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We theoretically investigate the small-amplitude broadside oscillations of an annular disk
within an unbounded fluid domain. Specifically, we formulate a semi-analytical framework
to examine the effects of the oscillation frequency and pore radius on the disk’s added
mass and damping coefficients. By leveraging the superposition principle, we decompose
the complex original problem into two simpler ones. The force exerted on the disk by the
fluid is linked to the solutions of these sub-problems through the reciprocal theorem; the
first solution is readily available, while the second is derived asymptotically, assuming a
small inner radius. Both solutions are evaluated by transforming dual integral equations
into systems of algebraic equations, which are then solved numerically. Building on these
solutions, we extract asymptotic expressions for the variations of the quantities of interest
in the limits of low and high oscillatory Reynolds numbers. Notably, at high frequencies,
we uncover a previously overlooked logarithmic term in the force coefficient expansions,
absent in prior scaling analyses of oscillating solid (impermeable) disks. Our findings
indicate that, when viscosity plays a dominant role, an annular (porous) disk behaves
similarly to a solid one, with reductions in the force coefficients scaling with the cube
of the pore radius. We also discover, perhaps surprisingly, that, as inertial effects intensify,
the damping coefficient initially increases with the pore radius, reaches a maximum and
subsequently declines as the disk’s inner hole enlarges further; at its peak, it can exceed
the value for an equivalent solid disk by up to approximately 62 % in the asymptotic limit
of extremely high oscillatory Reynolds number. Conversely, the added mass coefficient
decreases monotonically with increasing porosity. The decay rate of the added mass in the
inertial regime initially scales with the cube of the pore radius before transitioning to linear
scaling when the pore radius is no longer extremely small. Although our analysis assumes
a small pore radius, direct numerical simulations confirm that our asymptotic formulation
remains accurate for inner-to-outer radius ratios up to at least 1/2.
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1. Introduction
Heave plates are integral components in offshore engineering, particularly for enhancing
the stability of structures such as platforms, buoys and floating wind turbines that are
exposed to the dynamic forces of ocean waves (Ezoji, Shabakhty & Tao 2022). These
broad, flat plates are installed at the base of floating structures to act as hydrodynamic
dampers, effectively increasing the added mass and damping properties of the system.
This increase often leads to reduced vertical motion, or heave, thereby enhancing
the operational stability and safety of these structures. The practical implications of
this enhanced stability are substantial, offering improved durability and reliability of
offshore operations in challenging marine environments. Furthermore, in the field of
renewable energy, heave plates are especially critical in the design of two-body point
absorber wave energy converters, where they not only stabilise the device against the
unpredictable nature of ocean waves but also influence the energy conversion efficiency
by modulating the hydrodynamic interaction between wave forces and the converter
itself (Brown & Thomson 2015; Tamakuwala et al. 2025). While the importance of
heave plates is well recognised, the majority of the hydrodynamic research to date has
concentrated on impermeable heave plates (see, e.g. He 2003). Therefore, the dynamics
of porous heave plates, which could offer additional benefits (Downie et al. 2000b),
remains underexplored. Porous plates have the potential to modify fluid flow patterns
around the structure to enhance its performance under specific conditions. The interaction
between water flow through the pores and the plate adds a layer of complexity absent in
impermeable designs, potentially leading to more desired dynamic behaviour.

Among the limited studies that have examined the hydrodynamics of oscillating porous
plates, the majority are experimental (Downie et al. 2000a; Vu, Chenu & Thiagarajan
2004; Chua et al. 2005; Molin, Remy & Rippol 2007; Tao & Dray 2008; Wadhwa,
Thiagarajan & Pistani 2009; Wadhwa 2011; An & Faltinsen 2013; Li et al. 2013;
Mentzoni & Kristiansen 2020; Ezoji et al. 2022), focusing on how amplitude variations
affect the force coefficients during heave oscillations. Additionally, a few theoretical
investigations utilised potential flow theory, integrated with a quadratic discharge law that
governs the pressure drop through the pores, to estimate the force coefficients of perforated
oscillating plates (Molin 1993, 2001; Molin et al. 2007; Liu et al. 2011; Molin 2011; An &
Faltinsen 2013). Complementing these, several recent computational studies have simulat-
ed the flow around and through perforated plates undergoing heave oscillations (Nokob &
Yeung 2018; Mentzoni & Kristiansen 2019a,b, 2020). The aforementioned studies gen-
erally find that porous plates provide additional damping at small amplitudes, attributing
this effect to flow separation and vortex shedding. However, contrasting these findings, we
reported increased damping in our previous theoretical investigation for porous objects,
even in the absence of such phenomena (Jafari Kang et al. 2019), see also Sherwood
(2020). In that study, we analysed the vibrations of porous cylinders at very small
amplitudes, employing the Brinkman–Debye–Bueche model for permeable objects. This
model accounts for the collective effect of pores through permeability (an indirect measure
of porosity) rather than resolving individual pore flows. Notably, we discovered that the
additional damping results from an increased phase shift between force and displacement.

