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STEIN’S METHOD FOR THE BETA DISTRIBUTION
AND THE PÓLYA–EGGENBERGER URN
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Abstract

Using a characterizing equation for the beta distribution, Stein’s method is applied to
obtain bounds of the optimal order for the Wasserstein distance between the distribution
of the scaled number of white balls drawn from a Pólya–Eggenberger urn and its limiting
beta distribution. The bound is computed by making a direct comparison between
characterizing operators of the target and the beta distribution, the former derived by
extending Stein’s density approach to discrete distributions. In addition, refinements are
given to Döbler’s (2012) result for the arcsine approximation for the fraction of time a
simple random walk of even length spends positive, and so also to the distributions of its
last return time to 0 and its first visit to its terminal point, by supplying explicit constants
to the present Wasserstein bound and also demonstrating that its rate is of the optimal
order.
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1. Introduction

The classical Pólya–Eggenberger urn at time 0 contains α ≥ 1 white balls and β ≥ 1 black
balls, and at every positive integer time a ball is chosen uniformly from the urn, independently
of the past, and replaced along with m ≥ 1 additional balls of the same color. With L
indicating distribution, or law, and

d−→ indicating convergence in distribution, it is well known
(see, e.g. [23]) that if Sn = S

α,β,m
n is the number of white balls drawn from the urn by time

n = 0, 1, 2, . . . then, as n → ∞,

L(Wn)
d−→ B

(
α

m
,
β

m

)
, where Wn = Sn

n
. (1.1)

Here, for positive real numbers α and β, we let B(α, β) denote the beta distribution having
density

p(x;α, β) = xα−1(1 − x)β−1

B(α, β)
1{x∈[0,1]}, (1.2)

where B(α, β) = �(α)�(β)/�(α+β) is the beta function as expressed in terms of the gamma
function �(x).

Using Stein’s method, we derive an order O(1/n) bound in the Wasserstein distance dW,
defined in (3.1), betweenWn and its limiting beta distribution in (1.1). We show in Remark 3.1
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1188 L. GOLDSTEIN AND G. REINERT

that the rate of Theorem 1.1 cannot be improved. We let x∨y or max(x; y) denote the maximum
of two real numbers x and y, and x ∧ y or min(x; y) their minimum.

Theorem 1.1. For α ≥ 1 and β ≥ 1, let Sn be the number of white balls in n draws from
a Pólya–Eggenberger urn that initially contains α white balls and β black balls. Then, with
Wn = Sn/n and Z ∼ B(α/m, β/m),

dW(Wn,Z) ≤
(
m+ α ∨ β

2nm
+ αβ

nm(α + β)

)
(b0 + b1)+ 3

2n
,

where b0 = b0(α/m, β/m) and b1 = b1(α/m, β/m) are given in Lemma 3.4.

Connections between Theorem 1.1 and Döbler’s work [12] are spelled out in Remark 3.2.
The B( 1

2 ,
1
2 )distribution, also known as the arcsine law, describes the asymptotic distribution

of many quantities that arise naturally in the study of the simple symmetric random walk
Tn = X1 + · · · +Xn, where X1, . . . , Xn are independent variables taking the values 1 and −1
with probability 1

2 . For instance, let L2n be the random variable

L2n = sup{m ≤ 2n : Tm = 0}
giving the last return time to 0 up to time 2n. Then, see [15],

P(L2n = 2k) = u2ku2n−2k, where u2m = P(T2m = 0) (1.3)

with P(T2m = 0) = 2−2m
(2m
m

)
, the probability that the walk returns to 0 at time 2m.

In the limit, (2n)−1L2n → Z in probability, where Z has the arcsine distribution. It is
often noted that this limiting result is somewhat counterintuitive in that the arcsine density has
greatest mass near the endpoints, and least mass in the center of the unit interval, whereas in
a fair coin tossing game one might assume that players are more likely to spend equal time in
the lead. Perhaps at least as remarkable is the fact that the number U2n of segments of the walk
that lie above the x-axis, and R2n, the first time the walk visits the terminal point S2n, are all
equal in distribution to L(L2n); see [15] for a nice exposition.

Using the methods presented here that were available in a preprint of this article, Döbler [11]
presented a Wasserstein bound of order O(1/n) without explicit constants between the distri-
bution of (2n)−1U2n and the limiting arcsine. In Section 4, essentially by applying the bounds
in Lemma 3.4, we are able to attach concrete constants to the result of [11], as well as show the
rate of the bound is optimal.

Theorem 1.2. LetL2n be the last return time to 0 of a simple symmetric random walk of length
2n, and let Z have the arcsine distribution. Then

dW

(
L2n

2n
,Z

)
≤ 27

2n
+ 8

n2 .

The same bound holds with L2n replaced by U2n or R2n. TheO(1/n) rate of the bound cannot
be improved.

Beginning with the introduction by Stein [33] of a ‘characterizing equation’ method for
developing bounds in normal approximation, to date the method has been successfully applied
to a large number of the classical distributions, including the Poisson [2], [4], multinomial [20],
gamma [21], [24], geometric [26], negative binomial [5], and exponential [6], [27], [28], as well
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Stein’s method for the Pólya–Eggenberger urn 1189

as the classical generalized gamma distributions [30] and the nonclassical PRR family [29],
both based on Pólya-type urn models. Here we further extend the range of Stein’s method by
including the beta distribution, focusing on its role as the limiting law of the fraction of white
balls drawn from the Pólya–Eggenberger urn.

The application of Stein’s method here differs from the way it is usually applied in that we
focus on the approximation of particular distributions whose exact forms are known, rather
than develop a bound that applies to a class of complex distributions obtained by, say, summing
random variables that obey weak moment and dependence conditions, as in the case of the
central limit theorem. And indeed, though explicit formulae exist for the distributions we study,
the need for their approximation arises regardless, as is the case also for, say, the ubiquitous
use of the normal approximation for the binomial.

