JFP 34, ¢10, 12 pages, 2024. © The Author(s), 2024. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original
work is properly cited.

doi:10.1017/S0956796824000108

PhD Abstracts

GRAHAM HUTTON

University of Nottingham, UK
(e-mail: graham.hutton@ottingham.ac.uk)

Many students complete PhDs in functional programming each year. As a service to the
community, twice per year the Journal of Functional Programming publishes the abstracts
from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any paywall.
They do not require any transfer of copyright, merely a license from the author. A disser-
tation is eligible for inclusion if parts of it have or could have appeared in JFP, that is, if it
is in the general area of functional programming. The abstracts are not reviewed.

We are delighted to publish eleven abstracts in this round and hope that JFP readers
will find many interesting dissertations in this collection that they may not otherwise have
seen. If a student or advisor would like to submit a dissertation abstract for publication in
this series, please contact the series editor for further details.

Graham Hutton
PhD Abstract Editor

Check f
https://doi.org/10.1017/50956796824000108 Published online by Cambridge University Press updates.


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796824000108
mailto:graham.hutton@nottingham.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796824000108&domain=pdf
https://doi.org/10.1017/S0956796824000108

2 G. Hutton

A Formal Framework for Understanding Run-Time
Checking Errors in Gradually Typed Languages

FELIPE ANDRES BANADOS SCHWERTER
The University of British Columbia, Canada

Date: April 2024; Advisor: Ronald Garcia
URL: https://tinyurl.com/5f6ed6z]j

Although Abstracting Gradual Typing provides a systematic approach to design gradual
languages, the original framework has limitations: first, it accepts design choices that lead
to type inconsistencies sneaking through evaluation. Second, when a type inconsistency is
identified at run time, evaluation halts without providing any feedback on the parts of the
program related to the failure, a safe approach yet unhelpful for debugging.

This dissertation addresses these two limitations of the Abstracting Gradual Typing
framework. For the first limitation, I impose an extra constraint on the acceptable designs
for gradual types: forward completeness of every type operation. This stricter constraint
guarantees that, throughout evaluation, gradual types and runtime evidence objects cannot
lose precision and will only represent information consistent with the original static type
system. I introduce a new design for a gradual language with record subtyping that fulfills
this restriction.

For the second limitation, I provide a specification for runtime program slicing that
can be systematically applied to languages designed using Abstracting Gradual Typing.
Slicing can separate the portions of a program that are guaranteed to be uninvolved in a
runtime failure. Unlike the standard blame approach, slicing does not assume that types
are correct. The slicing semantics can be used to provide a debugging tool, and I apply
empirical research methods to explore whether this runtime type slicing approach is useful
to developers.

https://doi.org/10.1017/5S0956796824000108 Published online by Cambridge University Press


https://tinyurl.com/5f6ed6zj
https://doi.org/10.1017/S0956796824000108

PhD Abstracts 3

Domain Theory in Constructive and
Predicative Univalent Foundations

TOM DE JONG
University of Birmingham, UK

Date: February 2023; Advisor: Martin Hétzel Escardd
URL: https://tinyurl.com/mv2xtkck

We develop domain theory in constructive and predicative univalent foundations (also
known as homotopy type theory). That we work predicatively means that we do not assume
Voevodsky’s propositional resizing axioms. Our work is constructive in the sense that
we do not rely on excluded middle or the axiom of (countable) choice. Domain theory
studies so-called directed complete posets (dcpos) and Scott continuous maps between
them and has applications in programming language semantics, higher-type computability
and topology. A common approach to deal with size issues in a predicative foundation is
to work with information systems, abstract bases or formal topologies rather than dcpos,
and approximable relations rather than Scott continuous functions. In our type-theoretic
approach, we instead accept that dcpos may be large and work with type universes to
account for this. A priori one might expect that complex constructions of dcpos result in
a need for ever-increasing universes and are predicatively impossible. We show that such
constructions can be carried out in a predicative setting. We illustrate the development with
applications in the semantics of programming languages: the soundness and computational
adequacy of the Scott model of PCF and Scott’s D, model of the untyped A-calculus.
Both of these applications make use of Escardo’s and Knapp’s type of partial elements.
Taking inspiration from work in category theory by Johnstone and Joyal, we also give
a predicative account of continuous and algebraic dcpos, and of the related notions of a
small basis and its rounded ideal completion. The fact that nontrivial depos have large
carriers is in fact unavoidable and characteristic of our predicative setting, as we explain
in a complementary chapter on the constructive and predicative limitations of univalent
foundations. Our account of domain theory in univalent foundations is fully formalised
with only a few minor exceptions. The ability of the proof assistant Agda to infer universe
levels has been invaluable for our purposes.

