a function h: w - w, denote by S(w, h) the set of all slaloms y such
that |y(n)| < h(n) for all n. If h(n) goes to infinity, then add(N) is the least size of a
family of reals in w® that cannot be localized by a single slalom in S(w, #) and, dually,
cof (N) is the least size of a family of slaloms S € S(w, k) such that any real in w® is
localized by some slalom in S.

The well known Cichons diagram (Figure 1) illustrates all provable (in ZFC) in-
equalities between the relevant cardinal characteristics. The vertical lines from bot-
tom to top and horizontal lines from left to right represent <. Also, the dotted lines
mean add(M) = min{b, cov(M)} and cof (M) = max{0, non(M)}. In addition we
have p < add(M), p <5, p<g,6§<0,g<0,b<a,b<r,5<non(d),cov(d) <t
(where J is M or N), and ¢ < u. Note that the characteristics add(N), add(M), b, p
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and g are regular, and that there are no other ZFC provable inequalities between these
invariants.
The following result is a very useful tool for consistency results about g.

Lemma 2.1 (Blass [Bla89, Thm. 2])  If (W, )a<g is an increasing sequence of transitive
models of ZFC such that

i) [@]%n (Wair s Wo) £ 2,

(i) {[0]° 0 Weacs € W,

(ii) [w]® N Wy = Ugeg[@]® N W,

then g < 0 in Wy.

2.2 Forcing theory

Excellent references for the theory of forcing are [BaJ95,Je03, Kunll].

Let P and Q be partial orders. Then P is said to be a subposet of Q if P ¢ Q (as
partial orders) and incompatibilities are preserved; that is, whenever p 1p g (that
is, there is no condition in [P stronger than both p and g), p Ly q. We say that P
is a complete suborder, also complete subposet of Q, which we denote P < Q, if P is
a subposet of Q and every maximal antichain of [P is a maximal antichain of Q. If
M is a transitive model of ZFC and P € M, then P <,; Q denotes the fact that P
is a subposet of Q and every maximal antichain A of [P that is an element of M is a
maximal antichain of Q.

Definition 2.2 (Mathias-Prikry type forcing) Let F be a filter subbase. Mathias-
Prikry forcing with F is the poset Mg consisting of all pairs (s, a) such that s € [w]<?,
a € Fand sup(s +1) < min(a) where s +1 = {k+1: k € s}, and ordered by
(t,b) < (s,a)ifandonlyifsct,bCa,and t\sCa.

M is o-centered. It adds a pseudo-intersection of F which is often referred to as
the Mathias—Prikry real added by M.

Definition 2.3 (Suslin ccc poset) A Suslin ccc poset S is a ccc poset whose conditions
are reals (in some fixed uncountable Polish space) such that the relations < and 1 are
T

If S is a Suslin ccc poset, then S itself has a X{-definition, because x € S if and only
if x < x. Also, if M € N are transitive models of ZFC and S is coded in M, then
SM <M SN.

Definition 2.4 ([Bre05]) LetS be a Suslin ccc poset.

(i)  Sis Suslin o-linked if there exists a sequence {S, } 1<, of 2-linked subsets of S
such that the statement “x € S,,” is E}. Note that the statement “S,, is 2-linked”
is H}.

(ii) Sis Suslin o-centered if there exists a sequence {S,, } ,<, of centered subsets of S
such that the statement “x € S,,” is Z%. Note that the statement “S,, is centered”
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Q:

/7 N\
Qo Py
N S
Py

Figure 2: Diagram of posets

. 1 . .. .
is IT;, since the statement “py, ..., p; have a common stronger condition in S”
is 1.

The following are well-known examples of Suslin ccc notions, which will be used
in our applications. Their order and incompatibility relations are Borel.

* Cohen forcing C.

* Random forcing B.

* Hechler forcing D, the canonical ccc forcing that adds a dominating real.

e Let h:w — w non-decreasing and converging to infinity. LOC", the localization
forcing at h, consists of conditions of the form (s, F) where s € [T;,[w]*"(") and
F e [w?]*"(" for some n < w. The order is (s', F') < (s, F) if and only if s € s/,
Fc F,and {x(i) : x € F} ¢ /(i) forall i € |s'| \ |s|. LOC := LOC", where
id: w - w is the identity function.

Moreover, C and ID are Suslin o-centered, while LOC" and B are Suslin o-linked. For

each of these posets, the statement “po, . .., p; have a common stronger condition” is

Borel. Then for any X}-subset S of such a poset, the statement “S is centered” is IIj.

The notion of correctness, which we state below and is introduced by Brendle

[Bre05], is essential for the construction of template iterations.

Definition 2.5 (Correct diagram of posets [Bre05, Def. 1.1]) For i = 0,1, let P; and
Qi be posets. If P; <« Q; for i = 0,1, Py < P, and Qg < @y, say that the diagram
(Po,P1, Qo, Q1) (see Figure 2) is correct if for each q € Qg and p € P, if they have a
common reduction in Py, then they are compatible in ;. An equivalent formulation
is that, whenever p, € PPy is a reduction of p; € P;, then p, is a reduction of p; with
respect to Qp, Q.

Definition 2.6 ([Bre05]) A Suslin ccc poset S is correctness-preserving if, given a
correct diagram (Py, P1, Qg, Qy ), the diagram

(]P)() * SVPO:PI * SVP1>QO * SV@O>Q1 * SVQ])

is also correct.

Brendle showed that all Suslin ccc posets listed above are correctness-preserving
(see [Bre05]). In addition, he conjectured that any Suslin ccc poset is correctness-
preserving; this remains an open question.
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3 Template Iterations

This section contains definitions of template and template iterations, as well as a dis-
cussion of some of their basic properties. The exposition follows [Mejl5]. Proofs of
all statements can be found in [Mej15, Bre02, Bre05].

For a linear order L := (L,<y)and x € L, denote L, := {z € L:z < x}.

Definition 3.1 (Indexed template) An indexed template (or just a template) is a pair
(L,J := (Iy)xer) where L is a linear order, J, € P(L,) for all x € L and the following
properties are satisfied:

(i) @els

(i) I, is closed under finite unions and intersections;

(iii) if z < x, then there is some A € I, such that z € A;

(iv) Jxcdyifx<y;

(v)  J(L) := Uger I U {L} is well founded by the subset relation.
ForAcLandxeL, I, tA:={AnX:XeT,}isthe trace of I, on A. Let

TMA = (T4 MA) xea
and' J(A) = Uyea I AU {A}.

IfX cAcL, then (J,1A) X = J, | X for any x € L; (JPA) X =T} X and
(I(A))(X) =I(X). As (A, TtA) is an indexed template for any A C L, we can define
Dpj: P(L) - ON by Dpj(X) := rankg(x)(X). Although this is not a rank function
on P(L), we will use induction on « = Dpi(X ) to construct an iteration along (L, J).

When the template is clear from the context, we just denote Dp := Dp”.

Lemma 3.2 ([Mejl5, Lemma 3.3]) Fix A € L. Dp := Dp’ has the following proper-

ties.

(i) IfY €J(A), then Dp(Y) < rankg(4)(Y).

(ii) IfX < A, then Dp(X) < Dp(A).

(ii) Letxe A IfY AN (Lyu{x})and YN L, €I, 1A, then Dp(Y) < Dp(A). In
particular, Dp(X) < Dp(A) for all X € I tA

(iv) Dp’™ =DpIP(A).

Given an indexed template (L, J) and x € L, define
J.={BcL:(3HeJ,)(BcH)}.

Thus, .TJ\X is the ideal on P(L, ) generated by J, (which might be trivial). Note that .TJ\X
contains all the finite subsets of L, and that B € J, ifand only if B € I, [(Bu {x}) for
any B¢ L.

Theorem 3.3 (Iteration along a template) Given a template (L,J), a partial order
PYA is defined by recursion on o = Dp(A) for all A c L as follows:

13(A) c J(L)!A = {An X : X € I(L)}, but equality may not hold.
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(i) Forx € Land B € T, QF is a P| B-name of a poset. The following conditions
should hold.

(a) IfE < Band PIE < PIB, then I-p3p Qf <yPIE Qf

(b) IfE € T, such that P}(B n E) is a complete subposet of both P} B and P} E
and if § is a PN(B 0 E)-name such that \-p1g § € QF and i-pyp g € QF, then
I-py(BE) g € QEQE-

(c) IfB’,D < Band (P}(B'nD),P\B’,PID,PIB) is a correct diagram, then the
diagram (P)(B' 0 D) » QB2 PB’ « QF ,PtD * QP,PIB x QB) is correct.

(ii) The partial order PA is defined as follows.