Urn models of the classical type, and generalizations including drawing multiple balls or
starting new urns, have received considerable attention recently; see, for example, [1], [7],
and [10]. Interest has partly been sparked by the ability of urn models to exhibit power-law
limiting behavior, which in turn has been a focus of network analysis; see, for example, [13]
and [29]. Connections between urn models and binary search trees are clearly explained in
[22]. In particular, let m = 1 and consider the initial state of the Pólya–Eggenberger urn as a
rooted binary tree having α white leaves and β black leaves, or external nodes. At every time
step one external node is chosen, uniformly, to duplicate, yielding a pair of leaves of the same
color. That is, the chosen external node becomes an internal node while two external nodes
of the chosen color are added. The rule for adding an additional white leaf to the tree at time
n clearly is the same as the rule for adding an additional white ball to the Pólya–Eggenberger
urn for the case m = 1, and, hence, the number of white leaves of the tree and white balls in
the urn have the same distribution. Many variations and extensions on this theme are possible.
Another line of interest comes from edge reinforced random walks, because an infinite system
of independent Pólya–Eggenberger urns can be used to represent edge reinforced random walks
on trees; see [31].

2. Characterizing equations and generators

Stein’s method for distributional approximation is based on a characterization of the target
approximating distribution. For the seminal normal case considered in [33], it was shown that
a variable Z has the standard normal distribution if and only if

E[Zf (Z)] = E[f ′(Z)] (2.1)

for all absolutely continuous functions f for which E|f ′(Z)| < ∞. If a variable W has an
approximate normal distribution, then one expects that it satisfies (2.1) approximately. More
specifically, if we wish to test the difference between the distribution of W and the standard
normal Z on a function h, then instead of computing Eh(W)− Nh, where Nh = Eh(Z), we
can set up a ‘Stein equation’

f ′(w)− wf (w) = h(w)−Nh (2.2)

for the given h, solve for f (w), and, upon replacing w byW in (2.2), calculate the expectation
of the right-hand side by taking the expectation on the left. At first glance it may seem that
doing so does not make the given problem any less difficult. However, a number of techniques
may be brought to bear on the quantity E[f ′(W) − Wf (W)]. In particular, this expression
contains only the single random variableW , in contrast to the difference of the expectations of
h(W) and h(Z), depending on two distributions.
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1190 L. GOLDSTEIN AND G. REINERT

To obtain our result, we compute the distance between the distribution of the fraction of
white balls drawn from the Pólya–Eggenberger urn and the beta by comparing the operators
that characterize them. Our approach in characterizing the urn distribution stems from what is
known as the density method; see, for instance, [8, Section 13.1], [32], or [34]. In particular,
recognizing the −w in (2.2) as the ratio φ′(w)/φ(w), where φ(w) is the standard normal
density, one hopes to replace the term −w by the ratio p′(w)/p(w) when developing the Stein
equation to handle the distribution with density p(w), and to apply similar reasoning when the
distribution under study is discrete. Use of the density method in the discrete case, followed
by the application of a judiciously chosen transformation, leads to the characterization of the
Pólya–Eggenberger urn distribution given in Lemma 2.1.

Another approach to construct characterizing equations is known as the generator method.
A number of years following the publication of [33], the relationship between the characterizing
equation (2.1) and the generator of the Ornstein–Uhlenbeck process

Af (w) = f ′′(w)− wf ′(w),

of which the normal is the unique stationary measure, was recognized in [3], where it was noted
that in some generality the process semigroup may be used to solve the Stein equation (2.2).
Given this connection between Stein characterizations and generators, it is natural to consider
a stochastic process which has the given target as its stationary distribution when extending
Stein’s method to handle a new distribution.

Regarding the use of this ‘generator’method for extending the scope of Stein’s method to the
beta distribution, we recall that the Fisher–Wright model from genetics, originating in [16], [36],
and [37], is a stochastic process used to model genetic drift in a population and has a generator
given by

Af (x) = w(1 − w)f ′′(w)+ (α(1 − w)− βw)f ′(w)

for positive α and β, and that the B(α, β) distribution is its unique stationary distribution. In
particular, with Z ∼ B(α, β) we have EAf (Z) = 0. Let Bα,βh = Eh(Z), the B(α, β)
expectation of a function h; we drop the subscripts when the role of the parameters α and β is
clear. As Eh(Z)−Bh is also 0, we are led to consider a Stein equation for the beta distribution
of the form

w(1 − w)f ′(w)+ (α(1 − w)− βw)f (w) = h(w)− Bα,βh. (2.3)

Lemma 2.1 provides a characterizing equation for the Pólya urn distribution that is parallel
to (2.3). Taking differences then allows us to estimate the expectation of the right-hand side
of (2.3) when w is replaced by Wn by exploiting the similarity of the two characterizing
operators; a similar argument can be found in [14] and [18] for stationary distributions of birth–
death chains. The results most closely related to the present work are those of [12], and their
connections to the present manuscript are discussed in Remark 3.2.

First we introduce some notation. We say a subset I of the integers Z is a finite integer
interval if I = [a, b] ∩ Z for a, b ∈ Z with a ≤ b, and an infinite integer interval if either
I = (−∞, b] ∩ Z or I = [a,∞) ∩ Z or I = Z. For a real-valued function f , let �f (k) =
f (k + 1) − f (k), the forward difference operator, and, for a real-valued function p taking
nonzero values in the integer interval I , let

ψ(k) = �p(k)

p(k)
for k ∈ I. (2.4)
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Stein’s method for the Pólya–Eggenberger urn 1191

For Z a random variable having probability mass function p with support the integer
interval I , let F (p) denote the set of all real-valued functions f such that either E�f (Z −
1) or Eψ(Z)f (Z) is finite, limn→∞ f (n)p(n + 1) = 0 when sup{k : p(k) > 0} = ∞,
limn→−∞ f (n)p(n + 1) = 0 when inf{k : p(k) > 0} = −∞, and f (a − 1) = 0 in the case
where I = [a, b] ∩ Z or I = [a,∞) ∩ Z.

