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ANALYTIC RESULTS FOR ROOTS OF TWO IRRATIONAL
FUNCTIONS IN ELASTIC WAVE PROPAGATION

L. M. BROCK1

(Received 14 November 1996)

Abstract

The velocities of Rayleigh surface waves and, when they exist, Stoneley interface waves
can be obtained as the roots of two irrational functions. Here previous results are extended
by using standard operations related to the Wiener-Hopf technique to provide expressions
in quadrature for these roots.

1. Problem description

The propagation of sound in elastic solids in the form of body waves whose speeds
are defined in terms of material constants is well-established [9]. The transmis-
sion/reflection of such waves at material surfaces and interfaces has also been studied
[3], and such studies have suggested the possibility of another type of wave — the
Rayleigh wave — that propagates on a stress-free surface in such a manner that its
effects are confined to the immediate vicinity of the surface [1]. As outlined in [1], it
can be shown that the phase velocity v of a Rayleigh wave along the planar surface of
a homogeneous isotropic linearly-elastic solid must satisfy the equation

(2s2 - b2)2 - 4s2y/s* - a2/*2 - a1 = 0, (1)

where

s = l/v, a = \/vd, b = l/vr (2a-c)

and (vr, vd) are, respectively, the rotational and dilatational elastic body wave speeds
given by
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The inverse velocity s, or slowness, is often the convenient quantity to work with.
Here O , p, v) are, respectively, the shear modulus, mass density and Poisson's ratio
for the elastic half-space. For an isotropic homogeneous solid, these constants are
positive and real, with 0 < v < 0.5 [12], so that we always have

vd > vr (b > a). (4)

The fact that (1) exhibits the phase velocity and not also a wave-number indicates that
Rayleigh waves are non-dispersive [10].

Stoneley [14] considered the analogous problem for a wave propagating along the
interface of two welded (that is, continuity of both displacement and stress exists)
dissimilar homogeneous isotropic linearly-elastic solids in such a manner that its
effects are confined to the immediate vicinity of the interface. As described by
Cagniard [6], it can be shown that the phase velocity v of such a Stoneley wave for a
planar interface must satisfy the equation

- b\ Js2 - aUs2 - b\ + (fi, + Q2

- (Q2 - s2)2Js2 - a2 Js* -b\- (Q, -

where the subscripts (1,2) refer to the two welded solids and

_ 2 _ 2 _ 1 _

1 - C ] , , 2 - C 2 2 , C, - - C2 -

(5)

(6)

Equation (2a) holds again, therefore as do, with appropriate subscripts attached, (2b,c)
and (3). The absence of a wave-number in (5) indicates that Stoneley waves are also
non-dispersive.

2. Previous results

To obtain information about possible (real) solutions of (1), one can study [1] the
roots of the well-known Rayleigh function

R(z) =

in the complex z-plane. Here

T = b2 - 2z2,

(7)

(8a-c)
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and R (z) is rendered single-valued by introducing branch cuts for (a, ft) along Im (z) =
0, | Re(z)| > a and Im(z) = 0, |Re(z)| > b, respectively, such that Re(a, ft) > 0
everywhere in the cut z-plane. Application of the standard argument principle [7] then
shows that R(z) always exhibits the isolated real roots z = ±s0 of order 1, where s0

lies in the range

s0 > b. (9)

Analogously [6], for information about (real) solutions to (5) the Stoneley function

S(z) = z2(a.0,a2& + Pn) + fii^faA + «2A) - Pfafr - Pfafo (10)
can be introduced, where (8b,c) hold again with appropriate subscripts, and

In this case, the physical restrictions (4) on body wave speeds allow for a given pair
of welded materials the six possible combinations

b2 > a2 > b\ > a\,

b2 > b\ > a2 > au

b2>bi>ai> a2,

b\ > b2 > ax > a2,

b\ > b2 > a2 > a\,

b\ > ax > b2 > a2,

so that the function S(z) can be made analytic in the z-plane cut along Im(z) = 0,
min(ai, a2) < | Re(z)| < max(bu b2) by requiring that Re(ai, /?,, a2, fi2) > 0 in that
cut plane. While (4) precludes the limit cases (bx = ax,b2 = a2), it is conceivable that
the two dissimilar welded solids would be matched in other particulars. In this brief
demonstration, however, we will treat the general situation, that is, no partial material
matching occurs, so that the strict inequalities in (12) are maintained, and £2i ^ J22.

Then, application of the argument principle [7] shows that S(z) has the isolated
real roots z = ±s0 of order 1 in the range

s0 > max(bi, b2) (13)

only if the welded material properties are such that

(14a)

+ b\{Q2 + Qt - bjy > 0 (b2 > bi). (14b)
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If (14) is not satisfied, then S(z) has no roots in the cut z-plane.
Clearly, the values of s0 for (R, S) can be found for any given set(s) of values

(fi, p, v), see, for example, [1, 6]. Indeed, in the case of R, (7) can be rationalized
to a cubic equation in z2, although two of the roots of that equation are extraneous.
In what follows, expressions in quadrature for s0 are obtained analytically for both
(/?, S) by the application of standard operations.