https://doi.org/10.1017/5S0956796824000108 Published online by Cambridge University Press


https://tinyurl.com/mv2xtkck
https://doi.org/10.1017/S0956796824000108

4 G. Hutton

Achieving Self-Sustainability in Interactive
Graphical Programming Systems

JOEL JAKUBOVIC
University of Kent, UK

Date: March 2024; Advisor: Tomas Petricek and Stefan Marr
URL: https://tinyurl.com/mv2z8e2w

Programming is fraught with accidental complexity. Software, including tools used
for programming, is inflexible and hard to adapt to one’s specific problem context.
Programming tools do not support Notational Freedom, so programmers must waste cogni-
tive effort expressing ideas in suboptimal notations. They must also work around problems
caused by a reliance on plain text representations instead of Explicit Structure.

The idea of a Self-Sustainable programming system, open to adaptation by its users,
promises a way out of these accidental complexities. However, the principles underly-
ing such a property are poorly documented, as are methods for practically achieving it in
harmony with Notational Freedom and Explicit Structure. We trace the causes of this dif-
ficulty and use them to inform our construction of a prototype self-sustainable system. By
carefully reflecting on the steps involved in our specific case, we provide insight into how
self-sustainability can be achieved in general, and thus how a motivated programmer can
escape the aforementioned sources of accidental complexity.

https://doi.org/10.1017/5S0956796824000108 Published online by Cambridge University Press


https://tinyurl.com/mv2z8e2w
https://doi.org/10.1017/S0956796824000108

PhD Abstracts 5

Verified Compilation of a Purely Functional
Language to a Realistic Machine Semantics

HRUTVIK KANABAR
University of Kent, UK

Date: August 2023; Advisor: Olaf Chitil
URL: https://tinyurl.com/2jzsbdzs

Formal verification of a compiler offers the ultimate understanding of the behaviour of
compiled code: a mathematical proof relates the semantics of each output program to that
of its corresponding input. Users can rely on the same formally-specified understanding of
source-level behaviour as the compiler, so any reasoning about source code applies equally
to the machine code which is actually executed. Critically, these guarantees demand faith
only in a minimal trusted computing base (TCB). To date, only two general-purpose, end-
to-end verified compilers exist: CompCert and CakeML, which compile a C-like and an
ML-like language respectively.

In this dissertation, I advance the state of the art in general-purpose, end-to-end compiler
verification in two ways. First, I present PureCake, the first such verified compiler for a
purely functional, Haskell-like language. Second, I derive the first compiler correctness
theorem backed by a realistic machine semantics, that is, an official specification for the
ArmvS§ instruction set architecture.

Both advancements build on CakeML. PureCake extends CakeML’s guarantees out-
wards, using it as an unmodified building block to demonstrate that we can reuse verified
compilers as we do unverified ones. The key difference is that reuse of a verified compiler
must consider not only its external implementation interface, but also its proof interface:
its top-level theorems and TCB. Conversely, a realistic machine semantics for Armv8
strengthens the root of CakeML’s trust, reducing its TCB. Now, both CakeML and the
hardware it targets share a common understanding of Armv8 behaviour which is derived
from the same official sources.

Composing these two advancements fulfils the title of this dissertation: PureCake has
an end-to-end correctness theorem which spans from a purely functional, Haskell-like
language to a realistic, official machine semantics.

https://doi.org/10.1017/5S0956796824000108 Published online by Cambridge University Press


https://tinyurl.com/2jzsbdzs
https://doi.org/10.1017/S0956796824000108

6 G. Hutton

Verified Compilation from BitML to Bitcoin: An Agda Odyssey

ORESTIS MELKONIAN
University of Edinburgh, UK

Date: April 2024; Advisor: Philip Wadler, Aggelos Kiayias and Brian Campbell
URL: https://tinyurl.com/v2njc59f

Blockchain technology has taken the financial world by storm in recent years, allowing
for programmable contracts to be enacted amongst participants in a decentralised fashion.
Bugs in those programs, however, can lead to huge monetary losses and cannot in principle
be amended after detection, due to the blockchain being an immutable data structure.

