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Differential-free Characterisation of
Smooth Mappings with Controlled Growth

Marijan Markovi¢

Abstract. In this paper we give some generalizations and improvements of the Pavlovi¢ result on
the Holland-Walsh type characterization of the Bloch space of continuously differentiable (smooth)
functions in the unit ball in R".

1 Introduction and the Main Result

We consider the space R™ equipped with the standard norm || and the scalar product
(¢, n) for { € R and # € R™. We denote by B™ the unit ball in R”. Let O € R be a
domain. For a differentiable mapping f: Q) — R", denote by D f({) its differential at
(€ Q,and by

IDFOI = up IDf($)e

the norm of the linear operator Df({):R” — R".
This paper is mainly motivated by the following surprising result of Pavlovi¢ [4].

Proposition 1.1 (cf. [4]) A continuously differentiable complex-valued function f({)
in the unit ball B™ is a Bloch function, i.e.,

(51]13;:1(1 - [EMIDf)

is finite if and only if the following quantity is finite:

sup \/W\/W'f C) f(’7)|

{,neB™,{#n

Moreover, these numbers are equal.

As Pavlovi¢ observed in [4], the above result is actually two-dimensional. Namely,
if one proves it for continuously differentiable functions B> — C, then the general
case (the case of continuously differentiable functions B” — C) follows from it. We
give a proof of Proposition 1.1 in the next section following our main result.

Since for an analytic function f(z) in the unit disc B* we have |Df(z)| = |f'(2)|
for every z € B?, the first part of Proposition 1.1 (without the equality statement) is the
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Holland-Walsh characterization of analytic functions in the Bloch space in the unit
disc. See [3, Theorem 3], which says that f(z) is a Bloch function if and only if

mmmz)—ﬂwﬂ
|z - wl

is bounded as a function of two variables z € B> and w € B? for z # w. This charac-
terisation of analytic Bloch functions in the unit ball is given by Ren and Tu [5].

Our aim here is to obtain a characterisation result similar to Proposition 1.1 of
continuously differentiable mappings that satisfy a certain growth condition. Before
we formulate our main theorem we need to introduce some notation.

Let w({) be an everywhere positive continuous function in a domain Q ¢ R™ (a
weight function in Q). We will consider continuously differentiable mappings in Q
that map this domain into R” and satisfy the growth condition

1£1% = S(HSW(C)HDf(()H < co.

We say that | f||® is the w-Bloch semi-norm of the mapping f (it is easy to check
that it has indeed all semi-norm properties). We denote by B,, the space of all con-
tinuously differentiable mappings f: 2 — R” with the finite w-Bloch semi-norm. The
space B, we call w-Bloch space. If Q = B"™ and w({) = 1-|{|* for { € B™, we just say
the Bloch space, and denote it by B.

In the sequel we will consider the w-distance between { € Q and # € Q, which is
obtained in the following way:

ldo]
w(w)’

dw({o1n) :it;ffy

where the infimum is taken over all piecewise smooth curves y ¢ Q connecting { and
1. It is well known that d, ({, %) is a distance function in the domain Q.

One of our aims in this paper is to give a differential-free description of the w-Bloch
space and a differential-free expression for w-Bloch semi-norm. In order to do that,
for a given w({) ina domain (), we now introduce a new everywhere positive function
W({, 1) on the product domain Q x Q) that satisfies the following four conditions. For
every (€ Qand 5 € Q,

(W) W(n)=W(n,0);

(W2) W(E) =w(();

(W3) lhgpfw((,n)2W(<’,C)=W(4’);
(Wa)  dw($mW(E ) <IC =1l

We say that W((, %) is admissible for w({).

Of course, one can pose the existence question concerning W({,#) if w({) is
given. In the sequel we will prove that the following functions W({, ) are admis-
sible for the given functions w({).
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(a) The function

w((), if (=1,
|C=nl/dw(C,n), ifC#7,
in Q x Q is admissible for any given w({) in Q;

(b) Ifw({) = 1-|{|* for { € B™, then d\({, 7) is the hyperbolic distance in the
unit ball B”. One of the admissible functions is

W(n) = V1= [CPVI=[n

This is shown in the next section. From this fact we deduce the Pavlovi¢ result stated
in the above proposition.
(c) If Qis a convex domain and if w({) is a decreasing function in |(|, then

W({ n) = min{w(),w(n)}

is admissible for w({). It would be of interest to find such simple admissible functions
for more general domains Q and/or more general functions w.
For a mapping f: Q — R" introduce now the quantity

Ifl = sup W((,q)w'
(e, {#y |( ,7|

W({,n) ={

We call it the W-Lipschitz semi-norm (it is also an easy task to check that it is in-
deed a semi-norm). The space of all continuously differentiable mappings f: Q) - R”"
for which its W-Lipschitz semi-norm | f|Y, is finite is denoted by Ly. Note that if
W({, %) is not symmetric, we can replace it by W({, %) = max{W({, ), W(#,{)}
which produces the same Lipschitz type semi-norm.