Lemma 2.1. Let p be the probability mass function of the number Sα,β,mn of white balls drawn
from the Pólya–Eggenberger urn by time n. Then a random variable S has probability mass
function p if and only if

E

[
S

(
β

m
+ n− S

)
�f (S − 1)+

{
(n− S)

(
α

m
+ S

)
− S

(
β

m
+ n− S

)}
f (S)

]
=0 (2.5)

for all functions f ∈ F (p).

We prove Lemma 2.1 by applying a general technique for constructing equations such as (2.5)
from discrete probability mass functions which is of independent interest; see [19]. We begin
with Proposition 2.1 below, a discrete version of the density approach to the Stein equation.

Proposition 2.1. Let Z have probability mass function p with support the integer interval I ,
and let ψ(k) be given by (2.4) for k ∈ I . If a random variable X with support I has mass
function p then, for all f ∈ F (p),

E[�f (X − 1)+ ψ(X)f (X)] = 0. (2.6)

Conversely, if (2.6) holds for all f (k) = 1(k = �), � ∈ I , then X has mass function p.

Remark 2.1. The functions f (k) = 1(k = �), � ∈ I , are in F (p), so Proposition 2.1 implies
that a random variable X with support I has mass function p if and only if (2.6) holds for all
f ∈ F (p).

The statement in Proposition 2.1 is equivalent to Theorem 1.1 given in [19] under a different
assumption, namely that equality (2.6) holds with g replacing f for all functions for which∑
k∈I �(g(k)p(k)) = 0. We note that their setup would translate to test functions f (k) =

g(k + 1).

Proof. Let p be a real-valued function defined on the integer interval [a, b + 1] ∩ Z for
a, b ∈ Z with a ≤ b. Applying the summation by parts formula in the first line below, we
obtain

b∑
k=a

f (k)�p(k) = −
b∑
k=a

p(k + 1)�f (k)+ f (b + 1)p(b + 1)− f (a)p(a) (2.7)

= −
b+1∑
k=a+1

p(k)�f (k − 1)+ f (b + 1)p(b + 1)− f (a)p(a)

= −
b∑
k=a

p(k)�f (k − 1)+ f (b)p(b + 1)− f (a − 1)p(a). (2.8)

If p(b + 1) = 0 and f (a − 1) = 0, then we obtain

b∑
k=a

f (k)�p(k) = −
b∑
k=a

p(k)�f (k − 1). (2.9)
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1192 L. GOLDSTEIN AND G. REINERT

Hence, (2.6) holds when p is a probability mass function with support [a, b] ∩ Z and
f (a − 1) = 0.

The case where I is an infinite integer interval follows by applying Abel’s lemma on
summation by parts as modified by [9]. In particular, if either (2.8) or the left-hand side of (2.7)
is convergent upon replacing b by ∞, and if limn→∞ f (n)p(n + 1) = 0, then Equation (3a)
of [9] shows that (2.9) holds upon replacing b by ∞, completing the argument when I = [a,∞).
Similarly, Equation (3b) of [9] can be used to argue the case when I = Z.

For I = (−∞, b], (2.8) gives

Eψ(X)f (X) =
b∑

k=−∞
f (k)�p(k)

= lim
a→−∞

b∑
k=a

f (k)�p(k)

= lim
a→−∞

(
−

b∑
k=a

p(k)�f (k − 1)+ f (b)p(b + 1)− f (a − 1)p(a)

)
.

Since p(b + 1) = 0 and p(a)f (a − 1) → 0 as a → −∞, we obtain

Eψ(X)f (X) = − lim
a→−∞

b∑
k=a

p(k)�f (k − 1) = −E�f (X − 1)

and (2.6) holds.
Conversely, if X with support I satisfies (2.6) for all functions f (k) = 1(k = �) for � ∈ I ,

then
0 = E[�f (X − 1)+ ψ(X)f (X)]

=
∑
k∈I

P(X = k){(f (k)− f (k − 1))+ ψ(k)f (k)}

= P(X = �)− P(X = �+ 1)+ P(X = �)
P(Z = �+ 1)− P(Z = �)

P(Z = �)
,

and rearranging gives
P(X = �+ 1)

P(X = �)
= P(Z = �+ 1)

P(Z = �)
.

Hence, if I is [a, b] or [a,∞), we obtain, for all j ∈ I ,

P(X = j)

P(X = a)
=
j−1∏
�=a

P(X = �+ 1)

P(X = �)
=
j−1∏
�=a

P(Z = �+ 1)

P(Z = �)
= P(Z = j)

P(Z = a)
.

Summing over j ∈ I yields P(X = a) = P(Z = a), whence P(X = j) = P(Z = j) for all
j ∈ I . Similarly, we may handle the remaining case where I = (−∞, b].

Given a characterization produced by Proposition 2.1, the following corollary produces
varieties of characterizations for the same distribution, each corresponding to a choice of a
function c possessing certain mild properties.
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Corollary 2.1. Let Z be a random variable with probability mass function p and support
I = [a, b] ∩ Z, where a ≤ b, a, b ∈ Z, and let ψ be given by (2.4). Then, for all functions
c : [a − 1, b] ∩ Z → R \ {0}, a random variable X with support I has mass function p if and
only if

E[c(X − 1)�f (X − 1)+ [c(X)ψ(X)+ c(X)− c(X − 1)]f (X)] = 0 (2.10)

for all functions f ∈ F (p).

