\(n)-PARAMETER FAMILIES
Ronald M. Mathsen

(received March 29, 1969)

I is an interval of R, the set of real numbers, n is a positive

integer and F C c’ (D for j >0 large enough so that the following
definitions are possible:

N, ..., are positive

2 12 k

integers and )\1 + )\2 + ... +)\k =n. Then \(n) is an ordered partition

of n. The set of all such partitions of n is denoted by P(n).

(i) Let \(n) =()\1, X ,...,)\k) where k, \

(ii) Let \(n) € P(n) be given. The family F of real valued functions
on I is said to be a \(n)- parameter family on I in case for-any
choice of points x, < X, <...< x in I and any set of n real

numbers yi(‘]) there is a unique f ¢ F satisfying

W e =y a0z a2k

¥ F is a \(n)- parameter family for \(n) = (1,1,..., 1), then F is
called an n- parameter family, (See [5]) If F is a \(n)-parameter
family on I for \(n) =n, i.e., all conditions are specified at one point,
then we will say that initial value problems are uniquely solvable in F
on I. If F is a \(n)- parameter family on I for all a(n} ¢ P(n),
then F is called an unrestricted n-parameter family on I. (See[1].)

P. Hartman [1] proved the following:

'THEOREM. A family F C Cn-1 (I), where I is an open interval
of R, 1is an unrestricted n-parameter family on I if and only if F is
an n-parameter family on I and initial value problems are uniquely
solvable in F on I.

Z. Opial [4] gave a very nice short proof of Hartman's result in the

th
case that F is the solution set for an n  order homogeneous linear
differential equation with summable coefficients. Opial's proof uses the
linearity of F (F is an n - dimensional real vector space) and the

continuity with respect to initial values.
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What happens if I is not open? In[1] Hartman poses that question
for I closed, but does not resolve it. We give here an example to show
that neither Hartman's Theorem nor Opial's Theorem is valid if I is
closed. Before giving the example we have the following definition and
lemma:

-1
(iii) Let L [y]= y(n) + a 1 y(n ) + ...+ a1y' + agy = 0 be a homogenous
n n-

linear differential equation with continuous coefficients on I. For each
s el let K(x, s) be the solution to the initial value problem

=y ey =0 -

L [y] =0, y(s) =y'(s) = ... Gm-1)

n

(s) - 1.

K is called the Cauchy function for L .
n

(iv) L (or L [y]=0) is said to be disconjugate on I in case no non-
n n
trivial solution to Ln[y] = 0 has more than n-1 zeros (counting multiplicity)

on I.

Clearly Ln being disconjugate on I implies that

-1
(2) sgn K(x, s) = sgn (x- s)lr1 for all x and s in I.
(sgn x =0 if x=0,1 if x>0,-1 if x<0.)
The lemma in [2] states that the converse is also true for n = 3. We state
that lemma here and supply it with a quite different proof.

LEMMA 1. Let ay a, and a, be continuous on I. If K(x, s) >0

for all x and s in I with x # s, then L3[y] = 0 is disconjugate on I.

Proof. Let s1,s2 and s3 be three distinct points in I. Then

K(x, si), K(x, 52) and K(x, 53) are linearly independent on I. Suppose
that <y K(x, 51) + <, K(x, SZ) + <, K(x, s3) =0 for all x in I. Put
1 5 and Sy The resulting homogeneous system of equations in

TR and s has only the solution cp T, ¢y 0.

Now suppose that y = yo(x) is a non-trivial solution to L3[y] =0 on
I, and let yo(x) have three zeros in I. Clearly yO(x) cannot have a

double zero, so let the zeros be Sy S, and S3 - Then there are constants
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< c‘2 and ¢y 8O that yo(x) =< K(x, si) + <, K(x, SZ) + <y K(x, s3) for

all x in I. But then Cp T, ¢y " 0 as above. Hence L3 is disconjugate.

Example: (This example is from the author's doctoral dissertation
written under the direction of Professor L.K. Jackson at the University of
Nebraska; see [3].) Let F be the set of solutions to the differential equation

3 2
(3) x y'"+ 4xy'"' + 3xy' + y=0

. . . 1 .
on the interval [1,x_] where x_ is the first zero of - + sin log x - cos log x

0] 0
to the right of 1. We will show that F is a 3 -parameter family on [1, XO]
but F is not an unrestricted 3 -parameter family on [1, xo]. The Cauchy

2
function for (3) is given by K(x, s) = % (i + sin log f - cos log f\ ,

so K(xo, 1) =0 and K(x, 1)>0 for 1 <x<x0. K(x, s) = s2 K(%, 1), so
K(x, s) >0 for s< x< xOs . Also, one can show, using derivativeé, that
K(x,s)>0 if 1<s< XO and x< s. Hence (3) is disconjugate on [1, XO)
and (1, xO] by Lemma 1. Let y = yo(x) be a solution to (3) satisfying
0 = y0(1) = yo(xo) = yo(c), 1<c< Xy Then yo(x) = c1u1(x) + <, K(x, 1)

1 3 . 1
where <y and c, are constants and u1(x) = ox + > sin log x - > cos log x.
Now exp(5m/4) < X < exp(4m /3), so that ui(XO) < 0 and therefore
yo(c) = 0 implies that c, = 0; so by the linearity of F we conclude that
F is a 3- parameter family on [1, XO]’ but clearly F is not an unrestricted

3 -parameter family on [1, x ] since y =0 and y = K(x, 1) both satisfy

0=y(1) =y (1) = y (%)

o

Is Hartman's Theorem valid on a half open interval? If F is linear
and n =3, 4 or 5, then the answer is yes. The author conjectures that
if F 1is linear and I is half open, then Hartman's Theorem is correct.
A proof of this for the general case (n arbitrary) has not yet been given.