The lack of a consensus on the mechanisms responsible for the change in the
hydrodynamics of heave plates due to perforation underscores the need for further
theoretical studies to elucidate the precise effects of perforation across a wide range
of frequencies and amplitudes. To address this issue, here, we theoretically examine
the elementary problem of an annular disk oscillating with a small amplitude in an
unbounded fluid domain. We select this geometry because it represents the simplest form
of a perforated heave plate with clearly defined porosity, thereby eliminating the need for
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Figure 1. Schematics of an annular disk with outer radius R and inner-to-outer radius ratio of ε undergoing
heave oscillations with amplitude A at frequency ω in the z direction within an unbounded fluid domain.

permeability-based continuum modelling to describe the flow through the disk. We employ
a combination of the superposition principle, the reciprocal theorem and perturbation
expansion to develop semi-analytical formulas for the variations in the added mass and
damping coefficients of the annular disk as functions of oscillation frequency and pore
radius. These formulations are further simplified in the asymptotic limits of low and
high frequencies. Our solution strategy entails breaking down the problem into two more
manageable sub-problems: one involving a solid disk vibrating in heave motion, and
the other involving pressure-driven flow through a hole in an infinite plate. We apply
Tranter’s method to solve the dual integral equations that arise in each sub-problem.
Our findings indicate that annular disks indeed provide additional damping (in excess of
60 % in extreme limits) as compared with their solid counterparts over specific ranges of
oscillation frequency and pore radius. Additionally, we observe a reduction in the disk’s
added mass coefficient when it is made porous, independent of the oscillation frequency.
Crucially, the small-amplitude assumption ensures that our predicted variations of the
added mass and damping coefficients with pore radius and frequency are not caused by
flow separation and vortex shedding, but instead result from changes in the phase relation
between force and displacement, as discussed in § 3. For validation, we also solve the
governing equations using a second-order finite-element method and demonstrate that our
theoretical formulations retain their accuracy across a broad spectrum of parameters.

In what follows, we first describe the problem statement and our solution (§ 2). The
results of our calculations are presented and discussed next (§ 3), followed by a short
summary and concluding remarks (§ 4).

2. Problem formulation and solution
Consider an annular disk of outer radius R and inner-to-outer radius ratio of ε, oscillating
sinusoidally with amplitude A at frequency ω within an unbounded, incompressible,
Newtonian fluid of density � and viscosity μ (see figure 1). Let (ρ, θ, z) represent a
cylindrical coordinate system positioned at the centre of the disk, with the unit vector
ez normal to the broad side of the disk pointing upward, as shown in figure 1.

Suppose the disk’s thickness is negligibly small and the amplitude of oscillations is
much smaller than the outer radius of the disk (A � R), such that the convective inertia
term in the Navier–Stokes equations can be neglected relative to the unsteady inertia term.
This assumption may impose a stricter upper limit on the oscillation amplitude at high
frequencies, since the associated error is expected to grow with increasing ω (see, e.g.
Aureli, Basaran & Porfiri 2012). Under these conditions, the dynamics of the fluid flow
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through and around the disk is governed by the linearised Navier–Stokes equations, which
are expressed in dimensionless form below, along with the associated boundary conditions

η2 ∂ ũ

∂ t̃
= ∇ · σ̃ = ∇2ũ − ∇ p̃ and ∇ · ũ = 0, (2.1)

with the conditions

ũ = cos t̃ ez for z = 0 and ε � ρ � 1,

ũ → 0 as
√

ρ2 + z2 → ∞,

p̃ = 0 for z = 0 when 0 � ρ < ε or ρ > 1. (2.2)

The symbols t̃ , ũ, p̃ and σ̃ in the above equations denote the dimensionless time,
velocity field, pressure field and stress tensor, respectively. Also, η2 = �R2ω/μ is the
oscillatory Reynolds number that measures the time scale of vorticity diffusion relative
to the oscillation period. Here, and throughout the article, the length, time, velocity and
stress are non-dimensionalised by R, 1/ω, Aω and μAω/R, respectively.

Considering the sinusoidal nature of the disk’s oscillations, it is mathematically
advantageous to express the velocity, pressure and stress as real parts of complex
quantities, specifically ũ = Re[u exp(i t̃)], p̃ = Re[p exp(i t̃)] and σ̃ = Re[σ exp(i t̃)], with
i2 = −1. This transformation simplifies (2.1) and (2.2) to

iη2u = ∇ · σ = ∇2u − ∇p and ∇ · u = 0, (2.3)

with the boundary conditions

u = ez for z = 0 and ε � ρ � 1,

u → 0 as
√

ρ2 + z2 → ∞,

p = 0 for z = 0 when 0 � ρ < ε or ρ > 1. (2.4)

Given the boundary conditions of this boundary-value problem, it follows that the
velocity field is symmetric and the pressure field is antisymmetric with respect to the z = 0
plane. This ensures that the normal traction force remains continuous across the disk’s
two faces due to the change in the surface normal direction above and below the disk.
Therefore, it is sufficient to consider the problem only in the upper half-space (z � 0), and
express the force exerted on the disk by the fluid in the frequency domain as

F = 2
∫
Sd

n · σ dS = −2
∫
Sd

p dS ez = F ez, (2.5)

where n is the unit normal vector and Sd denotes the upper surface of the annular disk.
The dimensionless added mass, a, and damping coefficients, b, of the disk are then derived
from the following relationship:

b + ia = − F

η2 , (2.6)

where the added mass and damping coefficients are non-dimensionalised by �R3 and
�R3ω, respectively.