(a) IPA consists of all finite partial functions p with domain contained in A such
that p = @ or if |p| > 0 and x = max(dom p), then there exists a B € I, 1A
such that ptL, € P\B and p(x) is a P\B-name for a condition in Q5.

(b) The order on P} A is given by: q <4 p if dom p € dom q and either p = @
or when p # 0 and x = max(dom q) then there is a B € I, | A such that
qtLx € PIB and, either x ¢ dom p, p €e PIB and qlL, <g p, or x € dom p,
pILy € PIB, 1Ly <p piLy and p(x), q(x) are P|B-names for conditions in
QB such that gLy pyp q(x) < p(x).

Within this recursive definition, the following properties are proved:

(@) Ifp € P1A x € A and max(dom p) < x, then there exists B € I, | A such that
pePIB.

(b) For Dc A, PID c PlA and for p,q € PID, q <p p if and only if g <4 p.

(c) PtAis a poset.

(d) PtA is obtained from posets of the form PIB with B ¢ A in the following way:

(i) Ifx=max(A)existsand Ay = AnL,e€ T., then PlA =PlA, * Qf*.
(i) Ifx = max(A) but A, ¢ T, then P} A is the direct limit of the P | B where
BcAand BnL, €I, A
(iii) If A does not have a maximum element, then Pt A is the direct limit of the P} B
where B € J, A for some x € A (in the case A = &, it is clear that P}A = 1).
Note that by Lemma 3.2(iii) we have Dp(A,) < Dp(A) in (i) and, in (ii) and (iii)
we have Dp(B) < Dp(A) for each corresponding B.
(e) IfDc A, thenPID < PlA.
(f) IfDc L, thenP{(AnD)=PlANPID.
(g) If D, A’ c A, then (PI(A’ n D), PtA’,PID,PtA) is a correct diagram.

Proof See [Bre05, Thm. 2.2] or [Mejl5, Thm. 4.1]. [ |
We are particularly interested in ccc template iterations.

Lemma 3.4 Let PNL,J) be a template iteration such that the following hold:

(i) forallx € L, Be T, there are P | B-names (Q'f)n)nq, that witness that Qf is
o-linked; . .
(i) ifDc B, theni-pip Q2, € QF, foralln < w.

xX,n —

Then PIL has the Knaster condition.
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Proof See [Bre05, Lemma 2.3] and [Mejl5, Lemma 4.5]. [ |

In our applications, we will be using template iterations of the following form.

Definition 3.5 Let (L,J) be an indexed template. An iteration PN(L,J) is standard

if

(i) L =LsuLc isadisjoint union;

(ii) for x € Lg, Sy is a fixed Suslin o-linked correctness-preserving forcing notion
coded in the ground model;

(iii) for x € Lg and B €T, Qf is a P} B-name for SXM;

(iv) forx € L, C, is a fixed setin I, Qy isaP{C,-name for a o-linked poset whose
conditions are reals?;

(v) forxeLcandBe /J\x the name (@E is either Q, in case C, C B, or it is a name
for the trivial poset otherwise.

If 0 is a cardinal, say that the iteration is -standard if, additionally, |C,| < 6 for all

X € Lc.

Lemma 3.6 Let 0 be a cardinal with uncountable cofinality and let P} (L,J) be a

0-standard template iteration. Then for each AC L,

(a) VA is Knaster;

(b) if p € PtA then there is C C A of size < 0 such that p € PIC;

(c) if x is a P} A-name for a real, then there is C' C A of size < 0 such that x is a
PIC -name.

Proof See [Bre05, Lemma 2.4] and [Mej15, Lemma 4.6]. [ |

We will use Shelah’s notion of innocuous extension to give a sufficient condition
for the forcing equivalence of two distinct standard template iterations.

Definition 3.7 (Innocuous extension) Let (L,J) be an indexed template and 6 an
uncountable cardinal. An indexed template (L, J)

if

(i) foreveryxelL,J, cd,and

(ii) foranyxeLand X € T if | X| < 0, then X €T,

is a O-innocuous extension of (L, J)

Definition 3.8 Let(L,J)and (L*j*) be templates. A function h: (L*,ﬁ*) - (L,J)
is a template-isomorphism if and only if it is a bijection that satisfies for all x, y € L*:
(i) x<yifandonlyif h(x) < h(y)and

(i) Jnex) = {h[A]: A €T}

Lemma 3.9 Let 0 be a cardinal with uncountable cofinality, let (L,J) and (L*,ﬁ*)

be templates and let h: (L*,3) — (L,7) be a template-isomorphism. Let (L*,3) be a

0-innocuous extension of(L*j*). Let PNL,J) and P*N(L*, J) be 0-standard template
iterations such that the following hold:

2These reals belong to some fixed uncountable Polish space Ry coded in the ground model.
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(1) h[L] =Lsand h[L{] = L¢;
(2) for y € Lg, S| = Si(yys R
(3) if y € LE, then h[C}] = Cyy), and, whenever there is a sequence (hp : D ¢ C}) of
functions such that
(3.0) hp:P*ID — Pth[D] is an isomorphism;
(3.1) Y c D implies hy € hp;
(3.2) forze DN L% and E € P(D) N T Qh( 2 I8 the name associated with Q}F
via hg; _
(3.3) forp e P*ID, dom(hp(p)) = h[dom p] and, if z = max(dom p), E € J, 1D
pIL: € P*VE and p(z) is a P* E-name for a member of Q:E, then hp(p)!
Lz = i}l;(p 'L}) and hp(p)(h(z)) is the P h[ E]-name associated with
p(z) via hg,
then Qh(y) is the name associated with (@; via /h\c;-

Then, there exists a unique sequence (hp : D € [L*]<°) satisfying (3.0)-(3.3). Moreover,
h:=U{hp:De [L*]<9} is an isomorphism from P* IL* onto PIL, and, forany Y c L*,
hNP*YY) = U{hp : D € [Y]<%} is an isomorphism onto Pth[Y].

Remark 3.10 The previous lemma is a more detailed version of [Bre02, Lemma 1.7]
and [Mejl5, Lemma 4.8] that we  present for constructive purposes. Note that, when-
everzeL* and E € [L}]<%, E € 7, if and only if h[E] € fl\h(z). This is because (L*, )
is a f-innocuous extension of (L* 7 ) and by properties (i) and (ii). For this reason,
(3.2) makes sense, as QZ[JZE} is defined if and only if @;E is. Moreover, the lemma
directly implies that the sequence in (3) exists and is unique for each CJ.

However, propertles (3.0)-(3.3) are restricted to subsets D of size < because there
may be an E € 7, (zfs1zib1gger than or equal to 0 such that h[E] ¢ 3h(z), o Qh( ) is
undefined. When J, = J; we do not have that problem.

Corollary 3.11 ~ With the same hypotheses as in Lemma 3.9, assume further that J, =
J% for all z € L*. Then there is a unique sequence (hy : Y € L*) satisfying (3.0)-(3.3).
Moreover, hy = hp«(P*1Y) forany Y € L*.

Proof of Lemma 3.9 We construct sp by induction on Dp? (D) for D € [L*]<?.
Let p € P*}D. If domp = &, then hp (p) is the empty sequence, so assume that
dom p is non-empty with maximum z. By Theorem 3.3(ii) there is E € J, I D such
that pI L} € P* I E and p(z) is a P* } E-name for a condltlon 1n Q:E. By induction
hypothesis, we know hg. We split into cases to show that Qh () 18 the Ph[E]-name
associated with Q via E-

e ze L§. By (1) h(z) € Lg and, by (2), @h( y 1s a name for Sh(z) v

 ze L} and C; ¢ E. Then Cj,(,) ¢ h[E] and both Q;* and Qh(z) are names for the
trivial poset.
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 z € L; and C; ¢ E. Then, Cp,(,) € h[E] and, by induction hypothesis, Qj,(,) is
the name associated to Q;‘ via ZC;, SO QZE}ZS)] = Qh(z) is the name associated to

Q:E = QO via hg (because EC; c hg).

Let 7 be the P} h[E]-name associated to p(z) via hg, which is indeed a name for a
condition in (@ng)] Put hip(p) = he(ptL:) U {(h(z),#)}, which is a condition in
PMh[D] (h[E] € /J\h(z) by Remark 3.10 but, in spite that it may not be in J, ;) th[ D], we
can find a B € Jj,y th[ D] containing h[E] so hp(ptL?) € P}Band # is a P|B-name of
a condition in Qf ( Z)). Note that 1p (p) does not depend on the chosen E because, if
we use some other E’ € J,ID, then E” = EUE’ € J,!D and hgn extends both ki and
hg by induction hypothesis, so 7 is the same name via any of those three functions
and hg (prLy) = Hgn (prLy) = e (prL3). (3.0)-(3.3) are easily verified for hp.