This incentivizes a high-assurance approach to developing smart contracts, which so
far has mainly consisted of approximate methods of static analysis. Here, we strive for
something more radical, namely the use of interactive proof assistants grounded in Type
Theory to develop such contracts and formally verify their correctness by proving logical
propositions within the same system.

Specifically, we take existing work on the Bitcoin Modelling Language (BitML) — a
high-level process calculus for expressing contracts that compile down to Bitcoin transac-
tions — and encode its definitions, semantics, and translation procedure in the Agda proof
assistant.

BitML is one of the most mature works at the confluence of Blockchain and
Programming Languages, which justifies the tremendous amount of effort required to
mechanise the intricate results of the original paper, compared to various more lightweight
alternatives such as model checking.

We can then prove properties about BitML contracts as Agda programs, in particular
the main meta-theoretical result of the BitML paper, compilation correctness, which states
that it suffices to prove properties at the more abstract level of BitML contracts, and then
provably transfer them to the low-level of Bitcoin transactions.

By virtue of working in a type-theoretic proof assistant whose underlying logic is con-
structive, we can say that the central research goal of this thesis amounts to producing a
verified compiler from BitML contracts to Bitcoin transactions.

This whole dissertation is a type-checked Agda script, and the corresponding formalisa-
tions are publicly available in HTML format.

https://doi.org/10.1017/5S0956796824000108 Published online by Cambridge University Press


https://tinyurl.com/v2njc59f
https://doi.org/10.1017/S0956796824000108

PhD Abstracts 7

Effects and Effect Handlers for Probabilistic Programming

MINH NGUYEN
University of Bristol, UK

Date: December 2023; Advisor: Meng Wang and Roly Perera
URL: https://tinyurl.com/2cmk9fys

Probabilistic programming languages allow programmers to construct statistical mod-
els, representing random variables they know and those they wish to learn. Using the same
language, the programmer can then simulate data from the model, or apply an inference
algorithm to learn the relationships between the model’s variables. Although used widely,
existing probabilistic languages do not fully support modular and type-safe programming,
which has specific impacts on end-users. When modelling, models are either not read-
ily composable, or are restricted to a specific instance of simulation or inference, thus
limiting their reusability. Most inference frameworks are then designed without a disci-
plined approach to side-effects, which can result in monolithic implementations where the
structure of the inference algorithms is obscured and programming (customising) them is
hard.

This thesis describes a novel approach for designing modular and type-safe proba-
bilistic programming languages, based on algebraic effects and effect handlers — a typed
functional programming technique for structuring effects. The approach is demonstrated
in Haskell as a host language. Part I develops a language for probabilistic models that
are modular, first-class, and reusable for both simulation and inference; it shows how
these features enable new highly expressive treatment of models, such as composition
and higher-orderness. Part II then develops a framework for inference programming that
is modular and type-driven, where specific algorithms can be modularly derived from
abstract classes of inference algorithms; it illustrates how the approach reveals the algo-
rithms’ high-level structure, and makes it possible to tailor and recombine their parts into
new variants.

https://doi.org/10.1017/5S0956796824000108 Published online by Cambridge University Press


https://tinyurl.com/2cmk9fys
https://doi.org/10.1017/S0956796824000108

8 G. Hutton

Probabilistic Reasoning in Computation and Simple Type Theory

SIMONA PROKIC
University of Novi Sad, Serbia

Date: April 2024; Advisor: Silvia Ghilezan and Zoran Ognjanovi¢
URL: https://tinyurl.com/bdcw5bh9

This thesis investigates two different approaches for probabilistic reasoning in models
of computation. The most usual approach is to extend the language of untyped lambda
calculus with probabilistic choice operator which results in probabilistic computation. This
approach has shown to be very useful and applicable in various fields, e.g. robotics, natural
language processing, and machine learning. Another approach is to extend the language of
a typed calculus with probability operators and to obtain a framework for probabilistic
reasoning about the typed calculus in the style of probability logic. Our contribution has
four parts.

First, we study the lazy call-by-name probabilistic lambda calculus extended with let-in
operator, and program equivalence in the calculus. Probabilistic applicative bisimilarity
has proved to be a suitable tool for proving the context equivalence in probabilistic setting.
We prove that the probabilistic applicative bisimilarity is fully abstract with respect to the
context equivalence in the probabilistic lambda calculus with let-in operator.