A solution strategy for solving the problem at hand and calculating a and b is
to apply Hankel transforms to convert (2.3) and (2.4) to triple integral equations
involving an unknown function which may be determined using the procedure outlined by
Sneddon (1966). Here, however, we adopt an alternative approach that involves splitting

1017 A21-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
48

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10487


Journal of Fluid Mechanics

the original problem into two sub-problems, labelled with subscripts 0 and 1

u = u0 + u1, (2.7)
p = p0 + p1, (2.8)

where (u0, p0) and (u1, p1), respectively, satisfy

iη2u0 = ∇ · σ 0 = ∇2u0 − ∇p0 and ∇ · u0 = 0, (2.9)

with

u0 = ez for z = 0 and 0 � ρ � 1,

u0 → 0 as
√

ρ2 + z2 → ∞,

p0 = 0 for z = 0 and ρ > 1, (2.10)

and

iη2u1 = ∇ · σ 1 = ∇2u1 − ∇p1 and ∇ · u1 = 0, (2.11)

with

u1 = 0 for z = 0 and ε � ρ � 1,

u1 → 0 as
√

ρ2 + z2 → ∞,

p1 = −p0 for z = 0 and 0 � ρ < ε,

p1 = 0 for z = 0 and ρ > 1. (2.12)

Below, we present a force decomposition that stems from the above superposition,
followed by the solution of these sub-problems.

2.1. Force decomposition via reciprocal theorem
Applying the reciprocal theorem (Masoud & Stone 2019) to the velocity–stress pairs (u, σ )

and (u0, σ 0) yields∫
S

n · σ · u0 dS =
∫
S

n · σ 0 · u dS =
∫
S

n · σ 0 · (u0 + u1) dS, (2.13)

where S denotes the surfaces enclosing the upper half of the fluid domain. The integrals
over the bounding surface at infinity vanish due to the decay rate of the velocity and stress
fields. After implementing the boundary conditions, (2.13) simplifies to∫

Sd
n · σ dS · ez =

∫
Sd,0

n · σ 0 dS · ez −
∫
Sd,1

p0 u1 dS · ez, (2.14)

where Sd,0 and Sd,1 represent areas of z = 0 plane confined to 0 � ρ � 1 and 0 � ρ < ε,
respectively. Let us define

F0 = 2
∫
Sd,0

n · σ 0 dS · ez = −2
∫
Sd,0

p0 dS, (2.15)

F1 = −2
∫
Sd,1

p0 (u1 · ez) dS. (2.16)

Referring back to (2.5), the total fluid force on the disk can now be expressed as the sum
of contributions from the two sub-problems as

F = F0 + F1. (2.17)
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Consequently, the added mass and damping coefficients can be decomposed as

a = a0 + a1, (2.18)
b = b0 + b1. (2.19)

Here, a0 and b0 represent the contributions from the primary sub-problem, while a1 and
b1 account for the additional effects introduced by the secondary sub-problem.

2.2. First sub-problem
For completeness, we reiterate the solution steps here. By applying Hankel transforms to
(2.9), solving the resulting equations using the boundary conditions specified in (2.10) and
then performing inverse Hankel transforms, the following expressions can be derived for
the velocity and pressure fields:

u0 · eρ =
∫ ∞

0
k A(k)

(
e−kz − e−ξ z)J1(kρ) dk, (2.20)

u0 · ez =
∫ ∞

0
k A(k)

(
e−kz − k

ξ
e−ξ z

)
J0(kρ) dk, (2.21)

p0 = iη2
∫ ∞

0
A(k) e−kz J0(kρ) dk, (2.22)

where ξ2 = k2 + iη2, J is the Bessel function of the first kind, and the unknown function
A(k) satisfies ∫ ∞

0
k A(k)

(
1 − k

ξ

)
J0(kr) dk = 1 for 0 � ρ � 1, (2.23)∫ ∞

0
A(k) J0(kr) dk = 0 for ρ > 1. (2.24)

Following Tranter’s method (Tranter 1966), A(k) can be assumed to take the form of

A(k) =
√

2k
π

∞∑
m=0

αm J2m+1/2(k) for m = 0, 1, 2· · ·. (2.25)

This representation reduces the above dual integral equations to a system of linear
algebraic equations for αm

∞∑
m=0

αm

∫ ∞

0
k

(
1 − k

ξ

)
J2m+1/2(k) J2n+1/2(k) dk = δ0n for n = 0, 1, · · ·, (2.26)

with δi j being the Kronecker delta function. Equation (2.26) can be solved numerically
using standard approaches. Substituting A(k) from (2.25) into (2.22) and performing
surface integration of the subsequent equation leads to (after some simplifications) the
following formulas for the pressure and force on the disk:

p̂0 = 2iη2
√

π

∞∑
m=0

Γ (m + 1) αm

Γ (m + 1/2)
2F1(m + 1, 1/2 −m; 1; ρ2), (2.27)

F0 = −2
∫
Sd,0

p0 dS = −8iη2α0, (2.28)

where 2F1 is the hypergeometric function and the hat symbol indicates evaluation at the
surface of the disk.
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2.3. Second sub-problem
This problem describes the fluid flow through and around a stationary annular disk driven
by the pressure difference across the disk required to cancel out the contribution from the
first sub-problem over the disk’s orifice. Solving for (u1, p1) without constraints on the
pore size of the disk is challenging. Hence, we aim to develop an asymptotic solution in
the limit of small ε. As demonstrated in the forthcoming section (§ 3), the approximation
error of our solution remains minimal even when ε is as large as 1/2 and, in some cases,
beyond.