To see uniqueness, let (ﬁb : D € [L,]%%) be another sequence satisfying (3.0)-(3.3).
By (3.3), k!, = hp is easily verified by induction on Dp?(D) for D € [L*]<°.

Now let Y ¢ L* be arbitrary. Lemma 3.6 implies that P* 'Y = U{P* D : D ¢
[Y]<?} and likewise for P} A[Y], so U{hp : D € [Y]<?} defines an isomorphism
from P* 'Y onto Pth[Y]. [ |

Lemma 3.12  Let 0 be a cardinal with uncountable cofinality, (L,J) and (L*, 5*) tem-
plates and h: (L*,j*) - (L,J) a template-isomorphism. Let P}(L,J) be a 0-standard

iteration. If (L*,J) is a 0-innocuous extension of(L*,J*), then there is a 0-standard

iteration P*(L*, J) that satisfies (1)-(3) of Lemma 3.9.

Proof Define L5 = h™'[Ls], Lg = h™'[Lc], S, = S} for each y € L and C} =
h™[Cy)] for each y € LE, which s in 3\; because (L*, J) is a 6-innocuous extension
of(L*j*) (see Remark 3.10). For a fixed y € L%, define (hp : D ¢ C,) and P* D
satistying (3.0)-(3.3) by recursion on ng(D). The uniqueness of this sequence can
be proved by induction on ng(D), which implies that Q; is well-defined as the P* }
Cy-name associated to Qy(, via hc,. By Theorem 3.3, this is enough to know how

to define a standard iteration ]P’*(L*,g) as in Definition 3.5 that satisfies the desired
requirements. u

4 Shelah’s Template

In order to obtain our main result, we introduce a minor modification to the template
that Shelah used to prove the consistency of 9 < a (without the use of a measurable).
Our presentation is based on [Bre02, Sect. 3].

Given an ordinal a, let «* denote a disjoint copy of « with a linear order isomorphic
to the inverse order of «. Let ON* = {a* : & € ON} where ON is the class of all
ordinals. Members of ON are called positive, while members of ON* are negative. We
order ON U ON* in the natural way (like the integers but without a neutral member
as 0 is positive and 0* is negative). For £ € ON U ON*, & + 1 denotes the immediate
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successor of & and & — 1 the immediate predecessor of €. Note that 0* +1=0,0-1= 0%,
& +1 does not exists if and only if £ = y* for some limit ordinal y, and £ — 1 does not
exists if and only if £ is a limit ordinal (positive).

Definition 4.1 (1) Define SO as the class of non-empty finite sequences x where
x(0) is an ordinal and x(k) €¢ ON U ON* for all 0 < k < |x|. Order SO as x < y if
and only if either
(i) thereisak < min{|x|, |y|} such that x}k = ytk and x(k) < y(k),

(i) x < yand y(]x]) is positive, or

(iii) y < x and x(]y|) is negative.

Note that < is a linear order on SO and that ON, with the canonical well-order, is
embedded there. Therefore, we identify the ordinals with the sequences of length
1in SO.

(2) Say that A € SO is a tree if, whenever ¢ € A and t end-extends a sequence s, then
seA.

(3) For non-zero ordinals y and § define the set

L% = {x €SO : x(0) < yand 8* < x(k) < 8 forall 0 < k < |x|}

linearly ordered by < (the order from SO). Here, y is the length of L°*?, while 8 is
its width. As before, the members of y are identified with the sequences of length
lin L%7. Clearly, L7 is a tree.

(4) Let X = (Sp : B < 7) be a partition of §* where 7 is an ordinal and let $* : §* — 7
be defined by f*(&) =  when & € Sp. Say that x € L% is Z-relevant if and only
if the following hold:

(i) |x|>3isodd;
(i) for i <|x|, x(i) is positive if and only if i is even;
(iii) the sequence {B*(x(i —1))}ic,, is decreasing, where
re={i<|x|:i>2iseven, x(i) <1}
and
(iv) |x|-1er,.
For Z-relevant x € L7, let 27 := {z € L7 : x}(|x| - 1) < z < x}. Define 7>
as the family of finite unions of the following basic sets:

. Lg’y (the segment of objects < & = (a)) where a € y + 1 (for a = y it is L%?).

. ]f’y where x € L% is S-relevant.

o {z)} wherez e L7,

-3,
Forx € L%, put 927 == {AcL2" : AeT®V} and T = (327), Lo
Note that any basic set is convex in L%? and that any member of 7*? can be written
as a disjoint union of basic sets and this disjoint union is unique. This is because, for
any two basic sets, either one is contained in the other, or they are disjoint in which
case their union is not convex and, thus, not a basic set. Moreover,
gEY = g2 = | 9T u{L).

xeL%y
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—3,

Lemma 4.2 (L%",7") is an indexed template.

Proof See [Bre02, Lemma 3.2]. [ |

Definition 4.3  Let 6 be an uncountable regular cardinal and let § = (S,),<, be

a sequence of Suslin o-linked correctness-preserving forcing notions coded in the

ground model where v < 6. A (8, 0)-standard iteration along a template (L,J) is a

6-standard iteration P}(L, J) (see Definition 3.5) where

(i) (Ls,y)n<v is a partition of L,

(i) forxeLsy, Sy =S, and

(iii) for x € L¢, Q, is forced by P'C, to have size < 6. By ccc-ness, without loss of
generality we can even say that the domain of Q, is an ordinal y, < 6 (in the
ground model, not just a name).

Until the end of this section, fix 6 and 8 as above, y and § non-zero ordinals, a par-
tition = = (Sg : f < 0) of *,L = L> and J = 77 Wewill prove some combinatorial
properties of (L,J) that are necessary for our isomorphism-of-names arguments on
a (8, 0)-standard iteration along (L, J).

Lemma 4.4 If A C L has size less than 0, then |J(A)| < 0.

Proof Without loss of generality, we can assume that A is a tree. It is easy to note
that {ANL, : o <y} hassize < 6. To see that {An J27 : x is S-relevant} has size less

than 6, note that if x is Z-relevant and A n J2* # @, then x’ := x(Jx| - 1|) € A and
Ly . - Ly .
{An]x,ﬂm :Eef} = {An]x,ﬂm &< p}
for some p < 0. Therefore J(L) A has size < 6, and so J(A). [ |

For a (8, 0)-standard iteration P } (L,J) where Lc = @ (as in Shelah’s original
construction), the produced poset depends only on the template structure. That is, if
A, B ¢ L are isomorphic as linear orders, as trees and as templates (more precisely if
they satisfy conditions (i)-(x) of Definition 4.5), then P} A and [P} B are isomorphic
partial orders. An isomorphism between them can be constructed canonically from
an isomorphism between A and B. However, if L¢ # @, such an isomorphism does
not necessarily exist.

Definition 4.5 Let P}(L,J) bea (8, )-standard iteration as in Definition 4.3. Say
that A c L is c.i.s. (closed-in-support with respect to P}(L,J)) if for any x € An L¢ we
have C, ¢ A. We abbreviate closed-in-support tree as c.i.s.t..

If A,B C L are c.is.t., they are P (L, J)-isomorphic if there exists a P} (L, J)-iso-
morphism h: A — B, that is, a bijection that satisfies, for all x, y € A:
@) [h(x)] = |x,
(i) h(x)tk=h(xtk) forall 0 < k < |x],
(iii) x < yifand onlyif h(x) < h(y),
(iv) for k < |x|, x(k) is positive if and only if h(x)(k) is positive,
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(v) if|x|=|y| =k+1 xlk = ytk and y(k) = x(k) + 1 is positive, then h(y)(k) =
h(x)(k) +1,

(vi) the dual of the previous statement with y(k) negative, that is, if x 'k = yk and
y(k) = x(k) —1is negative, then h(y) (k) = h(x)(k) -1,

(vii) if {x¢}ecpisasequencein A,z € A, |z = k+1, |x¢| = k+1and x¢k = zI'k for any
§ < Band {x¢(k)}ecp is an increasing sequence of positive ordinals with limit
z(k), then h(z)(k) is the limit of {h(x¢) (k) }ep

(viii) the dual of the previous statement for a decreasing sequence of negative ordi-
nals,

(ix) Jpex)tB={h[X]: X €I, 1A} forall x € A,

(x) forally<v,h[AnLs,]=BnLs,,

(xi) if x € Lc n A, then h[Cy] = Cy() and, whenever there is a sequence
(hp : D € C,) of functions such that
(a) hp:PID — Pth[D] is an isomorphism,

(b) X c D implies hx € hp,

(c) forze DnLcand E € P(D) N7, ng)] is the name associated with Qf via
EE and, _

(d) for p e PID, dom(hp(p)) = h[dom p] and, if z = max(dom p), E € I, D,
pltL, € PIE and p(z) is a P} E-name for a member of QF, then hp(p) |
Lz = he(plL.) and hp(p)(h(z)) is the name associated with p(z) via
hE’

then Qh(x) is the name associated with Q, via /h\cx-

By Corollary 3.1 there exists an isomorphism /: P}A — P1B such that
(hN(PID) : D c A)
is the unique sequence satisfying (a)-(d) above.