Next, we introduce Kripke-style semantics for the full simply typed combinatory logic,
that is, the simply typed combinatory logic extended with product types, sum types, empty
type and unit type. The Kripke-style semantics is defined as an extensional Kripke applica-
tive structure, which has special elements corresponding to basic combinators, provided
with the valuation of term variables. We prove that the full simply typed combinatory
logic is sound and complete with respect to the proposed semantics.

We introduce the logic of combinatory logic, that is, a propositional extension of the
simply typed combinatory logic. We prove that the axiomatization of the logic of com-
binatory logic is sound and strongly complete with respect to the proposed semantics. In
addition, we prove that the proposed semantics is the new semantics for the simply typed
combinatory logic containing the typing rule that ensures that equal terms inhabit the same
type.

Finally, we introduce the probabilistic extension of the logic of combinatory logic.
We extend the logic of combinatory logic with probability operators and obtain a frame-
work for probabilistic reasoning about typed combinatory terms. We prove that the given
axiomatization is sound and strongly complete with respect to the proposed semantics.

https://doi.org/10.1017/5S0956796824000108 Published online by Cambridge University Press


https://tinyurl.com/bdcw5bh9
https://doi.org/10.1017/S0956796824000108

PhD Abstracts 9

Functional Programming for Securing
Cloud and Embedded Environments

ABHIROOP SARKAR
Chalmers University, Sweden

Date: March 2024; Advisor: Mary Sheeran
URL: https://tinyurl.com/bdméjr2n

The ubiquity of digital systems across all aspects of modern society, while beneficial, has
simultaneously exposed a lucrative attack-surface for potential attackers. Consequently,
securing digital systems becomes of critical importance. In this dissertation, we address the
security concerns of two classes of digital systems: (i) cloud systems, co-locating multiple
applications and relying on a large, trusted code base for software virtualisation, and (ii)
embedded systems, resource-constrained environments that employ unsafe programming
languages for application development.

The thesis underlying our dissertation is that digital systems can be protected from a
wide range of critical attacks by employing functional programming-based techniques,
ensuring software isolation in the cloud, and facilitating high-level, declarative and
memory-safe abstractions in embedded systems. Our approach here is to employ functional
programming-based techniques, which focus on building software by composing pure
functions, avoiding shared state, mutable data, and side-effects, to enhance the security
of both cloud and embedded systems. For cloud systems, we use functional programming
abstractions to partition security-critical software into compartmentalised structures that
use modern hardware protection mechanisms such as Trusted Execution Environments
(TEEs) for software isolation. For embedded systems, we present high-level functional
programming constructs that raise the level of abstraction and provide safety features to
resource-constrained embedded systems. The dissertation is organised into two parts.

Part I introduces a domain-specific language (DSL) designed for programming TEEs,
such as Intel SGX, contributing the following: (1) It facilitates automatic type-based
program partitioning between trusted and untrusted code, (2) It supports dynamic infor-
mation flow control mechanisms for ensuring data confidentiality, (3) It integrates with
an automated remote attestation framework to preserve TEE integrity, and (4) It offers a
tierless programming model that helps minimise errors arising from multi-tier confidential
computing applications, requiring adherence to complex data exchange protocols.

Part II contributes a functional language runtime and a functional reactive programming
language targeting embedded systems, which allows expressing classical (1) concurrent,
(2) I/O-bound, and (3) timing-aware embedded systems applications in a declarative
manner.

The programming artifacts resulting from this dissertation are made publicly available,
along with the evaluation procedures, encouraging further experiments in securing both
cloud and embedded systems.

https://doi.org/10.1017/5S0956796824000108 Published online by Cambridge University Press


https://tinyurl.com/bdm6jr2n
https://doi.org/10.1017/S0956796824000108

10 G. Hutton

Bootstrapping Extensionality

FILIPPO SESTINI
University of Nottingham, UK

Date: December 2023; Advisor: Thorsten Altenkirch and Graham Hutton
URL: https://tinyurl.com/5n8eufyz

Intuitionistic type theory is a formal system designed by Per Martin-Loef to be a
full-fledged foundation in which to develop constructive mathematics. One particular vari-
ant, intensional type theory (ITT), features nice computational properties like decidable
type-checking, making it especially suitable for computer implementation. However, as
traditionally defined, ITT lacks many vital extensionality principles, such as function
extensionality. We would like to extend ITT with the desired extensionality principles
while retaining its convenient computational behaviour. To do so, we must first understand
the extent of its expressive power, from its strengths to its limitations.