We use a Taylor series expansion to approximate the pressure distribution on the disk
from the prior sub-problem as

p̂0 = p̂0
∣∣
ρ=0 + d p̂0

dρ

∣∣∣∣
ρ=0

ρ + 1
2

d2 p̂0

dρ2

∣∣∣∣
ρ=0

ρ2 + · · ·, (2.29)

where

p̂0
∣∣
ρ=0 = 2iη2

√
π

∞∑
m=0

Γ (m + 1)

Γ (m + 1/2)
αm . (2.30)

Substituting the above relation in (2.12) and then retaining only the first term in the
expansion, we arrive at the following equations for (u(1)

1 , p(1)
1 ), which are the leading-order

contributions to (u1, p1) when ε � 1:

iη2u(1)
1 = ∇ · σ

(1)
1 = ∇2u(1)

1 − ∇p(1)
1 and ∇ · u(1)

1 = 0, (2.31)

with

u(1)
1 = 0 for z = 0 and ε � ρ � 1,

u(1)
1 → 0 as

√
ρ2 + z2 → ∞,

p(1)
1 = − p̂0

∣∣
ρ=0 for z = 0 and 0 � ρ < ε,

p(1)
1 = 0 for z = 0 and ρ > 1. (2.32)

The problem posed by (2.31) and (2.32) essentially corresponds to the flow through a
pore in an infinite plate, due to the pressure differential 2 p̂0

∣∣
r=0. This interpretation is

substantiated by rescaling the lengths with ε.
Applying the same steps employed to solve the first sub-problem, we obtain

u(1)
1 · eρ =

∫ ∞

0
kB(k)

(
e−kz − e−ξ z)J1(kρ) dk, (2.33)

u(1)
1 · ez =

∫ ∞

0
kB(k)

(
e−kz − k

ξ
e−ξ z

)
J0(kρ) dk, (2.34)

p(1)
1 = iη2

∫ ∞

0
B(k) e−kz J0(kρ) dk, (2.35)

where the unknown function B(k) satisfies the dual integral equations∫ ∞

0
B(k) J0(kρ) dk = i p� for 0 � ρ � ε, (2.36)∫ ∞

0
kB(k)

(
1 − k

ξ

)
J0(kρ) dk = 0 for ρ > ε, (2.37)
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where p� = p̂0
∣∣
ρ=0/η

2. Following Tranter’s method (Tranter 1966) once again, we
represent B(k) as a series of Bessel functions

B(k) = i p�

√
2kε
π

[
k

(
1 − k

ξ

)]−1 ∞∑
m=0

βm J2m+1/2(kε). (2.38)

This formulation inherently satisfies the velocity boundary condition on the disk. Upon
substituting for B(k) from (2.38) into (2.36), and then multiplying both sides by

ρ̃√
1 − ρ̃2

2F1(−n, n + 1/2; 1; ρ̃2), (2.39)

and integrating both sides with respect to ρ̃ = ρ/ε from 0 to 1 (see also Erdogan & Bahar
1964), we reach

∞∑
m=0

βm

∫ ∞

0

[
k̃

(
1 − k̃

ξ̃

)]−1

J2m+1/2(k̃) J2n+1/2(k̃) dk̃ = δ0n for n = 0, 1, · · ·,
(2.40)

where k̃ = kε, ξ̃2 = k̃2 + i η̃2 and η̃2 = η2ε2. Equation (2.40) constitutes a system of
linear algebraic questions for βm that can be numerically solved in a manner similar to
(2.26). Given (2.16), (2.34) and (2.38), it is straightforward to show that the leading-order
contribution to F1 is given by

F (1)
1 = −4πη2 p�

∫ ε

0

(
u(0)

1

∣∣
z=0 · ez

)
ρ dρ

= 4iη2
√

2επ p�2
∞∑

m=0

βm

∫ ε

0
ρ

∫ ∞

0

√
k J2m+1/2(kε) J0(kρ) dk dρ

= −8iη2 p�2
β0 ε. (2.41)

2.4. Limit of low oscillatory Reynolds number
Williams (1966) elegantly demonstrated that the force exerted on an arbitrarily shaped
body undergoing slow oscillations can be expressed asymptotically in the limit of small
η as

F = Fs

(
1 − Fs

6π
eiπ/4 η

)
+O(η2), (2.42)

where Fs represents the Stokes (η = 0) drag on the body. Below, we derive Fs for our
annular disk, continuing to assume that ε � 1. By fixing η = 0, the equations for the
pressure distribution and force on the solid disk in the first sub-problem, and the velocity
distribution in the z direction and the force in the second problem, simplify to the following
(refer to Happel & Brenner 1983; Davis 1991; Tanzosh & Stone 1996a, for more detail):

p0,s = 4
π

∫ ∞

0
sin k e−kz J0(kρ) dk, (2.43)

F0,s = −4π

∫ 1

0
p0 ρ dρ = −16, (2.44)

u(1)
1,s · ez = 4

π2

∫ ∞

0

d

dk

[
sin(kε)

k

]
(1 + kz) e−kz J0(kr) dk, (2.45)

1017 A21-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
48

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10487


Journal of Fluid Mechanics

F (1)
1,s = −4π p̂0,s

∣∣
ρ=0

∫ ε

0

(
u(0)

1,s

∣∣
z=0 · ez

)
ρ dρ = 64ε3

3π2 , (2.46)

where p̂0,s
∣∣
ρ=0 = 4/π . In this setting, closed-form expressions for the pressure and

velocity fields are also obtainable in oblate spheroidal coordinates (for additional details,
see again Happel & Brenner 1983; Davis 1991; Tanzosh & Stone 1996a). Given (2.44) and
(2.46), the Stokes drag on the annular disk in the limit of small pore radius can be written
asymptotically as

Fs = −16
(

1 − 4ε3

3π2

)
+ · · ·, (2.47)

which is precisely what is arduously derived by Davis (1991b).

2.5. Limit of high oscillatory Reynolds number
When the oscillatory Reynolds number becomes very large (η → ∞), we consider two
sub-limits based on the magnitude of η̃ = ηε as discussed below.