We need to guarantee that for subsets of L of size < 0 there are only a few isomor-
phism-types.

Lemma 4.6 If0<% = 0 and P}(L,7) isa (S, 6)-standard iteration as in Definition
4.3, then there are at most 0-many different types of P|(L, J)-isomorphic c.i.s. subtrees
of L of size < 0.

Proof Givenac.is.t. AC L of size < 0, we can find a tree T € L%? of size < 0 and a
function h: A — T satistying Definition 4.5(i)-(viii). Let J be the template on T such
that Jj,(,) = {h[X] : X € I, 1A} for all x € A. The function h allows us to partition
T into the sets Tc = h[An Lc]and Ts,, = h[An Lg,,] for n < v and to construct a
(8, 0)-standard iteration along (T, J) isomorphic (in the sense of Corollary 3.11) to
P}(A, JtA) by Lemma 3.12. Here, note that |J(T)| < 6 by Lemma 4.4.

Therefore, it is enough to prove that there are 6-many (8, 6)-standard iterations
along subtrees of L% of size < 6 with a template structure that has < 6 sets. As 8<% =
0, there are -many subtrees of L%? size < 6, so fix T to be one of them. Now, there
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are at most ((2/71)<?)|Tl-many indexed templates J of (T, <) such that |J(T)| < 6.
On the other hand, we can partition T into pieces of the form {Ts ,},<v U {T¢} in
(v +1)I"\-many ways (recall that v < 6). After fixing one such indexed template and
one such partition, there are at most (2/71)/7¢/-ways to choose a sequence (C~) e,
where each C, € 7, and we fix one such sequence.

According to Definition 4.3, for fixed Ts ,, (17 < v), Tc and (Cy, ) xer» @ (8, 0)-stan-
dard iteration P} (T, J) depends only on the choice of the ordinals y, < 6 and the
PP} C! -names for o-linked partial orders for y,. There are 817¢! = §-many choices of
(Yx)xete S0, fixing one of these choices, we show by induction on Dp? (Y) for Y ¢ T
that there are at most -many (8, 8)-standard iterations along (Y, J'Y) and that the
poset produced by such an iteration has size < 8. Consider cases on Y according to
Theorem 3.3(d).

e Y has a maximumzand Y, =Y N T, ¢ ﬁz. Then any desired standard iteration has
the form PY = P1Y, « Q). If z € Ts, then the choice of Q. is fixed and there
are as many (8, 6)-standard iterations along Y as there are along Y,, which by the
induction hypothesis are < 6 and, as P1'Y, has size < 0, it forces the continuum < 6,
soP}Y hassize < 0. If z € Tc and C., € Y,, as [P}C.| < 6 and 0<% = 6, then there are
at most f-many (nice) PIC,-names for partial orders for y,. Therefore, there are at
most 8-many (8, 8)-standard iterations along Y. The case C, ¢ Y, is easy.

* Y has a maximum z but Y, ¢ E]\z. Here, a (8, 8)-standard iteration along Y satisfies
P!Y = limdiryeg P X where B := {X €Y : XN T, € J, Y} B hassize< 6,
because |J,1'Y| < |J(T)1Y| < 6 so, by the induction hypothesis, there are at most
6<% = §-many ways to define PY.

* Y does not have a maximum. A similar argument as in the previous case works. W

5 Preservation Properties

The preservation properties discussed in this section were developed for fsi of ccc
posets by Judah and Shelah [JS90], with improvements by Brendle [Bre91]. These
are summarized and generalized in [Gol93] and in [BaJ95, Sect. 6.4 and 6.5]. The
presentation in this section is based on [Mej13, Mej15].

Context 5.1 Fix an increasing sequence ()<, of 2-place closed relations (in the
topological sense) in w® such that for any n < w and g € w®,

(en)f={fecw®: freag}

is (closed) nwd (nowhere dense).

Put c= U, <, 4. Therefore, for every g € w®, ()¢ is an F, meager set.

For f, g € w®, say that g c-dominates f if f c g. Then F ¢ w* is a c-unbounded
family if no function in w* c-dominates all the members of F. Associate with this
notion the cardinal b, which is the least size of a c-unbounded family. Dually, say
that C € w* isac-dominating family if any real in w® is c-dominated by some member
of C. The cardinal 0. is the least size of a c-dominating family. Given a set Y, say that
areal f € w" is c-unbounded over Y if f ¢ g for every g € Y n w®.
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Context 5.1 is defined for w® for simplicity, but in general the same notions apply
by changing the space for the domain or the codomain of c to another uncountable
Polish space whose members can be coded by reals in w®.

From now on, fix 6, an uncountable regular cardinal.

Definition 5.2 (Judah and Shelah [JS90], [BaJ95, Def. 6.4.4]) A forcing notion P is
0,-c-good if the following property holds.> For any P-name h for a real in w® there
exists a nonempty Y € w® (in the ground model) of size < 0 such that for any f € w®
that is c-unbounded over Y, we have I- f # k. A forcing notion is said to be c-good,
if it is Ry-c-good.

This is a standard property intended to preserve b- small and d: large in forcing
extensions. A subset F of w® is said to be 0y-c-unbounded if for any X ¢ w® of size
< 0y, there exists an f € F that is c-unbounded over X. Clearly, if F is such a family,
then b. < |F| and 6y < 0.. On the other hand, 6y-c-unbounded families of the
ground model remain such in generic extensions of 8-c-good posets. Thus, if A > 8,
is a cardinal and 9 > A in the ground model, then the inequality is preserved by such
generic extension. It is also known that the property of Definition 5.2 is preserved
under fsi of 8y-cc posets. Also, if P < Q and Q is 0y-c-good, then so is PP.

Lemma 5.3 ([Mejl3, Lemma 4]) Every poset of size < 0 is 8y-c-good. In particular,
C is c-good.

Example 5.4 (1) Preserving splitting families: For A,B € [w]® and n < w, define
A oc, Bifand only if either B\ n C AorB \n C w\A,s0A < B« (Bc*
AorBc* w~ A). Note also that A ¢ B if and only if A splits B, s0 § = b. and
t = D. Baumgartner and Dordal [BD85] proved that I is oc-good.

(2) Preserving null-covering families: Let (Ix )<, be the interval partition of w such
that |I| = 28! for all k < w. For n < w and f, g € 2° define f , g < (Vk >
n)(fHx # gMx)andlet f 4 g < (for all but finitely many k we have f 1 # gtlx).
Clearly, (4)¢ is a co-null F, meager set. This relation is related to the cardinal
characteristics of covering and uniformity of the null ideal, because cov(N) <
b, < non(M) and cov(M) < 9, < non(N) (see [Mejl3, Lemma 7]). By [Bre9l,
Lemma 17] for every infinite cardinal v < 6y, v-centered forcing notions are
0o-h-good.

(3) Preserving “union of null sets is non-null”: Fix H := {idk+1 : k < w} (where
id**1(i) = i**1) and let S(w, H) = Upesc S(w, h). Forn < w, x € @ and a
slalom ¢ € S(w, H), let x €, yifand only if (Vk > n)(x(k) € y(k)),sox €* ¢
if and only if for all but finitely many k we have x(k) € y(k). By Bartoszynski’s
characterization (see Subsection 2.1) applied to id and to a function g that dom-
inates all the functions in H we obtain add(N) = be+ and cof (N) = Dc+. Judah
and Shelah [JS90] proved that given an infinite cardinal v < 8y, every v-centered

3 [BaJ95, Def. 6.4.4] has a different formulation, which is equivalent to our formulation for 6y-cc

posets (recall that 8 is uncountable regular). See [Mej13, Lemma 2] for details.
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forcing notion is 0y-€*-good. Moreover, as a consequence of results of Kambu-
relis [Kam89], any subalgebra® of B is €*-good.

We recall the following preservation result for template iterations.