Proof. Suppose that (2.10) holds for X for all functions in f ∈ F (p). Since c(�) �= 0
for all � ∈ I , the functions f (k) = c(�)−11(k = �), � ∈ I , all lie in F (p), so X has mass
function p by Proposition 2.1. For the converse, note that f ∈ F (p) implies that cf ∈ F (p).
Hence, ifX has mass function p then (2.10) follows from Proposition 2.1 upon replacing f (x)
by c(x)f (x).

Proposition 2.1 applied to Z with mass function p of the Poisson distribution P (λ), having
ψ(k) = λ/(k + 1)− 1 by (2.4) for all k ∈ N0, yields, for all functions f ∈ F (p),

E�f (Z − 1) = E

[
1 − λ

Z + 1

]
f (Z), that is, Ef (Z − 1) = E

[
λ

Z + 1

]
f (Z),

a nonstandard version of a characterization of the Poisson. An extension of Corollary 2.1 to
the case of infinite support produces the usual characterization by the choice c(k) = k+ 1 and
the substitution g(k) = f (k − 1). Naturally, additional characterizations are produced when
using different choices of c.

Remark 2.2. When I = [a, b] ∩ Z, we automatically have ψ(b) = −1, in which case c(b)
does not appear in (2.10), and may be assigned a value arbitrarily.

We now apply Corollary 2.1 to the distribution of Sα,β,mn , the number of white balls drawn
from the Pólya–Eggenberger urn by time n. We suppress α, β, and m for notational ease
unless clarity demands it. It is well known, and not difficult to verify, that the distribution
pk = P(Sn = k), k ∈ Z, satisfies

pk =
(
n

k

)
(α/m)k(β/m)n−k
(α/m+ β/m)n

, (2.11)

where (x)0 = 1 and otherwise (x)k = x(x+1) · · · (x+k−1) is the rising factorial. Distribution
(2.11) is also known as the beta-binomial and the negative hypergeometric distribution; see [35].
We now have the ingredients to prove Lemma 2.1.

Proof of Lemma 2.1. Taking differences in (2.11) for k = 0, . . . , n− 1 yields

�pk =
(
n

k

)
(α/m)k(β/m)n−k
(α/m+ β/m)n

{
(n− k)(α/m+ k)

(k + 1)(β/m+ n− k − 1)
− 1

}
,

while, for k = n,
�pn = −pn.

Hence, with ψ(k) = �pk/pk as in (2.4) we obtain, for k = 0, . . . , n− 1,

ψ(k) = (n− k)(α/m+ k)− (k + 1)(β/m+ n− k − 1)

(k + 1)(β/m+ n− k − 1)

and ψ(n) = −1.
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In applying Corollary 2.1, as ψ(n) = −1, we may take the value c(n) arbitrarily; see
Remark 2.2. In particular, taking c(k) = (k + 1)(β/m+ n− k − 1) for all k = 0, . . . , n− 1
and c(n) = n we obtain (2.5).

The next lemma is instrumental in calculating the higher moments ofSα,β,mn . We let [x]0 = 1,
and otherwise set [x]k = x(x − 1) · · · (x − k + 1), the falling factorial.

Lemma 2.2. For all nonnegative integers n, a, and b, we have

E[[Sα,β,mn ]a[n− Sα,β,mn ]b] = [n]a+b(α/m)a(β/m)b
(α/m+ β/m)a+b

. (2.12)

Proof. First we note that both sides of (2.12) are 0 when a+ b ≥ n+ 1. This is clear for the
right-hand side, as the falling factorial [n]a+b is 0. For the left-hand side, if Sn ≤ a − 1 then
[Sn]a = 0. On the other hand, if Sn ≥ a then b− 1 ≥ n− a ≥ n− Sn, in which case [n− Sn]b
is 0.

Now assume that n ≥ a + b. For any k = 0, 1, . . . , n, we have

[k]a[n− k]bP(Sα,β,mn = k)

= [k]a[n− k]b
(
n

k

)
(α/m)k(β/m)n−k
(α/m+ β/m)n

= [n]a+b(α/m)a(β/m)b
(α/m+ β/m)a+b

(
n− a − b

k − a

)
(α/m+ a)k−a(β/m+ b)n−k−b
(α/m+ β/m+ a + b)n−a−b

= [n]a+b(α/m)a(β/m)b
(α/m+ β/m)a+b

P(a + S
α+am,β+bm,m
n−a−b = k).

Summing over k = 0, 1, . . . , n and using the fact that the support of Sr is {0, . . . , r} yields
(2.12).

If Z has the limiting beta distribution B(α/m, β/m) with density (1.2), using (2.12), we
obtain

E

[ [Sn]a[n− Sn]b
na+b

]
= [n]a+b(α/m)a(β/m)b
na+b(α/m+ β/m)a+b

= [n]a+b
na+b

B(α/m+ a, β/m+ b)

B(α/m, β/m)

= [n]a+b
na+b

E[Za(1 − Z)b], (2.13)

that is, the scaled falling factorial moments of Sn and the power moments of Z differ only
by factors of order 1/n. This observation can be used to provide a proof of convergence
in distribution of Wn = Sn/n to Z by the method of moments, but without a bound on the
distributional distance.

3. Bounds for the Pólya–Eggenberger urn model

Theorem 1.1 provides an explicit bound in Wasserstein distance of order O(1/n) between
the distribution ofWn, the fraction of white balls drawn from the urn by time n, and the limiting
beta distribution. For approximating a discrete distribution by a continuous distribution, the

https://doi.org/10.1239/jap/1389370107 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370107


Stein’s method for the Pólya–Eggenberger urn 1195

Wasserstein distancedW is a typical distance to use; see, for example, [17]. For random variables
X and Y , this distance is given by

dW(X, Y ) = sup
h∈Lip(1)

|E[h(X)] − E[h(Y )]|, (3.1)

where Lip(1) = {h : |h(x)− h(y)| ≤ |x − y|}, the class of all Lipschitz-continuous functions
with Lipschitz constant less than or equal to 1. The Wasserstein distance defines a metric on
the set of probability measures on (R,B(R)), the set of real numbers equipped with their Borel
σ -field. On this space, convergence under the Wasserstein distance implies weak convergence.
On ([0, 1],B([0, 1])), the Wasserstein distance metrizes weak convergence; see [17].