2.5.1. Sub-limit of η̃ � 1
In cases where both η and η̃ are much greater than one, it can be shown that the original
problem, to the leading order, reduces to the following mixed boundary-value problem for
the velocity potential φ:

∇2φ = 0, (2.48)

with

n · ∇φ = 1 for z = 0 and ε � ρ � 1,

φ = 0 for z = 0 when 0 � ρ < ε or ρ > 1,

φ → 0 as
√

ρ2 + z2 → ∞, (2.49)

where the velocity and pressure fields in this limit are calculated from u∞ = ∇φ and p∞ =
−iη2φ, respectively. The potential fields and forces associated with the sub-problems
of the above problem are given by (see, e.g. Lamb 1945; Sneddon 1966; Gradshteyn &
Ryzhik 2007)

φ0 = 2
π

∫ ∞

0

d

dk

[
sin k

k

]
e−kz J0(kr) dk, (2.50)

F0,∞ = 4π iη2
∫ 1

0
φ0 ρ dρ = −8

3
iη2, (2.51)

φ
(1)
1 = − 2

π
φ̂0
∣∣
r=0

∫ ∞

0

sin(kε)

k
e−kz J0(kr) dk, (2.52)

F (1)
1,∞ = 4π iη2 φ0

∣∣
r=0

∫ ε

0
n · ∇φ

(0)

1 ρ dρ = 32ε

π2 iη2, (2.53)

where

φ̂0
∣∣
r=0 = −2/π, (2.54a)

u0,∞ = ∇φ0, (2.54b)
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Asymptotic limits

Coefficients η → 0 η → ∞

a0 = 8α0,r
64

√
2

3πη

8
3

+ Aa ln η +Ba

η

b0 = −8α0,i
16
η2 + 64

√
2

3πη

Ab ln η +Bb

η

p�
r = Re(p�)

4
πη2 + 16

√
2

3π2η

Ap
r ln η +B p

r

η

p�
i = Im(p�)

16
√

2
3π2η

2
π

+ Ap
i ln η +B p

i

η

η̃ → 0 η̃ → ∞

β0,r = Re(β) Cη̃4 1 − Aβ
r ln η̃ +Bβ

r

η̃

β0,i = Im(β)
η̃2

6
Aβ

i ln η̃ +Bβ
i

η̃

Table 1. Asymptotic expressions describing the variations of a0, b0 and p� as functions of η, along with the
dependence of β0 on η̃. The coefficients A, B and C are numerically computed and their values are reported in
table 2.

u(1)
1,∞ = ∇φ

(1)
1 , (2.54c)

p0,∞ = −iη2φ0, (2.54d)

p(1)
1,∞ = −iη2φ

(1)
1 . (2.54e)

Hence, in the potential flow limit, the hydrodynamic force on an annular disk
asymptotically takes the form

F∞ = −8
3
iη2

(
1 − 12ε

π2

)
+ · · ·. (2.55)

It is worth noting that the velocity potentials in (2.50) and (2.52) can be alternatively
expressed in closed form in oblate spheroidal coordinates (see, e.g. Lamb 1945).

2.5.2. Sub-limit of η̃ � 1
In the regime in which ε � 1/η while η � 1, the leading-order solution to the first problem
remains the same as the one given by (2.50) and (2.51), i.e.

F0 = F0,∞ +O(η ln η). (2.56)

The origin of the O(η ln η) correction in the above equation will be discussed in § 3 (see
also table 1).

Since η̃ � 1, the solution to the second problem follows from (2.45) and (2.46) for
Stokes flow through a circular hole in an infinite wall. Given that the driving pressure here
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10−110−3
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η η
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10−1 100

η η
101 102 10310−2 10−1 100 101 102 10310−2

Figure 2. Plots of dimensionless (a) added mass and (b) viscous damping coefficients of a solid disk (denoted
by a0 and b0, respectively), along with the (c) real and (d) imaginary components of the normalised pressure at
the centre of the solid disk (defined as p� = p̂0|ρ=0/η

2), all versus the square root of the oscillatory Reynolds
number η. Red circular and blue triangular symbols correspond to the asymptotic formulas for the low- and
high-frequency limits, respectively, as listed in table 1.

is p̂0,∞|ρ=0 rather than p̂0,s |ρ=0, we then obtain

F1,∞,s =
(
p̂0,∞

∣∣
ρ=0

p̂0,s
∣∣
ρ=0

)2

F (1)
1,s +O(ε3η3 ln η

)= −16ε3η4

3π2 +O(ε3η3 ln η
)
. (2.57)

3. Results and discussion

3.1. Baseline: a solid disk
For the baseline case of a solid disk, we solve a linear system of equations based on (2.26)
to obtain αm for m = 0, 1, . . . , 10 across a range of η from 10−2 to 103. Accordingly,
we retain the first ten terms in the series and evaluate the improper integrals using a
global adaptive quadrature with a strict absolute tolerance to maintain accuracy. Using
the computed values of αm , we employ (2.5), (2.28) and (2.30) to determine the added
mass and damping coefficients, denoted by a0 and b0, respectively, and to compute the
normalised pressure at the centre of the disk, defined as p� = p̂0

∣∣
ρ=0/η

2. For the pressure,
repeated Shanks transformation is used to accelerate the convergence of the series.

The results of these calculations are presented as solid black lines in figure 2, where red
circular and blue triangular symbols represent, respectively, the asymptotic expressions
for a0, b0 and p� in the limits of low and high frequencies, as outlined in table 1.
A key observation is that the asymptotic curves closely overlap in an intermediate range