Theorem 5.5 Let P(L,J) be a template iteration such that L does not have a maxi-
mum, [L]<“ € I(L) and PIL is 6y-cc. Assume, for any A € I(L) ~ {@}:

(i) if A hasamaximumx and Ay = AnLy € fJ\x, then Ay € Jy;

(ii) if A has a maximum x, Ay == An Ly ¢ fx and h is a PtA-name for a real, then
there exists an increasing sequence (B, )n<p in Ba := {B<S A: BnLy € I, 1A} such
that hisa P}C-name for a real, where C := U, <, By, and P}C = limdir, ., P!B,;

(iii) if A does not have a maximum and his a P} A-name for a real, then there exists
an increasing sequence (B )n<e in Ba = {B €I 1A x € A} asin (ii);

(iv) forallx e Land Be€J,, I-pp Qf is B9-c-good.

Then PL is 6¢-c-good.

Proof The proof is the same as [Mej15, Thm. 5.10], but in this case, prove by induc-
tion on rankg(;y(A) for A € J(L) that P}A is 65-=-good. [ |

Until the end of this section, fix y, §, T non-zero ordinals, § and 7 with uncountable
cofinality, L = L%, % = (Sg : f < ) a partition of 8,7 = J%7,7J = 77, and I =27,
For x € L X-relevant, denote J, = | f ¥ Recall that any member of J is written as a
unique finite disjoint union of basic sets (see Definition 4.1). For a € L, denote by
[a]™ the set of sequences x € L such that x end-extends al(|a| - 1), |x| > |a|, and
x(Ja] =1) < a(|a] = 1). Denote by [a]* the set of sequences in L that end-extend
al(Ja] -1) but are not in [a]~ (thatis, x € [a]* if and only if either x = a(]a|] - 1), or
|x| > |a|, x end-extends al(|a| - 1) and x(|a| - 1) > a(]a| - 1)).

Theorem 5.6  LetP(L,J) be a template iteration and suppose PL has the ccc. Assume
that for all x € L and B € J,, Irpyp Q2 is 0y-c-good. Then, PIL is 65-c-good.

Proof ByLemma 5.8 the conditions of Theorem 5.5 are satisfied (note that condition
(ii) there is irrelevant). |

Lemma 5.7 Leta € L with |a| > 2 and a(|a] —1) = 0, B a countable collection of
basic sets contained in [a]~ such that no initial segment of L is in B.> Then, there is a
countable collection & of pairwise disjoint basic sets contained in [a]~ such that

(a) any member of B is contained in a (unique) member of &,

(b) any member of & contains some member of B,

(c) € does not contain initial segments of L and

(d) no pair of members of € are contained in any basic set included in [a]~ that is not
an initial segment of L.

4Here, B is seen as the complete Boolean algebra of Borel sets (in 2) modulo the null ideal.
5This assumption is relevant only when a = (0, 0) because [a]~ = Lo. Otherwise, [a]~ does not
contain basic sets which are initial segments.
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Furthermore, the same statement holds when [a]~ is replaced by [a]*.

Proof For B € B let xp be the unique member of [a]~ such that either B = J,, or
B = {xp} where, in the first case, xp is Z-relevant. Define zp according to those two
cases. In the first case, zg = xpm where m > |a| is minimal such that xg (m + 1) is
Y-relevant; in the second case, let zg = x5 'm where m > |a| is minimal (if exists) such
that either m < |xp| and x5~ (max{0, xg(m)}) is Z-relevant, or m = |xp| and xg~ {0}
is Z-relevant; otherwise, if there is no such m, put zz = @.

Let H = {zp : B € B} \ {@}, which is a subset of [a]”. For each y € H, let

¥ =y {n,} where
ny =sup({0} u{xp(|zs|) +1: B e H, zp = y, |zp| < |xp| and x(|z5]) > 0} ).

As B is countable and §, 7 have uncountable cofinalities, 7, < min{d, 7} so y’ € L
(even in [a]~ with length larger than |a|), and it is X-relevant. Then we have € = {], :
ye€H} U {BeB:zp=0g}isas desired.

The same argument works for [a]*. [ |

Lemma 5.8 ForAecI~ {@}:
() Ifx = ma}(A), then AnL, €J,.
(b) LetP(L,J) be a template iteration, and suppose PIL has the ccc. If A does not have

a maximum and h is a P} A name for a real, then there exists an increasing sequence
(Bn)n<w in A :={BeJ A :x € A} such that

(i) hisa P1C-name, where C := U, <, By, and
(i) PIC is the direct limit of (P1By) n<q-

Proof Note that the only basic sets of J that have a maximum are the singletons.
Therefore, if A € Jand x = max(A), it is clear that A \ {x} is still a union of basic sets
of J, so (a) holds.

We prove (b). If /i is a P } B-name for some B € A, then B, := B works, so we
assume that this is not the case. As A € I\ {@}, A = Ug<p Ex for some M < w and
{Ex }k<m is a sequence of basic sets of J such that Ey < Ej,; (that is, every member
of Ey, is less than every member of Ey.;) for k < M. Thus, Ej; cannot be a singleton,
because A does not have a maximum.

Given h a P | A-name for a real in w®, by ccc-ness there is a set of conditions
{pn : n < w} inP}A determining the name / (i.e., the union of the maximal antichains
that decide /1(i) for each i < w). Then, for each 1 < w, there exists a C,, € A such that
pn € PIC,, without loss of generality, Ux<p Ex S C,. By cases on Ej we construct
an increasing sequence (B, )<, Of sets in A such that

(*) forany x € Aand H € J, A there is an ¢ < w such that HnU, <, B, = HN By,.
Note that it is enough to prove () when H € An L, is a basic set.

(1) Ey = Lg for some & <y, which implies M = 0. Consider the following cases
e £ =0. For n < w, let G, be the family of pairwise disjoint basic sets of the
(unique) decomposition of C,, which are clearly contained in [(0,0)]". Put
C = Uyn<w €y and find € as in Lemma 5.7 applied to C. Then € is infinite (if not,
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h is a P} B-name for some B € A), so enumerate & = {H : k < w} and put
B, = Uk<n Hi for n < w.

Thus, (*) holds because, if x € Ly and H < L, is basic, then H ¢ [{(0, 0)]™ is not
an initial segment and H intersects at most one Hy by Lemma 5.7 (recall that,
if two basic sets have non-empty intersection, then one of them is contained in
the other).

* & =n+1. Wecanassume that L, € C, forall # < w. Then the disjoint decompo-

sition of C,, into basic sets are L, and subsets of either [(#,0)]" or [{#+1,0)]".
Let €% be the family of these basic sets contained in [(#,0)]* and, similarly, let
€L be the family corresponding to [{7+1,0)]™. Put € = U,..,, €} and let &' be
as in Lemma 5.7 applied to C' for i € {0,1}. Put & = £° U €', which is infinite.
Enumerate € = {Hj : k < w} and put B, = L, U U<, H for n < w.
Now let x € L, and H ¢ L, be basic. If H intersect L,, then it must be
contained in it so ng = 0 works for (+). If Hn L, n & then either H ¢ [{(#,0)]"
or H ¢ [{(#+1,0)]", but in any case H intersects at most one Hy. Thus, (*)
holds.

o & is a limit ordinal. We can assume that, for n < w, the disjoint decomposi-
tion of C,, into basic sets are L,, € A, for some «, < &, and basic subsets of
[(£,0)]". Let €, be the family of the latter basic sets. Without loss of general-
ity, if cf (€) = w then {a, } 4<,, is an increasing sequence of ordinals converging
to & otherwise, the sequence is constant . Put € = U, ., €, and find € by
Lemma 5.7 applied to C. € = {Hy : k < v} for some v < w (v = w when
cf(§) > w), so put B, = La, U Uk<min{n+1,»} Hx for n < w.