The contents of this thesis are an investigation into intensional type theory, and in
particular into its power to express extensional concepts. We begin, in the first part, by
developing an extension to the strict setoid model of type theory with a universe of setoids.
The model construction is carried out in a minimal intensional type theoretic metatheory,
thus providing a way to bootstrap extensionality by “compiling” it down to a few building
blocks such as inductive families and proof-irrelevance.

In the second part of the thesis we explore inductive-inductive types (ITTs) and their
relation to simpler forms of induction in an intensional setting. We develop a general
method to reduce a subclass of infinitary IITs to inductive families, via an encoding that
can be expressed in ITT without any extensionality besides proof-irrelevance. Our results
contribute to further understand IITs and the expressive power of intensional type theory,
and can be of practical use when formalizing mathematics in proof assistants that do not
natively support induction-induction.

https://doi.org/10.1017/5S0956796824000108 Published online by Cambridge University Press


https://tinyurl.com/5n8eufyz
https://doi.org/10.1017/S0956796824000108

PhD Abstracts 11

Parsley: Optimising and Improving Parser Combinators

JAMIE HYDE WILLIS
Imperial College London, UK

Date: March 2024; Advisor: Nicolas Wu
URL: https://tinyurl.com/wdtyuj7u

Parser combinators are a functional abstraction for parsing that abstracts hand-written
recursive-descent parsers behind a high-level set of combinators. While these kinds of
parsers are popular in the functional programming community, they have been historically
criticised:

1. Parser combinator performance is sub-par compared with handwritten parsers.

2. The high-level grammar is obscured by the combinators compared with parser
generators.

3. The error messages generated by parser combinators are not of fantastic quality.

This dissertation addresses each of these complaints with the work split across two
libraries, both called parsley: one in Haskell and the other in Scala. Within these libraries,
different issues are tackled.

Haskell parsley addresses the performance concerns of parser combinators by mod-
elling them as a strongly-typed deep embedding, allowing for optimisations and analysis to
be performed. To eliminate the overheads of interpretation and achieve high performance,
parsley makes use of staged metaprogramming to convert the continuation-passing style
automaton into Haskell code resembling hand-written recursive descent parsers; this is
faster than contemporary parser combinator libraries in Haskell.

Writing parsers is often an ad-hoc exercise; this dissertation introduces parser combina-
tor design patterns that help structure and standardise how these parsers should be written.
These patterns focus on a handful of issues: cleanly handling precedence hierarchies and
expression parsing; organising and distinguishing between low-level tokens and higher-
level parsing; and abstracting away semantic actions and meta-data processing. This helps
to make clean, maintainable, parsers.

Finally, Scala parsley has focused on improving the design of parser combinator error
systems. The design of this improved system is explored as well as how it can be imple-
mented efficiently, minimising impact on the “happy path.” This gives rise to more parsing
patterns as well as enriching existing patterns to incorporate errors. The new patterns help
provide the tools to build bespoke, descriptive, errors.

https://doi.org/10.1017/5S0956796824000108 Published online by Cambridge University Press


https://tinyurl.com/w4tyuj7u
https://doi.org/10.1017/S0956796824000108

12 G. Hutton

Language-Based Techniques for Policy-Agnostic Oblivious Computation

QIANCHUAN YE
Purdue University, USA

Date: May 2024; Advisor: Benjamin Delaware
URL: https://tinyurl.com/57nvaéd7

Protecting personal information is growing increasingly important to the general pub-
lic, to the point that major tech companies now advertise the privacy features of their
products. Despite this, it remains challenging to implement applications that do not leak
private information either directly or indirectly, through timing behavior, memory access
patterns, or control flow side channels. Existing security and cryptographic techniques
such as secure multiparty computation (MPC) provide solutions to privacy-preserving
computation, but they can be difficult to use for non-experts and even experts.

This dissertation develops the design, theory and implementation of various language-
based techniques that help programmers write privacy-critical applications under a strong
threat model. The proposed languages support private structured data, such as trees,
that may hide their structural information and complex policies that go beyond whether
a particular field of a record is private. More crucially, the approaches described in
this dissertation decouple privacy and programmatic concerns, allowing programmers to
implement privacy-preserving applications modularly, i.e., to independently develop appli-
cation logic and independently update and audit privacy policies. Secure-by-construction
applications are derived automatically by combining a standard program with a separately
specified security policy.

https://doi.org/10.1017/5S0956796824000108 Published online by Cambridge University Press


https://tinyurl.com/57nva6d7
https://doi.org/10.1017/S0956796824000108

	PhD Abstracts