1017 A21-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
48

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10487


M. Usman and H. Masoud

Aa Ab Ap
r Ap

i Aβ
r Aβ

i
1.700 1.235 0.126 0.144 0.227 0.237

Ba Bb B p
r B p

i Bβ
r Bβ

i C
8.349 8.155 0.984 1.112 1.186 0.780 0.050

Table 2. Numerically computed values of the coefficients appearing in table 1.

of η, demonstrating their combined accuracy across the entire frequency spectrum.
The low-frequency asymptotic formulas result directly from the derivation presented in
§ 2.4. These expressions are found to be in full agreement with the results reported
by Zhang & Stone (1998). However, for the high-frequency asymptotics, only the O(1)

terms, resulting from the potential flow theory calculations of § 2.5.1, match with previous
studies. Additionally, the coefficients of the O(η−1 ln η) and O(η−1) terms are computed
numerically and are listed in table 2 for reference.

Of particular significance is the presence of O(η−1 ln η) terms in the high-frequency
expansions. These terms were previously overlooked in the literature, yet they play a criti-
cal role in accurately capturing the behaviour of the oscillating disk in the high-frequency
regime. While prior studies have hinted at a singular limit when transitioning from an
oscillating oblate spheroid to a zero-thickness disk (Loewenberg 1993; Zhang & Stone
1998), our analysis rigorously confirms the necessity of incorporating logarithmic terms
alongside the inverse frequency terms. To further support the inclusion of O(η−1 ln η)

terms, below, we present an asymptotic analysis of the integrals involved in (2.26).

3.2. Evaluating integrals appearing in (2.26) in the limit of η → ∞
For clarity, we first establish our argument for a representative case before extending it
to more general scenarios. Specifically, we consider the case where m = 0 and n = 1, in
which the corresponding integral can be split into three parts as follows:∫ ∞

0
k

(
1 − k

ξ

)
J1/2(k) J5/2(k) dk =

∫ 1

0
k

(
1 − k

ξ

)
J1/2(k) J5/2(k) dk

+
∫ η

1
k

(
1 − k

ξ

)
J1/2(k) J5/2(k) dk

+
∫ ∞

η

k

(
1 − k

ξ

)
J1/2(k) J5/2(k) dk, (3.1)

where the relevant Bessel functions and their product are given by

J1/2(k) =
√

2
πk

sin k, (3.2)

J5/2(k) =
√

2
πk

[(
3
k2 − 1

)
sin k − 3 cos k

k

]
, (3.3)

J1/2(k)J5/2(k) = 1
πk

[(
3
k2 − 1

)
+
(

1 − 3
k2

)
cos 2k − 3

k
sin 2k

]
. (3.4)

The term in the parenthesis in (3.1) can be expanded as a Taylor series in the region k � η

as
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=
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(β

0
)

100

10−1

10−2

10−2 10−1 100 101 102 103

10−3

10−4

10−5

η̃
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,i 

=
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β
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Figure 3. Plots of the (a) real and (b) imaginary components of β versus η̃ = ηε. Red circular and blue
triangular symbols correspond to the asymptotic formulas for the limits of η̃ → 0 and η̃ → ∞, respectively,
as listed in table 1.

1 − k

ξ
= 1 − (k/η)√

2

[
1 + (k/η)2

2

]
+ · · · + i

(k/η)√
2

[
1 − (k/η)2

2

]
+ · · ·. (3.5)

Similarly, in the region k � η, it takes the form

1 − k

ξ
= 3 (η/k)4

8

[
1 − 35 (η/k)4

48

]
+ · · · + i

(η/k)2

2

[
1 − 5 (η/k)4

8

]
+ · · ·. (3.6)

Substituting (3.4) and these expansions in the integrals on the right-hand side of (3.1),
we find that a term proportional to (kη)−1 emerges in the middle integral, covering the
range 1 � k � η. The integral of this term contributes a term proportional to ln η, thereby
justifying the appearance of O(η−1 ln η) in the asymptotic expressions reported in table 1
for the limit η → ∞.

This result extends naturally to other integrals, except for the special case of m = n = 0.
In particular, the systematic emergence of an O[(kη)−1] term can be demonstrated by
repeating the steps outlined above and utilising the following general formula for half-
integer order Bessel functions in (2.26):

J2n+1/2(k) =
√

2
πk

[R2n,1/2(k) sin k −R2n−1,3/2(k) cos k
]
. (3.7)

Here, the Lommel polynomial is defined as

R�,ν(k) =
[�/2]∑
l=0

(−1)l (� − l)!Γ (� − l + ν)

l! (� − 2l)!Γ (l + ν)

(
2
k

)�−2l

, (3.8)

where the square brackets denote the floor function, which rounds down to the nearest
integer.

3.3. Added mass and damping coefficients of an annular disk
As the final step, we solve an additional linear system of equations based on (2.40) to
determine βm over the range 10−2 � η̃ � 103. For small values of η̃, we retain the first ten
terms in the series, progressively increasing this count to a maximum of forty terms for the
largest η̃ considered. The results for β0 are presented in figure 3, where symbols denote
the asymptotic expressions reported in table 1. As previously indicated, the coefficients in
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this table that are not directly derived from the analyses of §§ 2.4 and 2.5 are computed
numerically (see table 2). Once again, we observe the remarkable accuracy of these simple
formulas in capturing the variations of both the real and imaginary components of β0 as
functions of η̃. We note that the inclusion of O(η̃−1 ln η̃) terms in the asymptotic limit
of η̃ → ∞ follows from the same reasoning used in § 3.2. Naturally, for the integrals in
(2.40), different Taylor series expansions must be employed for the term that is multiplied
by the product of Bessel functions.