Let x € Ly and H € L, be basic. If H intersects [£]™ = {x € L : x(0) < &}, then
H is contained in it. If cf (¢) = w, then H is contained in some L,,, so ny can be
found as in (*); otherwise, ny = 0 works when cf(&) > w; if HN[&]™ = &, then
H < [(£,0)]” so H intersects at most one Hy and ng as in () can be found.
(2) Ep =], for some Z-relevant x. Let m = |x|. In each of the following cases (*) can
be proven as before. We just show (+) for the last case.

e x(m-1)=0.Forn < w,let {Ex : k < M}uC%uUEC! be the decomposition of C,,
into disjoint basic sets, where €% ¢ [x]™ and €}, ¢ [x~(0)]". Put €' = U,, €}
and find €’ as in Lemma 5.7 applied to €’ for each i € {0,1}. Then & = E° U &!
is infinite (if not, / is a P} B-name for some B € A), so enumerate & = {Hy :
k < w} and put B, = Ugepr Ex U Ug<, Hy for n < w.

e x(m-1) =n+1 Letx° = x(m -1)"{5n} and x' = x. We can assume that
Jxo € C,, for all n < w. Then the disjoint decomposition of C,, into basic sets
are Ey, for k < M, J,o and subsets of either [x°(0)]" or [x'"(0)]". Let €% be
the family of these basic sets contained in [x°”(0)]* and define ! likewise. Put
€' = Upeo €} and let €' ¢ [x'] be as in Lemma 5.7 applied to € for i € {0,1}.
Put & = €% U &', which is infinite. Enumerate & = {Hy : k < w} and put
By =Ukem Ex U Jxo U UkSn Hy for n < w.

o x(m-1) isalimit ordinal. We can assume that, for n < w, the disjoint decompo-
sition of C,, into basic sets are Ey, for k < M, J,» where x" = x | (m-1)"{a,}
for some a, < x(m — 1), and basic subsets of [x~(0)]". Let C, be the fam-
ily of the latter basic sets. Without loss of generality, if cf(x(m - 1)) = o,
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then {a, } <, is an increasing sequence with limit x(m — 1); otherwise, the se-
quence is constant « (so (x" ), is also constant). Put € = U,,.,, €, and find &
by Lemma 5.7 applied to C. Then & = {Hy : k < v} for some v < w (v = w when
cf(x(m - 1)) > w), $0 put By = Ukem Ex U Jan U Uk<min{n+1,v} Hj for n < w.
To see (), let y € Aand H ¢ An L, be basic. If H intersects [x~(0)]", then
H is contained in it and intersects at most one Hy, so ng as in (*) exists. If
Hn [x7(0)]” = & then it is clear that ny = 0 works when cf(x(m - 1)) > w;
otherwise, H is contained in Uy Ex U Jxno for some ny < w.
It is clear that {B, : n < w} € A is C-increasing and that /1 is a P } C-name (by
Lemma 5.7(a)), where C = U,,<u, By 2 Uy<w Cy» s0 it remains to prove that P} C =
limdir, <, PIB,. Let p € P}C and x = max(dom p), so there exists a D € J, IC such
that p!L, € P}D and p(x) is a P} D-name of a member of Q. Then D = C n H for
some H € J,. By (x) applied to A n H, there exists an ny < w such that B,, n H =
By, N(AnH) =Cn(AnH) = Dand x € By, so D € J, | B,,, which implies
p € PIB,,. u

We will need the following results.

Theorem 5.9 ([Mejl5, Thm. 5.17]) Let 0 be an uncountable regular cardinal and let

P }(L,J) be a standard template iteration (see Definition 3.5). Assume the following

hold:

(i) Ifx is a PL-name for a real, then it is a P}A-name for some A C L of size < 6.

(i) Forevery x € Ls and B € J,, IPIB forces that QF is c-good.

(iii) W c L is a cofinal subset of size A > 0 such that, for allz € W, L, € J, and there
isa PNL, U {z})-name ¢, for a c-unbounded real over VF't=,

Then PIL forces 0. > A.

Theorem 5.10 (New reals not added at other stages [Mej15, Thm. 5.12]) Let PNL, 7)
be a standard template iteration (see Definition 3.5), x € L such that L, == Lyu{x} €7,
forall z > x in L and let f be a P}L,-name of a real such that pyz, f ¢ VEILs Then

PIL forces that f ¢ VFIINED),

6 Proof of the Main Theorem

Main Theorem  Let 0y < 0, < 0 < p < A be uncountable regular cardinals with
0<% = 0 and A<} = ). Then there is a ccc poset that forces add(N) = 6, cov(N) = 6,
p=s=g=0,add(M) = cof( M) =y, anda =non(N) =v=c= A

Throughout this section, fix regular uncountable cardinals 8y < 6; < 0 <y < A
such that 8<% = § and 1<} = 1. We can assume® that there are
(I)  a8p-€"-unbounded family of size 8,
(II)  a 6;-4-unbounded family of size 0;,
(III) a B-oc-unbounded family of size 6.

SThis is forced by Cg (the standard poset that adds -many Cohen reals).
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Fix X = (Sp : B < 0) a sequence of pairwise disjoint sets, each of which is co-initial

in A* and such that A* = Ug.g Sg. For § < A, let (L‘S,ja) be the template defined
as follows. Put L° = L®"* as in Definition 4.1, where A - 4 denotes the product as
ordinals and let X5 = (Sg N 6" : B < 0). Define 99 = 9Zs-}# (see Definition 4.1).

Note that x € L° is 24-relevant if and only if it is 2-relevant. For brevity, we simply
call such sequences relevant. For such relevant x, we denote J® = J3%5 The sequence

of templates ((L?, 58))55 1 has the following property.
Lemma 61 If0 <8< <A, thend®=79%1L°. So for x € L® we have 30 = 991 L°.

Proof Observe that LS = LY n L where « € Ay and J® n L? is either equal to J?
when x € LY, or is the empty set when x ¢ L°. ]

Definition 6.2  An iteration P(L,J) is called pre-appropriate if it is a ({D), 6)-stan-
dard iteration where the following hold.

1) (L,3)= (L‘S,ja) for some 0 < § < A.

(2) L=LyguLyulLgruLpisadisjointunion, Lg = Ly and L¢ = L\ Lg.

(3) LynA-piscofinal in A - g and has size A.

(4) If x € Ly, then for B €T, Qf -nv".

(5) For every x € L there are fixed C, « 7, of size < 6 and a P}C,-name F, for a
filter base of size < 6. Q, = M ; that s, for B € Tes

B _ Mg, in case C, € B,
trivial poset, in case C, ¢ B.

(6) For x € Lg, there are fixed C, € ’J\x of size < 6 and Qy is a P} Cy-name of a
PICy

subalgebra of BY " of size < 0.

(7) Forx € Ly, there are fixed C,, € I, of size < 8 and Q, isa P}C,-name of a o-linked

PICx

subposet of LOCY " of size < 6.

We call such an iteration appropriate if it also satisfies the following:

(8) If F is a IP’.FL—name for a filter base of size < 0, then there is x € Lr such that
II—]p.rL F =F,.

(9) If QisaPlL-name of a subalgebra of B of size < 0y, then there is an x € Lg such

that IFprL Q = Q.
(10) IfQis a PtL-name ofg a—l'inked subposet of LOC of size < 8y, then there is an
x € L4 such that I-p Q = Q.

Lemma 6.3 Let P}(L,J) be a pre-appropriate iteration. If A C L, then

* P} A has the Knaster property,

o if p € PVA, then there is C C A of cardinality (strictly) smaller than 6 such that
pePIC,

o ifhis a P} A-name for a real, then there is C € A of cardinality (strictly) smaller than
0 such that h is a P} C-name for a real.
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Proof Directly from Lemma 3.6. ]

Lemma 6.4 If(L,J) = (L‘sjs)for some & < A of uncountable cofinality, then any
pre-appropriate iteration PNL,J) forces add(N) < 6, cov(N) < 65,5 < 6, g < 6,
add(M) = cof (M) = y, and non(N) = v = ¢ = L. If appropriate, equalities are forced
for the first four cardinals and p = 0.

Proof By the preservation Theorem 5.6, PIL is 0y-€*-good, 0;-4-good, and
0-oc-good. By hypotheses (I), (II), and (III), each respective family is preserved in
the forcing extension, so they witness add(N) < 6y, cov(N) < b, < 6, and s < 0.

For o € Ly nA- p let d, be the dominating real added at « and let ¢, be the Cohen
real added at « in the iteration (recall that Hechler forcing adds Cohen reals). As
Ly € Jg, dg is Hechler over VP!« and ¢, is Cohen over the same model. Therefore,
{dy:aeLyn)-u} forms ascale of cofinality u in VF'L, s0 b = d = g in that model
(also use Lemma 6.3). On the other hand, PIL forces non(M) < y < cov(M), because
of the p-cofinal Cohen reals added, so add(M) = cof (M) = u is clearly forced.

For a < O we put W, = V% and Wy = VF!L where (Z,)a<p is an increasing
sequence of subsets of L whose union is L and (Zy41 N Zg) NLynA-u # @. Asa
consequence of Theorem 5.10, { W, ) 4<g satisfies the hypothesis of Lemma 2.1,s0 g < 0
holds in VF!E,

In VP, it is clear that ¢ < A, because P} L has size L. On the other hand, A < 0, <
non(N) and A < v by Theorem 5.9, because D is -good and o<-good.

Now, if the iteration is appropriate, it further forces 6 < add(N), 8; < cov(N), and
0 < p < s (recall that p < g). We show the second one (the others are proven similarly).
In VEIL let B bea family of Borel null sets of size < 6, so there is a transitive model
N of alarge enough fragment of ZFC such that B ¢ N (the Borel codes) and |N| < 6;.
By Definition 6.2(8), there is an x € L such that Q, = BV, so Q, has already added
a random real over N and B does not cover that real. [ ]

To prove the Main Theorem, we need to construct an appropriate iteration that
forces a = A. The following lemma is essential to construct this iteration.