3. Results for R

Study of (7) shows that R is holomorphic in the z-plane cut along Im(z) = 0,
a < | Re(z)| < b, and behaves as

R ^ 2(a2 - b2)z2, \z\ -+ oo. (15)

Therefore, one can introduce the function

G(z) = ; , 2 5- (16)
2(a2 -b2){z2 -s2,)

which is also holomorphic in this cut plane, but exhibits no zeros there and approaches
unity at infinity. It is therefore possible [ 1,10,13] to write G as the product of functions
G± which are holomorphic in, respectively, the overlapping halves Re(z) > —a and
Re(z) < a of the complex z-plane. Specifically, performing factorization operations
formulated by Noble [10] for the well-known Wiener-Hopf technique gives

In G±(z) = / tan"1 -^—J-——, A = y/u2 - a2, B = y/u2 - b2, (17a-c)
n Ja T2 u±z

where integration is along the positive Re(u)-axis. At z = 0 the functions R and G±
are holomorphic, and G_ = G+. Therefore, replacing the left-hand side of (16) with
G+G- and evaluating the result at z = 0 gives, in view of (7), the explicit formula

for the root of R.

4. Results for 5

The procedure for S(z) when (14) holds follows by analogy. That is, a function

S(z)

4(4«, - a 2 - Z>2)(4fi2 - a2 - bj)(z2 - s2
0)
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is introduced that is holomorphic and exhibits no zeros in the z-plane cut along Im(z) =
0, min(tfi, a2) < | Re(z)| < max(6|, b2), and approaches unity at infinity. The same
factorization procedure [11] used for (16) then yields G as the product of functions
G± that are analytic in the overlapping halves, respectively, Re(z) > - min(«i, a2)
and Re(z) < min(au a2) of the complex z-plane. Equations (12) and (14) lead to,
however, six different forms for G±. It can be shown that when (14a) governs, then

1 / [*" f"2 fbl \ du
In G±(z) = ( / C , + / Z),+ / EA——,

71 \Ja, Jb, Ja2 / U ± Z

l n G ± ( z ) = - - ( I * Cx+ [ D 2 + f E t ) - ^ - , (20a-c)
* \Ja, Ja2 Jb, / U±Z

lnG±(z) = / C3+/ D2+ EA-
n \Ja2 Ja, Jb, / u

du
7±1

for the cases (12a-c), respectively, while when (14b) governs, the formulas

1 / n fb* fb' \ du
lnG±(z) = / C 3 + / D2+ E4)——,

n \Ja2 Ja, Jb2 J U±Z

1 / rtti r^ /•*' \ du
In G±(z) = / C, + / D2+ EA ——,

IT \ I § IL. / It "i 7

l nG ± (z ) = - - ( / 2 C 3 + f ' D 6 + [' E 4 ) -
X \Ja2 Jb2 Ja, / u

hold for the cases (12d-f), respectively. In (20) the relations

(20d-f)
7

du

C3 = tan"1 A2-

D, = tan"1 ft,!

D2 = tan"1 — :

1 1 2 " " " " ^ (21a-g)

D6 = tan" ft^

_
- t a n
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TABLE 1.

3) v u(m/s, Rayleigh)
aluminium
brass
copper
steel
titanium

25.9
39.3
42.7
73.1
41.4

2768
8145
8941
7778
4512

0.33
0.35
0.35
0.3
0.34

2856
2019
2043
2841
2825

and (17b,c) apply, with appropriate subscripts attached. In (20) integration is over the
positive Re(«)-axis. By evaluating (19) at z = 0, where G± and 5 are all holomorphic
and G_ = G+, the explicit result

-a}- bj)(4Q2 -a\- b\) G+(0)

can be obtained when, of course, (14) holds. In view of (3), (4), (6) and (12), the
argument of the radical in (22) is always positive.

5. Numerical values

The expression (18) was checked against a table of values [1] for the Rayleigh
wave phase velocity and found to agree to the three significant figures given. Then
(18) and (22) were used to calculate Rayleigh and Stoneley phase velocity values
for various standard [2] engineering materials, and those values were compared with
the roots of, respectively, (1) and (5). The integrations arising in (18) and (22)
were performed by standard Gaussian quadrature [8], while the roots of (1) and (5)
were obtained by a standard [8] false position iterative scheme. The values obtained
agreed to four significant figures. A list of Rayleigh values is given in Table 1 for
five materials, along with the corresponding (typical) values (ji, p, v). Table 2 then
lists the corresponding Stoneley values for those combinations of welded materials in
Table 1 for which Stoneley waves exist, that is (14) holds, along with the corresponding
Rayleigh values. It is noted that the Stoneley value is in each case larger than the
Rayleigh values for either of the welded materials.

6. Comments

It should be noted that the empirical formulas for the Rayleigh/Stoneley wave
phase velocity can readily be derived from plots of numerically-determined values,
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TABLE 2.

u(m/s, Rayleigh-1) v(m/s, Rayleigh-2) v(m/s, Stoneley)
aluminium-1 2856 2841 3025
steel-2
aluminium-1 2856 2825 3027
titanium-2

for example [1]. Indeed, such formulas are simpler than (18) or (22). Moreover, the
numerical integrations in (18) and (22) required more computational time than the
numerical root-finding schemes used for (1) and (5).

However, (18) and (22) are exact, and allow a more analytic study of the dependence
of Rayleigh/Stoneley velocities upon material properties to be made, especially in the
Stoneley case when the partial material matching neglected here arises. Moreover,
the procedure used to develop these formulas demonstrates that certain roots of two
physically-relevant irrational functions can be obtained analytically. This procedure
has been extended [4, 5] to cases of homogeneous isotropic linear coupled thermoe-
lastic materials in which, due to the coupling between the mechanical and temperature
fields, the Rayleigh/Stoneley signals are dispersive, that is, the phase velocity depends
upon wave number.
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