With β0 determined, alongside the previously computed p� and α0 from the baseline
problem, we now analyse the added mass and damping coefficients of the annular
disk (see (2.5), (2.17), (2.28) and (2.41)). The solid black lines in figures 4 and 5
illustrate the variations of the normalised added mass and damping coefficients (a/a0
and b/b0, respectively) as functions of the pore size (ε) across a broad range of
oscillatory Reynolds numbers (η). From top to bottom, the rows in figure 4 correspond to
η = 10−2, 10−1 and 100, while those in figure 5 represent η = 101, 102 and 103. The red
circles, purple squares, and blue triangles denote, respectively, the asymptotic formulas
listed in table 3 (derived from table 1) in the limits of η → 0, η → ∞ and η̃ → 0 and
η → ∞ and η̃ → ∞. Insets highlight deviations of the normalised coefficients from unity,
emphasising how porosity-induced corrections to the added mass and damping coefficients
scale with ε in different regimes (see table 3).

The green dashed curves in figures 4 and 5 represent the results of a numerical
solution to the original problem (i.e. (2.3) and (2.4)) in the frequency domain, obtained
using a second-order finite-element approach as implemented in COMSOL Multiphysics
(Zimmerman 2006; Pepper & Heinrich 2017). These results serve as a benchmark for
assessing the accuracy of our small-pore assumption, which led us to retain only the
leading term in the Taylor series expansion of p̂0 in (2.29). To model the unbounded
domain in the simulations, the outer boundary was approximated as a large hemisphere
centred at the disk’s midpoint. The radius of this hemisphere was varied between 100R and
2000R depending on the value of η. The two-dimensional axisymmetric computational
domain was discretised using triangular elements with adaptive mesh refinement to ensure
accuracy and efficiency. The validity of this numerical approach was confirmed through
comparison with the calculations in § 3.1 for a solid disk, as well as through grid and
domain-size independence studies, which verified that the computed added mass and
damping coefficients changed by less than 1 % upon further refinement.

A preliminary examination of both figures reveals that our asymptotic formulas
accurately capture the behaviour of normalised coefficients over a broad range of ε,
demonstrating remarkable precision except for the high-η asymptote’s subpar performance
in figure 5(b). Furthermore, our theoretical predictions closely align with finite-element
simulations for ε up to 1/2, and in many cases, even beyond.

A closer inspection indicates that both normalised coefficients trend downward with
increasing pore size for η � 1. As highlighted in the insets, their departures from unity
follow a ε3 scaling (see figure 4). For η � 10−1, the asymptotic expressions for η → 0
provide excellent accuracy but become less reliable as η grows. At larger η, the behaviour
of a/a0 is well described by a combination of asymptotic formulas for η → 0 and η̃ → 0
at small pore sizes, and η → ∞ and η̃ → ∞ at bigger pore sizes. In this regime, the initial
ε3 scaling for the decrease in a/a0 transitions to a linear trend as ε increases (see the left
column of figure 5).

A key finding of this study is that, for η � 1, while the added mass coefficient continues
to decrease with increasing the pore size, the damping coefficient initially rises with ε,
reaches a peak and then declines as the pore size increases further. This initial increase
is predicted by our asymptotic analysis, which anticipates a rise proportional to ε3
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Figure 4. Plots of a/a0 (left column) and b/b0 (right column) versus ε. The top, middle and bottom rows
correspond to η = 10−2, 10−1 and 100, respectively. The solid black lines represent our theoretical calculations,
whereas the dashed green curves show the results from finite-element numerical simulations. The inset plots
illustrate the deviations of the normalised coefficients from unity. The red circles and purple squares denote the
asymptotic formulas from table 3 in the limiting cases of η → 0, and η → ∞ and η̃ → 0, respectively.

(see § 2.5.2 and table 3). Notably, despite the oscillatory Reynolds number based on the
disk’s outer radius (η) being high, the Reynolds number based on the pore radius, η̃ = ηε,
remains well below unity. The contrast in regimes between the first and second problems
gives rise to the initial enhancement of the damping coefficient due to porosity.

The peak of b/b0 and its corresponding pore size (εmax ) are nicely predicted by our
asymptotic formula in the limit of η → ∞ and η̃ → ∞ for η � 102 (see the last two rows
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Figure 5. Plots of a/a0 (left column) and b/b0 (right column) versus ε. The top, middle and bottom rows
correspond to η = 101, 102 and 103, respectively. The solid black lines represent our theoretical calculations,
whereas the dashed green curves show the results from finite-element numerical simulations. The inset plots
illustrate the deviations of the normalised coefficients from unity. The purple squares and blue triangles denote
the asymptotic formulas from table 3 in the limiting cases of η → ∞ and η̃ → 0, and η → ∞ and η̃ → ∞,
respectively.

of the right column of figure 5). By setting the derivative of the asymptotic formula for
b/b0 with respect to ε to zero, we obtain

εmax = Aβ
i

π
(Ap

r ln η +B p
r
) . (3.9)

Figure 6 illustrates the variations of εmax and the corresponding b/b0 and a/a0 as
functions of η, with asymptotic predictions denoted by blue triangles. As evident from
(3.9), εmax decreases logarithmically with increasing η. In the asymptotic limit η → ∞,
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Asymptotic limits a/a0