Our main result in this paper shows that for any continuously differentiable map-
ping f:Q — R", we have | f|® = | f|iy; i.e., the w-Bloch semi-norm is equal to the
W-Lipschitz semi-norm of the mapping f. As a consequence we have the coincidence
of the two spaces By, = Lw. Thus, the space B,, may be described as

By={fQ->R": sup W(En)If(Q) - F(I/IE =1l < o},

$neQ, ity

where W((, ) is any admissible function for w({). This is the content of the following
theorem.

Theorem 1.2 Let Q € R™ be a domain and let f:Q) — R” be a continuously dif-
ferentiable mapping. Let w(() be positive and continuous in Q, and let W({, 1) be an
admissible function for w({). If one of the numbers || f|% and | f|y is finite, then both
numbers are finite and equal.

Proof For one direction, assume that W-Lipschitz semi-norm of the mapping f is
finite, i.e., that the quantity

If(§) - f(n)]
su W((,np)————=—
c,neolloz#n (&) ¢ =7

is finite. We will show that | f||% < || f|4» which implies that | f||® is also finite.
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If we have in mind that

SO =FN oy

lim sup

w—{ |(_ (U|

for every ( € Q, we obtain

= sop W) DO oy wig o L)

n,weQ,n#w | w w—{ |( w|

> l1m1an(( w)llms?p W =W(LOIDF(O)]
=w(O[Df(O)]-
It follows that

|flw 2 supw(O) D) = | f ]
{eQ

which we aimed to prove.

Assume now that | f||% is finite. We will prove the reverse inequality || f||% < | f]5.
Let { € Q and 5 € Q be arbitrary and different and let y € Q be any piecewise smooth
curve parameterized by ¢ € [0,1] that connects { and #, i.e., for which y(0) = { and
y(1) = 5. Since | f||® is finite, we obtain

£ - FI=1F oM - (Fon©)I=| [ (Fenya]
| [ sy < [IDroow (0]d

: : Y (0lde
< Jy Ipsally o<ty [ 200
_ £ |dwl
11 [ ey

If we take infimum over all such curves y, we obtain

£ = F(m)l <1 f1adw ().

Because of our conditions posed on the function W({, ), we have

dw({ )

If(E) = f(n)l b b
W n)——7— T <W((n) T If e < 1
Therefore,
i = sup wign) LWLy
ety ¢ =#l
which we needed to prove. ]

Remark 1.3 Let w({) be a weight in a domain Q) € R™. Observe that we have
supw({) = sup W((,7),

{eQ {,neQ)
{#n
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where W((, 1) is admissible for w({). This remark is a direct consequence of the fact
that we can set the identity f({) = Id({) in our main theorem.

2 On the Pavlovic Result

As we have previously stated, if we take w({) = 1—|{]* for { € B™, then w-distance is
the hyperbolic distance. For the hyperbolic distance between ¢ € B™ and # € B” we
will use the usual notation p({, 7).

It is well known that the hyperbolic distance is invariant under Mobius transforms
of the unit ball; i.e., if T: B™ — B™ is a Mobius transform, then we have

p(T(0). T(n) = (L)

for every { € B™ and 1 € B™.
Up to an orthogonal transform, a Mobius transform of the unit ball B™ onto itself
can be represented as

Te(n) = —

for { € B™, where

(L-1{P)(&-n) - 1¢-nC
[{,n]? ’

neB”

[&n)* =1=2(E ) + [CP .
It is known that
¢ =l
|Tenl =
]
for every { € B™ and 5 € B™.
Particularly, one easily calculates

A=) a-Inl*)

and 1- Ty =
‘ (&2

1+ |w|

1
0,w)=~1
PO, w) =~ %8l

for w € B™. Because of the invariance with respect to the group of Mébius transforms
of the unit ball, the hyperbolic distance between { € B™ and # € B" can be expressed
as
1+[Ten|
1—|Ten|
For all mentioned facts and identities above, we refer the reader to Ahlfors [1] or
Vuorinen [6].
Proposition 1.1 can be seen as a consequence of our main result and the following
elementary lemma, which proves that W({, 1) = /1 —|{|?\/1 - ||?> has W,-property,
and therefore it is admissible for w({) =1-|{|>.

1
p(C.n) = 5 log = atanh |T¢ (7).

Lemma 2.1  ‘The function W({,n) = /1—|{|>\/1-|n|* satisfies the inequality
p(&,mMW(L 1) <|¢ - 5| for every { € B™ and n € B™.

Proof We will first establish the following special case of the inequality we need:

p(0, )\/1-|wf? <ol

for w € B™.
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Since
1+ |w|

1-of

if we take t = |w|, the above inequality is equivalent to the following one:

p(0,w) = %log

1 lo 2 < 4

2T e
where 0 < t < 1. Denote the difference of the left-hand side minus the right-hand side
by F(t). Then we have

1 1

4 = —
F() = (1-r)yr  1-p

, O0<t<l.

Since F'(t) < 0 for 0 < t < 1, it follows that F(t) is a decreasing function in [0,1).
Therefore, F(t) < F(0) = 0, which implies the inequality we aimed to prove.