Main Lemma  Let 0 <6 < A. LetP r(L‘S,jB) be a pre-appropriate iteration and let A
be a P} LO-name for an almost disjoint family such that 6% < |A| < A. Then there is &',

8 < &' < A, and an appropriate iteration P’ = P’ I‘(L‘S,,ja ) such that

(@) P'IL° =PIL%, and
(0) Irprypor “A is not maximal”.

Proof This proof is inspired by [Bre02, Thm 3.3].

Let A = {4, : € < v} for some 8" < v < A be a P}L?,J®%)-name for an almost
disjoint family. For every d, there is a B € L° of size < 0 such that 4, is a P} B.-name
for a real. We may assume that B, is c.i.s.t.. Indeed, start with an arbitrary B? of size
less than 6 such that d. is a P} B-name (by Lemma 6.3 such BY exists) and, for # € w,
define B"*! as the closure of B U {C? : x € B" n L%} under initial segments. Take
Be = Upew B?'
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By the A-system lemma (because 8<% = 0) we can assume that (B, : a < 6) is
a A-system with root R that is also a c.is.t. (so C2 € R for x € Rn L%). By Lemma
4.6 we thin out the A-system so that, for all a # B, there is a P}{L°, J°)-isomorphism
¢a,p: Bo — Bp, which lifts to an isomorphism @, g:P(Ba,JIBy) — PI{(Bg, I Bg)
(see Definition 4.5). Moreover, we can assume that
* ¢q,p!R is the identity map,
* $a,p[Ba N Ly] = Bg N LY, bap[Ba N L] = Bg N LY, dap[Ba 0 L] = Bg N LY,
e if x € By N LY, then @, 4 sends F2 to Fgu)ﬁ(x) (recall that ¢, [ C2] = C(‘za,ﬁ(x)),
* @, g sends a, to ag,
. gb;}ﬁ = ¢p,a and ¢g,, 0 ¢o g = Pa,y, likewise for the induced isomorphisms.

By shrinking again, we also assume that there is a pg < 0 such that, for any « < 67,
x € By and k < |x|, if x(k) is negative, then x(k) € S, for some p < py.

Let T ¢ L% be a tree of size < 0 that represents (B, )q<g+, that is, for each a <
0% there is a bijection x,: T — B, satisfying Definition 4.5(i)-(viii) and such that
Ga,p 0 xo = xp for any g # a.

Let S ¢ T be a tree that represents the root of the A-system, that is, x,[S] = R
for each & < 0*. Note that for all a, f in 6% and all t € S we have x,(t) = xp(1).
Furthermore, we can assume that whenever s € SU {@} and ¢ := s (&) € T\S then,
for all @ < 6%, we have that
e xo(t)(|s]) > 6, in case £ is positive, and
o xq(t)(Js]) < 0%, in case & is negative.

Now, let {t, : # < x} with ¥ < 0 enumerate {s™(§) : s € SU{@},s7(&) € T\S}.
Consider the coloring F:[0*]? — x defined as follows: for & < 8 let

F(a, B) = min{#y < x : either x4 (t,)(|t,| = 1) > xg(t,)(|ty] - 1)
and t,,(|t,| - 1) is positive, or x4 (t,) (|t;| = 1) < xg(t,;)(|t,] - 1)
and t,,(|t,| - 1) is negative}

when such a # exists, otherwise put F(a, ) = 0.
We will use the following reformulation of the Erdés-Rado theorem.

Claim  IfF:[0%]* - x, where k < 0 and 0<% = 0, then there is a homogeneous set of
size 0.

Proof Similar to [Kunll, Lemma III.8.11]. |

Thus, we can find an F-homogeneous set of size 6. It should have color 0, since
otherwise we will have an infinite decreasing chain of ordinals. Without loss of gen-
erality, this homogeneous set is 6.

For every s € S U {@}, £ and # such that s7(£), s™(#) are in T\S, denote by v;- (¢
the limit of {x,(s"(&))(|s|)} (which is a supremum if £ is positive, or an infimum
otherwise). We assume the following:

* if £ < # are positive, then
- either v~ (¢ < x0(s7(n))(Is]) (When v~ (g < V4~ ())s
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= or xo (s (7)) (Is]) < x3(s™(&))(Js]) for all & < B < 6 (When vy~ (gy = vi~()).”
* if £ < 7 are negative, then

- either xo(s7(£€))([s]) < vs~()>

- or x4 (s7(&))(Is|) > xg(s™(n7))(Js|) forall & < B < 6.

Recall that any object in L? contains only elements of (8*,8) from the second
coordinate on. Now, choose y* € S, such that § < y < A (exists because S, is co-
initial in 1*) and let 8" < A be any ordinal larger than y (we can also allow for &’ to be
a successor ordinal).

We define x,: T — L% as follows.

o Ifte§, then x,(t) = xo(t) € R.
o Ift =s"(&) € T\S with s € Su {@}, then
- if & is positive, then

2o (£) = X (8) (Vs ¥ ) X0 (1) (Js]) if[s| # 0,
% (8)™ (Vs 7)) if[s| = 0,
- if & is negative, then x, (t) = x,(s) ™ (vs-(¢)> ) %0 (£)([s]).
e Ift € T, then x,(t) = x,(¢t}m) xo(t)[m,]|t]) were m is the minimal (if exists)
such that t}m € T\S,.
Put B, = {x,(t) : t € T}, which is a subset of L?" that is isomorphic (as a linear
order) with T via x,. Thus, ¢, := x, o x;': By = B, is an order isomorphism for all
a < 6. Moreover, B, N L® = Rand ¢, | R is the identity map. Let ¢, = ¢',. Note

-
that ¢, is also a template-isomorphism (see Definition 3.8) between (Bo,J Bo) and
(By,d), where J, = {¢po,,[X]: X € ngo(z) I By} for each z € B,.

Claim 6.5 (B,,J% |B,) is a 0-innocuous extension of (B, ).

Proof Similar to the argument in [Bre02, Thm 3.3]. [ |
Let

Ly =L} U gop[LE N Bo] U {(n.y,y,y) ined -y n=0 mod 3},

LY = Ly U gou[L nBo]u{(n,7,,y) i€ d-p, =1 mod 3},

LY = L U oy [LE N Bo]u{(m,7,y,7) e -, =2 mod 3},
let L‘SC, = Lf{ u Lg, U Lg, and LI‘EI, = LBI\L‘S', which ,contains Lﬁl. Fix a bijection ‘g: A—
A x 6 and an enumeration {C¢ g : f < A} of [Li.(]w (which is a subset of’ﬂg.() for
each { < y. When z is an ordered pair, (z), denotes its first coordinate and (z); its

second.
/
For x € L‘é ,

o if x € L2, then let c? =
e if x = x,(t) for some t € T'let C' := $0,[C2, (1] (note that this does not disagree
with the previous bullet);

7In that case, there is a club subset of 8 with that property (for fixed s™ (&), s™ ().
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°1fx—(nyyy)andn:)L-(+3~p+iwhereC<y,p</\andi<3,1et
C = Ce(g(o)or
Notethat,forocgv,ifxeBaﬁL‘sC',thean’EB,X.

’ 78,
We construct a ({ID), #)-standard iteration P’ }(L%,J ) such that

(i*) Lg are the coordinates where (full) Hechler forcing is used, while L‘g are the
coordinates where ccc posets of size < 0 are used according to what we natu-
rally mean for coordinates in L4 (localization poset), L3 (random) and in LY
(Mathias-Prickry);

(ii*) for X c L%, P'}X = P} X;

(iii*) forze L‘é, Q; =Qy

(iv*) there is a forcing isomorphism @, o: P’ B, — P|' B that lifts ¢, o (in the sense
of (viii*) and (ix*) below) and @, o [ (PIR) is the identity,

(v*) foreach({ <pandpf <A, {F : & < 0} enumerates® all (nice) P’} IC¢,p-names
for filter bases of size < 6 and ify =1-(+3-pforsomep < Aandifz =

(77,7, 7), then Q; = Mt

(vi*) foreach{<pandf <A, {IB%(,ﬁ,a : & < 0} enumerates all (nice) P’ ' C; g-names
for subalgebras of B of size < 0; and, if y = A- { +3- p +1for some p < A and if
2= (1,7,,7)> then Qz = By o3

(vii*) for each { < pand B < A, {LOC¢4 4 : & < 0} enumerates all (nice) P’ ICy g-
names for o-linked subposets of LOC of size < 8y and, if = A-{+3-p +2 for
some p < A and if z = (1,7, y,y), then Q, = L@(C(,g(p).