η → 0 1 − 8ε3

3π2

η → ∞, η̃ → 0 1 − 2η

π

(Ap
r ln η +B p

r
)
ε3

η → ∞, η̃ → ∞ 1 − 96
π2

ε
[
η + π

(Ap
i ln η +B p

i

)]− [
Aβ

r ln(εη) +Bβ
r

]
8η + 3(Aa ln η +Ba)

b/b0

η → 0 1 − 4ε3

3π2

(
1 + 4

√
2

3π
η

)

η → ∞, η̃ → 0 1 + 16(εη)3

3π2(Ab ln η +Bb)

η → ∞, η̃ → ∞ 1 +
32
{[
Aβ

i ln(εη) +Bβ
i

]
− πε

(Ap
r ln η +B p

r
) }

π2(Ab ln η +Bb)

Table 3. Asymptotic expressions for the normalised added mass and damping coefficients (a/a0 and b/b0,
respectively) in the limiting cases of η → 0, η → ∞ and η̃ → 0 and η → ∞ and η̃ → ∞. These formulas are
derived based on those reported in table 1. The value of the coefficients A and B are given in table 2.
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Figure 6. Plots of (a) the pore size corresponding to the maximum normalised damping coefficient (εmax ),
(b) the peak value of b/b0, and (c) a/a0 at εmax , all as functions of η. The solid black lines represent our
theoretical calculations, whereas the dashed green curves show the results from finite-element numerical
simulations. Also, the blue triangles represent the predictions from (3.9) and its substitution into the asymptotic
formulas for b/b0 and a/a0 in the limit η → ∞ and η̃ → ∞, as reported in table 3.

b/b0 and a/a0 approach very slowly to 1.62 and 1, respectively. Although achieving about
60 % damping improvement may be challenging due to the requirement of very high η,
reaching a 30 % enhancement is feasible in many engineering applications.

To conclude this section, we analyse the supplementary plots in figure 7, which depict
the variations of the following two quantities with ε for the considered values of η:

|F |
|F0| =

√
a2 + b2√
a2

0 + b2
0

, (3.10)

φ = tan−1
(a
b

)
. (3.11)
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Figure 7. (a)–( f ) plots of the normalised total force |F |/|F0| versus ε for η, with the insets showing the
corresponding variations of the phase angle φ as a function of ε. The panels correspond to η = 10−2

(a), 10−1 (b), 1 (c), 10 (d), 102 (e) and 103 ( f ). Also, the green dashed lines represent the results of
finite-element numerical simulations.

As before, dashed green lines indicate simulation results. A notable observation is that,
despite the increase in the damping coefficient for sufficiently high η, the normalised
total force always trends downward due to porosity, regardless of the oscillatory Reynolds
number (see the main panels of figure 7). Furthermore, the phase angle φ increases from
0 to π/2 as η approaches ∞ (see the insets of figure 7). To reconcile the contrasting
behaviours of the normalised total force with that of the normalised damping coefficient,
we consider the relation

b = |F |
η2 cos φ. (3.12)
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At sufficiently high η, the reduction in the total force due to the porosity of the disk
is more than offset by the decrease in the phase angle. Since φ approaches π/2 in this
regime, even a small decrease in φ leads to a relatively large change in the magnitude
of cos φ, thereby influencing the damping behaviour significantly. This counterintuitive
increase in the damping coefficient is thus purely a result of the phase shift effect and not
due to additional flow separation or vortex shedding.

4. Summary
We developed a semi-analytical framework to investigate the hydrodynamics of an annular
disk undergoing small-amplitude, broadside sinusoidal oscillations in an unbounded fluid.
Utilising the superposition principle, the reciprocal theorem and asymptotic analysis,
we systematically explored the influence of porosity and oscillation frequency on the
disk’s added mass and damping coefficients. By decomposing the problem into two sub-
problems – one describing a solid disk in heave motion and the other modelling flow
through a circular orifice in an infinite wall – we derived asymptotic expressions that
accurately capture the variations of the hydrodynamic coefficients across a wide range
of oscillatory Reynolds numbers and pore sizes. Numerical simulations confirmed the
validity of our asymptotic formulations, demonstrating their accuracy for inner-to-outer
radius ratios up to at least 1/2.

A key finding of our analysis is the identification of a previously overlooked logarithmic
term in the high-frequency asymptotic expansions, which plays a crucial role in
accurately characterising the behaviour of the added mass and damping coefficients. More
importantly, we uncovered a non-trivial dependence of the damping coefficient on pore
size. While the added mass coefficient decreases monotonically with increasing porosity,
the damping coefficient initially rises, reaching a maximum before eventually declining.
Remarkably, in the extreme inertial limit, the peak damping coefficient surpasses that of
a solid disk by up to 62 %, potentially challenging conventional assumptions about how
porosity affects oscillatory fluid–structure interactions. The transition from a viscosity-
dominated regime to an inertial regime reveals intricate interplay between permeability
effects and oscillatory flow behaviour, highlighting the complex role of porosity in the
fluid–structure dynamics.

These insights have considerable implications for engineering applications such as
designing offshore platforms and wave energy converters, where porosity could be
strategically optimised to enhance stability and efficiency. Our findings suggest that tuning
porosity offers a promising means of controlling hydrodynamic forces, particularly in
high-frequency oscillatory environments. Future work may extend this framework to
explore nonlinear effects or larger pore geometries; while this would require retaining
higher-order terms and modifying parts of the derivation, leading-order nonlinear
corrections may be accessible via the reciprocal theorem, and the large-pore limit could
be studied by modelling the annular disk as a ring, following Davis (1991b).
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