In the inequality we have just proved, let us take w = T;#, where { € B” and 17 € B™
are arbitrary. Then we have

p(0,w) = p(T¢C, Ten) = p(S51)s

a ICI2 1—|'1|2
VI-loP = \/1-|Tenl? =

as well as
{7l
|l =[Ten| = :
[$n]
If we substitute all above expressions, we obtain the inequality in the statement of our
lemma. u

Remark 2.2 One more expression for the hyperbolic distance in the unit ball is
given by

(- nP?
A=A -1nP)
(see [6]). Using the elementary inequality ¢ < sinh ¢, as suggested by the referee, one
deduces the inequality in the above lemma.

sinh? p({,) =

3 Some Other Consequences of the Main Theorem

In this section we will derive some new consequences of our main result.

Corollary 3.1 Let w({) be an everywhere positive, continuous, and decreasing func-
tion of |{| in a convex domain Q € R™. Then we have

S(ugw(()HDf(()H sup  min{w({), w(q)}|f(() f(n)l

neQ,i#n |( |

for every continuously differentiable mapping f: Q) — R”".
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Proof Let
W({, ) = min{w({), w(n)},
for ({, 1) € Q x Q. We have only to check if W({, 1) satisfies conditions (W, )—-(Wy)
and to apply our main theorem.
It is clear that W({, %) is symmetric and that W({, {) = w({). Since W({, %) is
continuous in Q x , the (W3 )-condition for W({, 17) obviously holds. Therefore, it
remains to check if the following inequality is true:

dyw (¢ n) min{w({),w(n)} <[¢ -]

for every (¢, 1) € Q x Q.
Let { € Q and y € Q be arbitrary and fixed and let y € Q be among piecewise
smooth curves that join { and #. We have

~ |dw| M max L w
w(Con) = mf/w(w) /(n] w(w) < /(n] we[¢n] {W(“’)}|d |

1
_max{w,@} /[()’1]|dw|—m {W(() w(n)}K il
= min{w({),w(n)}~'|¢ - 7,

where we have used in the fourth step our assumption that w(w) is decreasing in |w|
and that the maximum modulus of points on a line segment is attained at an endpoint.
The inequality we need follows. ]

Remark 3.2 Since the function w({) = 1 - |{|* is decreasing in |(| in the unit ball
B™, the above corollary produces a new Holland-Walsh type characterisation of con-
tinuously differentiable Bloch mappings. Notice that min{A, B} < \/A\/B for all
non-negative numbers A and B. Because of this inequality, it seems that Corollary 3.1
improves the Pavlovi¢ result stated at the beginning of the paper as Proposition 1.1

Corollary 3.3  Let w({) be an everywhere positive and continuous function in a do-
main Q and let dy ((, ) be the w-distance in Q. Then we have

sopw(OIDF(Q)] = sup -0
(eQ {neQ,(#n w(() 77)
for any continuously differentiable mappings f: QO — R”.

Proof For{e QandyeQ,let

_[w©. He=n
W(Cn) = {IC— nl/de(n), it # 7.

It is enough to show that W((, %) is admissible for w({). It is clear that W({, 1)
is symmetric. The (W, )-condition for W({, ) is obviously satisfied, and here it is
optimal in some sense. Therefore, we have only to check if W((, 7) satisfies the (W5)-
condition:

limi?fW((,n) >W(( ).
e
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This means that we need to show that
liminf ——— >

n—{ dw((: 71)
If we invert both sides, we obtain that we have to prove

) dw((n) 1
i —
WP S w0

for every { € Q.
Since this is a local question, we may assume that # is in a convex neighborhood
of {. Let y be among piecewise smooth curves in Q) connecting { and #. We have

lim sup ! inf f M <lim sup ! m
nt C=nl v Sy w(w) ™o (¢ =l Jien) w(w)
|[dw| 1
= lim - ,
¢ [C= ] Jien w(w)  w({)

which we wanted to prove. The equalities above follow, because of continuity of the
function w({). [ |

Remark 3.4 In the case w({) = (1-{]*)® for { € B, where a > 0 is a constant,
Corollary 3.3 is proved by Zhu in [8] for analytic functions (see [8, Theorem 19]). A
variant of this corollary is obtain in [7] (see also [7, Theorem 1] for analytic functions).

As a special case of the above corollary, we have the following one (certainly very
well known for analytic Bloch functions in the unit disc).

Corollary 3.5 A continuously differentiable mapping f:B™ — R" is a Bloch mapping
(ie., f € B) if and only if it is a Lipschitz mapping with respect to the Euclidean and
hyperbolic distance in R" and B™. In other words, for the mapping f, there holds

F(6) = f(m)l < Cp(&im)

for a constant C, if and only if f € B. Moreover, the optimal constant C is
C=sup{ (1= [{")|Df({)] : (e B"}
(for a given f € B).

Remark 3.6 The result of the last corollary is proved for harmonic mappings of the
unit disc into itself by Colonna in [2], where it is also found that the constant C is
always less or equal to 4/7 for such type of mappings.
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