Remark 3.1. The function h(x) = x(1 − x)1{x∈[0,1]} is in Lip(1), and applying (2.13) with
a = b = 1 we obtain, for all α ≥ 1, β ≥ 1, and m ≥ 1,

dW(Wn,Z) ≥ |E[h(Wn)] − Eh(Z)|
=

∣∣∣∣
( [n]2

n2 − 1

)
E[Z(1 − Z)]

∣∣∣∣
= 1

n

αβ

(α + β +m)(α + β)
.

Thus, the 1/n order of the bound in Theorem 1.1 cannot be improved.

Remark 3.2. Theorem 4.3 of [12] provides a bound of order 1/n for the beta approximation to
the Pólya–Eggenberger urn for test functions with bounded first and second derivatives using
an exchangeable pair coupling. The results in [12] differ from ours in two significant ways.
Firstly, the bound in Theorem 4.3 of [12] is expressed in terms of two nonexplicit constants C1
and C2 that are defined in Proposition 3.8 of [12]. Lemma 3.4 below provides values of C1.
The lack of an explicit expression for C2 in [12] can be explained by the fact that the solution
there is given in terms of ratios of functions which are related to incomplete beta functions, for
which a uniform bound would be difficult.

A more important difference between the present work and [12] is that expressing the bound
of the latter, presently given in terms of twice differentiable functions, in terms of a bound in
a metric, say d2, obtained from twice differentiable functions in the same way that Lipschitz
functions yield the Wasserstein metric dW, we have d2 ≤ dW with equality everywhere not
holding. Hence, Theorem 1.1 implies bounds in the d2 metric, while the reverse does not hold.

In the following we set our test functions h to be 0 outside the unit interval [0, 1]. For y > 0,
set

�yf (x) = f (x + y)− f (x),

and, for a real-valued function g on [0, 1], we let ‖g‖ = supw∈[0,1] |g(w)|, the supremum norm
of g. In the following we recall, with the help of Rademacher’s theorem, that a function h is in
Lip(1) if and only if it is absolutely continuous with respect to the Lebesgue measure with an
almost everywhere derivative bounded in absolute value by 1.

Lemma 3.1 below shows that, for all {α, β} ⊂ (0,∞) and functions h for which the
expectation Bα,βh exists,

fα,β(w) = 1

wα(1 − w)β

∫ w

0
uα−1(1 − u)β−1(h(u)− Bα,βh) du, w ∈ [0, 1], (3.2)
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is the unique bounded solution of the Stein equation (2.3). We continue to omit subscripts when
the context makes it clear which parameters are used. In the proof below we invoke Lemma
3.4 which yields bounds on the supremum norm of the derivative f ′ in terms of that same norm
on the derivative h′ of the test function.

Proof of Theorem 1.1. For h a given function in Lip(1), let f = fα/m,β/m be the solution
of the Stein equation (2.3) given in (3.2). Replacing f (z) by f (z/n) and dividing by n in (2.5)
results in

0 = ESn

(
β

nm
+ 1 −Wn

)
�1/nf

(
Wn − 1

n

)

+ E

[
(n− Sn)

(
α

nm
+Wn

)
− Sn

(
β

nm
+ 1 −Wn

)]
f (Wn)

= E

[
nWn

(
β

nm
+ 1 −Wn

)
�1/nf

(
Wn − 1

n

)
+

{
α

m
(1 −Wn)− β

m
Wn

}
f (Wn)

]
.

Applying this identity in the Stein equation (2.3), with α and β replaced by α/m and β/m,
respectively, and invoking Lemma 3.4 below to yield the existence and boundedness of f ′, we
obtain

Eh(Wn)− Bh

= E

[
Wn(1 −Wn)f

′(Wn)+
[
α

m
(1 −Wn)− β

m
Wn

]
f (Wn)

]

= E

[
Wn(1 −Wn)f

′(Wn)− nWn

(
β

nm
+ 1 −Wn

)
�1/nf

(
Wn − 1

n

)]

= E

[
Wn(1 −Wn)f

′(Wn)− nWn(1 −Wn)�1/nf

(
Wn − 1

n

)]
+ R1, (3.3)

where, using Lemma 2.2 to calculate moments, we obtain

|R1| = β

m

∣∣∣∣EWn�1/nf

(
Wn − 1

n

)∣∣∣∣ ≤ β

nm
‖f ′‖EWn = αβ

nm(α + β)
‖f ′‖. (3.4)

Writing the difference in (3.3) as an integral, we have

E

[
Wn(1 −Wn)f

′(Wn)− nWn(1 −Wn)�1/nf

(
Wn − 1

n

)]

= EWn(1 −Wn)

(
f ′(Wn)− n

∫ Wn

Wn−1/n
f ′(x) dx

)

= nE

∫ Wn

Wn−1/n
Wn(1 −Wn)(f

′(Wn)− f ′(x)) dx

= nE

∫ Wn

Wn−1/n
(Wn(1 −Wn)f

′(Wn)− x(1 − x)f ′(x)) dx − R2, (3.5)

where

R2 = nE

∫ Wn

Wn−1/n
(Wn(1 −Wn)− x(1 − x))f ′(x) dx.
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For R2, using the fact that the solution f of the Stein equation equals 0 for x �∈ [0, 1] to
obtain the first inequality, we obtain

|R2| =
∣∣∣∣nE

∫ Wn

Wn−1/n
f ′(x)