Conditions (v*), (vi*), and (vii*) guarantee that P’ F(L‘S’, 55’) is an appropriate itera-
tion. For instance, if Q is a P’} L% -name for a subalgebra of random forcing of size
< 01, by Lemma 6.3 there exists C’ ¢ L% of size < 0 such that Q is (forced to be equal
to) a P’ IC’-name, so there is { < y such that C’ ¢ L‘s( and there exists a < A such
that C’ = C¢ 5. By (vi*), Q = By 5, for some a < 6 so Q = Q, where z = (1,7, 7, y),
n=A-u+3-p+landp=g"(B, a).

By Claim 6.5 and Lemmas 3.12 and 3.9, there is a ({D), 0)-template iteration
P’ F(Bv,j‘s IB,) and a forcing isomorphism @, o: P’ B, — P} By satisfying:
(viii*) @, (P Mo, [X ]) P'Mo,v[X] — P} X is an isomorphism for any X ¢ By and
(ix*) Q¢0 (x) 18 the P’ }C? 6o, (x)"DAME associated with Q, via D, o foranyx e BOOL5

Itis clear that P’ 'R = P}Rand @, 0 F(PIR) is the identity map. Therefore, asLonB,

R, we can easily extend P’ [(B,,, 7 'B,) to an iteration P’ }{L° U B,, 7 NL® U B,)),
satisfying (i*). Furthermore, as (L°UB,)n{{#,y,y,y) : € A-u} = &, we can extend

the iteration to P’ (L%, 7 ) satisfying, additionally, (v*)-(vii*). Observe that, for any
0<a<v,®,,:=0yq0d,0:P'I'B, > PIB, is a forcing isomorphism that lifts ¢, ,
and satisfies similar properties as (iv*), (viii*), and (ix*).

Let a, be the P’} B,-name corresponding to dg via @, . To finish the proof, we
show that I-p, ;s Ve < v(de N ay is finite). Fixe < v. As|B| < 0 and (B, : & < 0)

8This family of names has size at most 6, because |P’ PCq,gl < 0 as noted in the proof of Lemma 4.6.
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forms a A-system, there is an a, < 6 such that Va € [a,, 0)(B, N Be € R). Moreover,
we may assume that

(#x) ForanyseSu{@}andt=s"(&) e T\S, if £ is positive, then
sup{ ([s]) : y € Be, yMs| = x,(s) and y(Is[) < x,(|s]) } < xa, (Is]),
and if € is negative, then
inf{ y(Is[) : y € Be, ls| = x(s) and y([s]) > x, (Is[) } > xa, (Is])-
Take any « € [a,, 0) \ {€} and consider the mapping ¢: B, U B, - B, U B, where

$y.a(x) ifxeB,,
x if x € B.

x»¢<x>={

From (*%), ¢: (B, U Be,gl) - (B, U BE,ja (B, U B.)) is a template isomorphism

where 7. = {¢7'[X]: X € Jg(z) (B4 U B)} for any z € B, U B,. Furthermore,

_s _
Claim 6.6 (B, UB.,J (B, UB,)) isa 0-innocuous extension of (B, U B,, HI).

Proof Similar to the argument in [Bre02, Thm 3.3]. |

Therefore, by Lemma 3.9 and items (i*)-(iv*), (viii*) and (ix*), there is a forcing
isomorphism ®:P'[(B, U B;) — PI(By U B) lifting ¢; moreover, ®(P'IB,) =
@, , and O (P’ B,) is the identity map (these by uniqueness in Lemma 3.9) so 4, is
identified with d, via ® and 4. is identified with itself. As I-p}(g,up,) |da N de| < Ro,
we conclude that I-p:(p,up,) [@y N de| < Ro. [ ]

As a consequence of the previous proof, we obtain the following corollary.

=3
Corollary 6.7 Let 8 < X and PNL°,T") be a pre-appropriate iteration. Then there is
-
&', 8 < &' < A, and an appropriate iteration P’ = P’ }(L® , T ) such that P’ 1L° = P} LY.

Proof Choose any y, § < y < A and let 8’ be any ordinal strictly between y and A.
Then P’ = P'NL?, 7 ) is defined exactly as in the previous proof (just ignore anything
related to By, By, ¢o,y, and @, ). [ |
Proof of the Main Theorem Fix a bookkeeping function s: A - A x A such that h is
a bijection, and for all « € A if h(a) = (&, 7), then a > & By recursion, we define a
sequence (P* r(L‘$“,§6“))(,CS ) of appropriate iterations as follows.

Basic step o = 0. Let IP’[(LG+ ,59 ) be a pre-appropriate iteration with L?; = L% (that
is, D is used everywhere). By Corollary 6.7, find 8y € (8%,1) and an appropriate
iteration P° (L%, 3 ).

Successor step. Let (/la,n : 1 < A) enumerate all (nice) P* } L% -names of almost dis-

joint families of size in [#*,1) (such enumeration has size A because A* = A and
|P% }L%| = ). By the Main Lemma, we can find 8,,; € (84, 1) and an appropriate
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iteration P**! r(L5“+1,§8“+1> such that IFpey s, “Ap(e) is not maximal” (Aj(qy has
already been defined, because & < a when h(«) = (&, 1)).

Limit step. Let § = sup;_,{J¢} so L% = U L% Ifa < A, then § < A, but & = A
implies = A. Then Jff = J%}1% for any x € L% and £ < a by Lemma 6.1. Let
LY = Usea ij, LY = Ueq Lff and likewise for L and LS. In addition,. for every
x € L% we can find & < « such that x € Lacf. Then define C° = Cﬁ‘ and Q° = i’s,
which does not depend on the choice of &. This allows us to define a pre-appropriate
iteration P1(L?, 55) such that P L% = P¥} L% forany £ < a. Itis clear that the iteration
ﬂPTr(LBjS) is appropriate when cf(«) > 6, in which case 8, = § and P* r(L‘S“,jBa) =
@r(Lﬁ,ﬁs); moreover, this is the direct limit of P* L% for & < a, since any condition
p € P¥}L% is restricted to a subset of size < 8 by Lemma 6.3; if cf () < 6, we just
find 8, € (6,1) and an appropriate iteration P* I‘(L‘s“,ﬁam) such that P* L% = PL°
by Corollary 6.7.

AsPA (L}, 7}) is an appropriate iteration, by Lemma 6.4 we only need to show that
IFpippr @ ¢ [67,1) (because P*IL* already forces b = y > 6% and b < a is probable
in ZFC). Let A be a P* L} -name for an almost disjoint family of size in [6%, 1) (by
ccc-ness, this size can be decidgd). As P 1 L2 is the direct limit of P% [ L% for a < A,
we can find &, 7 < A such that A = Ag ,, so, if h(«) = (& 7), then P**! ML+ already
forces that A is not maximal. ]

7 Questions

J. Brendle [Bre03] modified Shelah’s original template iteration technique to incor-
porate a product-like forcing as a complete suborder of the entire template iteration.
This modified template iteration produces the consistency of a being of countable co-
finality. Recently, the first author, jointly with A. Tornquist (see [FT15]), showed that
the minimal size of a maximal cofinitary group ag, as well as some other close com-
binatorial relatives of the almost disjointness number, like a,, a., can be of countable
cofinality. The following question remains of interest.

Question 71 Can the iteration techniques developed in this paper be further devel-
oped to expand the results by including the case in which a, ag, a,, or a, are singular,
or even of countable cofinality?

The iteration of eventually different forcing along Shelah’s original template pro-
duces the consistency of a = ®; < non(M) < a, (see [Bre02, Thm. 4.11]). It is un-
known whether this consistency result could be improved as follows.

Question 7.2 Is it consistent that X; < a < non(M) < a,z?

In his work on template iterations, Shelah [She04] (see also [Bre07]) also con-
structed, using a measurable cardinal «, a ccc poset that forces ¥ < u < a. As this
poset also forces u = b = s, the consistency of b = s < a is clear modulo a measurable

https://doi.org/10.4153/CJM-2016-021-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-021-8

530 V. Fischer and D. A. Mejia

cardinal. However, it is not known whether these consistency results can be obtained
from ZFC alone.

Question 7.3 s it consistent with ZFC alone that

1) b=s<a?
(2) b=s="R; <a=NR, (see [BreRl4])?
3) u<a?

Question 7.3(2) is a very important and challenging problem. It is closely related
to the famous Roitman’s problem (still open) on whether “0 = &; implies a = &;” is
provable in ZFC.
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