∫ Wn

x

(1 − 2y) dy dx

∣∣∣∣
≤ ‖f ′‖nE

∫ Wn

Wn−1/n

∫ Wn

x

dy dx

= ‖f ′‖nE
∫ Wn

Wn−1/n
(Wn − x) dx

= 1

2n
‖f ′‖. (3.6)

For the first term in (3.5), substituting using the Stein equation (2.3) with α and β replaced
by α/m and β/m, respectively, we obtain

nE

∫ Wn

Wn−1/n
(Wn(1 −Wn)f

′(Wn)− x(1 − x)f ′(x)) dx

= nE

∫ Wn

Wn−1/n
(h(Wn)− h(x)) dx

+ nE

∫ Wn

Wn−1/n

1

m
[(βWn − α(1 −Wn))f (Wn)− (βx − α(1 − x))f (x)] dx

= nE

∫ Wn

Wn−1/n

(∫ Wn

x

h′(y) dy + 1

m

∫ Wn

x

[(βy − α(1 − y))f (y)]′ dy

)
dx

= nE

∫ Wn

Wn−1/n

(∫ Wn

x

h′(y) dy

+ 1

m

∫ Wn

x

[(βy − α(1 − y))f ′(y)+ (β + α)f (y)] dy

)
dx.

We bound the two integrals separately. Firstly,

∣∣∣∣nE
∫ Wn

Wn−1/n
(h(Wn)− h(x)) dx

∣∣∣∣ ≤ n‖h′‖E

∫ Wn

Wn−1/n
(Wn − x) dx = 1

2n
‖h′‖. (3.7)

Next, recalling that 0 ≤ Wn ≤ 1 and noting that |(βy − α(1 − y))| ≤ α ∨ β for 0 ≤ y ≤ 1,

∣∣∣∣ nmE

∫ Wn

Wn−1/n

∫ Wn

x

(βy − α(1 − y))f ′(y) dy dx

∣∣∣∣
=

∣∣∣∣ nmE

∫ Wn

Wn−1/n
(βy − α(1 − y))f ′(y)

∫ y

Wn−1/n
dx dy

∣∣∣∣
≤ n

m
‖f ′‖(α ∨ β)E

∫ Wn

Wn−1/n

∫ y

Wn−1/n
dx dy

= 1

2nm
‖f ′‖(α ∨ β). (3.8)
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Arguing in a similar fashion, we obtain∣∣∣∣ nmE

∫ Wn

Wn−1/n

∫ Wn

x

(β + α)f (y) dy dx

∣∣∣∣ ≤ n

m
‖f ‖(β + α)E

∫ Wn

Wn−1/n

∫ y

Wn−1/n
dx dy

= 1

2nm
‖f ‖(α + β). (3.9)

Collecting the bounds (3.4), (3.6), (3.7), (3.8), and (3.9) yields

|Eh(Wn)− Eh(W)|
≤

(
m+ α ∨ β

2nm
+ αβ

nm(α + β)

)
‖f ′‖ + 1

2n
‖h′‖ + 1

2nm
(α + β)‖f ‖.

Note that, by Lemma 3.2,

1

2nm
(α + β)‖f ‖ ≤ 1

2nm

(
2

α/m+ β/m

)
‖h′‖ = 1

n
‖h′‖.

The theorem now follows by invoking Lemma 3.4.

Lemma 3.1. For any {α, β} ⊂ (0,∞) and real-valued function h on [0, 1] such that the
expectation Bα,βh of h exists, the function f given by (3.2) is the unique bounded solution of
(2.3).

Proof. It is straightforward to verify that f as given in (3.2) is a solution of (2.3). Writing
the associated homogeneous equation as

(wα−1(1 − w)β−1)−1(wα(1 − w)βg(w))′ = 0,

we find that all solutions to (2.3) are given by

f (w)+ cg(w) for some c ∈ R, where g(w) = 1

wα(1 − w)β
.

The claim follows since g(w) is unbounded at the endpoints of the unit interval for all c �= 0,
and Lemma 3.4 below demonstrates that f (w) is bounded.

Since the expectation of h(Z)− Bh is 0 when Z ∼ B(α, β), we may also write

f (w) = − 1

wα(1 − w)β

∫ 1

w

uα−1(1 − u)β−1(h(u)− Bh) du. (3.10)

From Proposition 3.8 of [12], we quote the following result.

Lemma 3.2. The solution f , given in (3.2), of (2.3) for h a Lipschitz function on [0, 1] satisfies

‖f ‖ ≤ 2

α + β
‖h′‖.

The cases in the bounds of Lemma 3.4 reflect the behavior of the function

g(w) = wα−1(1 − w)β−1 for w ∈ [0, 1], (3.11)

as described in Lemma 3.3. In the following we will use the terms decreasing and increasing in
the nonstrict manner, for example, a constant function is both increasing and decreasing. Let

xα,β = α − 1

α + β − 2
.
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Table 1.

β < 1 β = 1 β > 1

α < 1 Decreasing on [0, xα,β ], Decreasing Decreasing
Increasing on [xα,β , 1]

α = 1 Increasing Constant Decreasing
α > 1 Increasing Increasing Increasing on [0, xα,β ],

Decreasing on [xα,β , 1]

Lemma 3.3. For {α, β} ⊂ (−1,∞), the function g : [0, 1] → [0,∞) given in (3.11) has the
behavior outlined in Table 1.

Proof. Clearly, when α = 1 and β = 1, the function g(w) is constant. Otherwise, taking
the derivative in (3.11) yields

g′(w) = (α − 1)wα−2(1 − w)β−1 − (β − 1)wα−1(1 − w)β−2

= wα−2(1 − u)β−2{(α − 1)(1 − w)− (β − 1)w}.

The expression is nonnegative if and only if

(α − 1)(1 − w) ≥ (β − 1)w. (3.12)

When α ≥ 1 and β ≤ 1, inequality (3.12) is always satisfied. Similarly, (3.12) holds with the
nonstrict inequality reversed when α ≤ 1 and β ≥ 1. The remaining two cases α < 1, β < 1
and α > 1, β > 1 follow by solving the inequality.

Our next result bounds the magnitude of the derivative of the solution f in terms of h.

Lemma 3.4. For {α, β} ⊂ (0,∞), let f = fα,β,h be the solution to (2.3) given by (3.2) for an
absolutely continuous function h. Then

‖f ′‖ ≤ b0‖h− Bh‖ + b1‖h′‖ ≤ (b0 + b1)‖h′‖, (3.13)

where b0 = b0(α, β) and b1 = b1(α, β) are given by

b0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 max(|α − 1|; |β − 1|) if α ≤ 2, β ≤ 2,

(α + β − 2)2 max

(
α − 1

(α − 2)2
; |β − 1|

β2

)
if α > 2, β ≤ 2,

(α + β − 2)2 max

( |α − 1|
α2 ; β − 1

(β − 2)2

)
if α ≤ 2, β > 2,

(α + β − 2)2 max

(
1

α − 1
; 1

β − 1

)
if α > 2, β > 2,
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and

b1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4

(
1 + max(α;β)

α + β

)
if α ≤ 2, β ≤ 2,

(α + β − 2)2

min(α − 2, β)2
+ 2 max

(
α

α − 2
; 1

)
if α > 2, β ≤ 2,

(α + β − 2)2

min(α, β − 2)2
+ 2 max

(
1; β

β − 2

)
if α ≤ 2, β > 2,

(α + β − 2)2

min(α − 1, β − 1)2
+ 2 max

(
α

α − 1
; β

β − 1

)
if α > 2, β > 2.

Proof. By replacing h by h− Bα,βh we may assume that Bα,βh = 0. Rewriting the Stein
equation (2.3) yields

w(1 − w)f ′(w) = h(w)+ (βw − α(1 − w))f (w),

so to show (3.13) it suffices to demonstrate that, for all w ∈ [0, 1],

|h(w)+ (βw − α(1 − w))f (w)| ≤ (b0‖h‖ + b1‖h′‖)w(1 − w).

Using (3.2) and integration by parts, we obtain

α(1 − w)f (w) = h(w)+ β − 1

wα(1 − w)β−1

∫ w

0
uα(1 − u)β−2h(u) du

− 1

wα(1 − w)β−1

∫ w

0
uα(1 − u)β−1h′(u) du

and, now applying (3.10),

βwf (w) = −h(w)− α − 1

wα−1(1 − w)β

∫ 1

w

uα−2(1 − u)βh(u) du

− 1

wα−1(1 − w)β

∫ 1

w

uα−1(1 − u)βh′(u) du.

Hence,

h(w)+ (βw − α(1 − w))f (w)

= 1

wα(1 − w)β−1

∫ w

0
uα(1 − u)β−2(−(β − 1)h(u)+ (1 − u)h′(u)) du+ βwf (w)

= 1

wα−1(1 − w)β

∫ 1

w

uα−2(1 − u)β(−(α − 1)h(u)− uh′(u)) du

− α(1 − w)f (w).

From Lemma 3.2 we immediately have the bounds

|βwf (w)| ≤ 2β

α + β
w‖h′‖ and |α(1 − w)f (w)| ≤ 2α

α + β
(1 − w)‖h′‖. (3.14)

https://doi.org/10.1239/jap/1389370107 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370107


Stein’s method for the Pólya–Eggenberger urn 1201

As 0 ≤ u ≤ 1,∣∣∣∣ 1

wα(1 − w)β−1

∫ w

0
uα(1 − u)β−2(−(β − 1)h(u)+ (1 − u)h′(u)) du

∣∣∣∣
≤ (|β − 1‖|h‖ + ‖h′‖) 1

wα(1 − w)β−1

∫ w

0
uα(1 − u)β−2 du.

When uα(1 − u)β−2 is increasing on [0, x∗] then, for w ∈ [0, x∗], we can bound this
expression by

‖h‖w(1 − w)
|β − 1|
(1 − x∗)2

+ ‖h′‖w(1 − w)
1

(1 − x∗)2
,

and now using the first inequality in (3.14), we obtain

|h(w)+ (βw − α(1 − w))f (w)|
≤ ‖h‖w(1 − w)

|β − 1|
(1 − x∗)2

+ ‖h′‖w(1 − w)

(
1

(1 − x∗)2
+ 2β

(α + β)(1 − x∗)

)

≤ |β − 1|
(1 − x∗)2

‖h‖w(1 − w)+
(

1

(1 − x∗)2
+ 2β

(α + β)(1 − x∗)

)
‖h′‖w(1 − w).

Similarly, ∣∣∣∣ 1

wα−1(1 − w)β

∫ 1

w

uα−2(1 − u)β(−(α − 1)h(u)− uh′(u)) du

∣∣∣∣
≤ (|α − 1‖|h‖ + ‖h′‖) 1

wα−1(1 − w)β

∫ 1

w

uα−2(1 − u)β du,

and if uα−2(1 − u)β is decreasing on [x∗, 1] then, forw ∈ [x∗, 1], we can bound this expression
by

‖h‖w(1 − w)
|α − 1|
x2∗

+ ‖h′‖w(1 − w)
1

x2∗
.

Now using the second inequality in (3.14), we obtain

|h(w)+ (βw − α(1 − w))f (w)|
≤ ‖h‖w(1 − w)

|α − 1|
x2∗

+
(

1

x2∗
+ 2α

(α + β)x∗

)
‖h′‖w(1 − w).

Hence, we may take

b0 = max

( |α − 1|
x2∗

,
|β − 1|
(1 − x∗)2

)
(3.15)

and

b1 = max

{
1

x2∗
+ 2α

(α + β)x∗
; 1

(1 − x∗)2
+ 2β

(α + β)(1 − x∗)

}
. (3.16)

In view of Lemma 3.3 we distinguish four cases.

Case 1: α ≤ 2 and β ≤ 2. By Lemma 3.3, uα(1 − u)β−2 is increasing and uα−2(1 − u)β

is decreasing. Setting x∗ = 1
2 , by (3.15) and (3.16), we obtain

b0 = 4 max(|α − 1|; |β − 1|) and b1 = 4

(
1 + max(α;β)

α + β

)
.
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Case 2: α > 2 and β ≤ 2. In this case, from Lemma 3.3, uα(1 − u)β−2 is increasing
and uα−2(1 − u)β is decreasing on [xα−1,β+1, 1]. Setting x∗ = xα−1,β+1 and noting that
xα,β + xβ,α = 1, by (3.15) and (3.16), we obtain

b0 = max

(
α − 1

x2
α−1,β+1

; |β − 1|
x2
β+1,α−1

)
= (α + β − 2)2 max

(
α − 1

(α − 2)2
; |β − 1|

β2

)

and

b1 = max

{
1

x2
α−1,β+1

+ 2α

(α + β)xα−1,β+1
; 1

x2
β+1,α−1

+ 2β

(α + β)xβ+1,α−1

}

≤ (α + β − 2)2

min(α − 2, β)2
+ 2

(
α + β − 2

α + β

)
max

(
α

α − 2
; 1

)
,

and bounding (α + β − 2)/(α + β) by 1 gives the assertion.

Case 3: α ≤ 2 and β > 2. In this case, from Lemma 3.3, uα(1 − u)β−2 is increasing on
[0, xα+1,β−1] and uα−2(1 − u)β is decreasing. Setting x∗ = xα+1,β−1, by (3.15) and (3.16),
we obtain

b0 = max

( |α − 1|
x2
α+1,β−1

; β − 1

x2
β−1,α+1

)
= (α + β − 2)2 max

( |α − 1|
α2 ; β − 1

(β − 2)2

)

and

b1 = max

{
1

x2
β−1,α+1

+ 2β

(α + β)xβ−1,α+1
; 1

x2
α+1,β−1

+ 2α

(α + β)xα+1,β−1

}

≤ (α + β − 2)2

min(α, β − 2)2
+ 2

(
α + β − 2

α + β

)
max

(
1; β

β − 2

)
.

Case 4: α > 2 and β > 2. In this case, from Lemma 3.3, uα(1 − u)β−2 is increasing on
[0, xα+1,β−1] and uα−2(1 − u)β is decreasing on [xα−1,β+1, 1]. Noting that

xα−1,β+1 < xα,β < xα+1,β−1,

setting x∗ = xα,β , by (3.15) and (3.16), we obtain

b0 = max

(
α − 1

x2
α,β

; β − 1

x2
β,α

)
= (α + β − 2)2 max

(
1

α − 1
; 1

β − 1

)

and

b1 = max

{
1

x2
α,β

+ 2α

(α + β)xα,β
; 1

x2
β,α

+ 2β

(α + β)xβ,α

}

≤ (α + β − 2)2

min(α − 1, β − 1)2
+ 2

(
α + β − 2

α + β

)
max

(
α

α − 1
; β

β − 1

)
.
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For the final inequality in (3.13), with p(y;α, β) denoting the B(α, β) density in (1.2), we
have

‖h− Bh‖ = sup
x∈[0,1]

|h(x)− Bh|

≤ sup
x∈[0,1]

∫ 1

0
|h(x)− h(y)|p(y;α, β) dy

≤ ‖h′‖ sup
x∈[0,1]

∫ 1

0
|x − y|p(y;α, β) dy

≤ ‖h′‖.

4. Distance of the distribution of L2n to the arcsine law

We rely on [11] in the following proof of Theorem 1.2, noting that in [11] no explicit bound
is obtained.

Proof. Let p be the mass function of L2n given by (1.3), and let Z have the arcsine
distribution. Applying Proposition 2.1 for p, followed by Corollary 2.1 with

ψ(k) = 2k − n+ 1

(k + 1)(2(n− k)− 1)
and the choice c(k) = (k + 1)(2(n− k)− 1),

Döbler [11] arrived at the version of Lemma 2.1 for this case, showing that Wn = (2n)−1L2n
is so distributed if and only if

E

[
nWn

(
1 −Wn + 1

2n

)
�1/nf

(
Wn − 1

n

)
+

(
1

2
−Wn

)
f (Wn)

]
= 0 (4.1)

for all functions f ∈ F (p).
Now following the steps given in Theorem 1.1 for the Pólya urn, collecting the estimates from

the proof of Theorem 3.1 of [11] shows that if f is the solution (3.2) to (2.3) with α = β = 1
2 ,

so that b0 = 2 and b1 = 6, then, for all differentiable functions h, we have

|Eh(Wn)− Eh(Z)| ≤ 1

2n
‖h′‖ + 1

2n
‖f ‖ +

(
1

4n
+ n+ 2

2n2 + 3

4n

)
‖f ′‖.

Applying the bounds of Lemma 3.4 as well as Lemma 3.2 yields the bound in Theorem 1.2.
Applying (4.1) with f (w) replaced by g(w) = 1 and g(w) = w yields

EWn = 1

2
and EW 2

n = 3

8
+ 1

8n
,

respectively. For f (w) = w2/2, a function in Lip(1) on [0, 1], since EZ2 = 3
8 , we obtain

Ef (Wn)− Ef (Z) = 1

16n
.

Hence, the O(1/n) rate cannot be improved.
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