A natural question which arises is whether Lemma 1 generalizes, and,

if so, how. It is easy to give an example to show that (2) does not imply

disconjugacy for Ln if n> 3; for instance, for Ln[y] = y(n) + y(n—Z)'

(2) is satisfied on (-, ), but L is clearly not disconjugate on (-0, ).

One generalization of Lemma 1 is the following theorem:
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THEOREM 1. Let F be a linear \(n)- parameter family on I for
Mn)= (2,1, 1,...,1), Nn)= (1, 1,...,1,2) and \(n) = (2, 1,1, ...,1,2).
Then F is an n- parameter fam11y on I.

Proof. Let f be a non-trivial member of F satisfying

f(x1) = f(XZ) = ... = f(xn) =0 where x < X, <...< x  are points in

I. Define g € F by g(xil g (x ) - f'(x ) = g(z ) = g(z4) = ... = g(zn )=
- ! = = -
glx,) = g(xn) 0, where z, = (Xi+xi+1)/2 for i=3,4,...,n-2.
. 1 y =
By hypothesis we must have f'(x) # 0 for x Xpo Xy Xy and x
But g'(x1) = f'(x1) # 0, so g(x) does not vanish identically on I.
g has a double zero at Xn and zeros at xi,za, 24, P Zn—Z’ so these
points are the only zeros of g. If f changes sign at all the points X

then f-g changes sign in each of the intervals (x3, z3), (z3, z4) ,

(z4, 25) e (Zn-3’ Zn—Z) . f - g also changes sign in (zn__2 , xn) since
! = ! = = 1

g (Xn) 0#f (xn), f(xn-'l) f(xn) 0, f changes sign at x4 and

g(zn_z) = g(xn) = 0. So f- g has adouble zero at %, and n-2 other

zeros. This contradicts the uniqueness of solutions to (1) in F for
Nn) =(2,1,1, ...,1). I f does not change sign at all the points’ X

let s be the number of points x,, i=3,4, ..., n-1 at which f changes
i
sign and let d be the number of points Xi’ 3<i<n-2, at which f
does not change sign. Then s + d =n-3. To each zero x, at which f
i

changes sign there corresponds a point p,» 2, < P, <z, i=4,5 ...,n-2
i

-1

and =z < X such that f - g changes sign. Hence we have

n-2 < Pn2

at least s changes of sign of f-g. Let d1 be the number of double

Zeros x, of f (i.e. f does not change sign at xi) such that f and g
have the same sign in (xi -5, x + &) for § > 0 sufficiently small.

There are two zeros of f - g in (z, 1
i-

zeros of f. f -g has a double zero at x and as we have shown above,

at least s + Zd1 + 1 other zeros in I. But since f and g are not identical,

s Zi) for each of these d1 double

we must have s+2d1+1<n—2, ‘i.e., 2d1<n-s—3 = d, and then

2(d - di) >d . Atthe remaining d - d, points x, at which f does not

1
change sign we must have a § > 0 so that f(x) and g(x) have opposite
signs for 0 < lx-xil < 6. Thenfor ¢ >0 small enough the graphs of

f and -eg will intersect at two points (in (zi , zi)) separated by x, .

1

Hence for €>0 small enough there will be two points in (zi zi) at

-1’
which f+eg changes sign. This will give 2(d - d1) changes of sign
for f + eg. Also to each P, there corresponds a Q. 2z < q; < z;
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and z 2 < q 2 < x , atwhich f +eg changes sign. This follows
n-

n- n
since f(xi) =0, f'(xi) #£0, f(x) #0 for x in (z. L z.) with x # x_,
i- i i

a - = - = 0. t vanish i
an sg(zi ) eg(zi) f + eg must vanish in (zn-Z’ xn),

g(zn_z) = 0 and f'(xn) #0 = g (xn).

-1
since f(x ) = f(x ) = g(x )
n-1 n n
So we will have 2(d - di) +s>d+ s +1 = n-2 changes of sign in

(<, , Xn) . This is impossible (as we showed in the first part of this

1

proof) since f +eg will also have zeros (simple) at % and x , and
n

we know that f + eg is in F because F is a linear family on I.
Hence no such non-trivial f ¢ F can exist. This shows that uniqueness
of solutions of (1) in F for A(n) = (1,1, ..., 1). The existence of
solutions of (1) in F for the same \(n) follows immediately from

uniqueness since F is linear. To show this let {f{l'f ...,f} bea
n

>
basis for F. Then there exist n constants c1 , CZ’ e, Cn so that
n
f= 3% cf.. Butthe n Xn system of linear equations generated by
i=1 !
(1) from this representation of f must (by uniqueness) have a non-zero
coefficient determinant, and hence that system has a solution. This
proves the theorem. We here note that in general for a linear family
F uniqueness of solutions of (1) in F for a given \(n) implies the
existence of solutions of (1) in F for that \(n).

COROLLARY. If F is a linear )(n)- parameter family on the open
interval I for M(n) = n and the values of \(n) as given in Theorem 1,
then F 1is an unrestricted n- parameter family on I.

The corollary follows directly from Theorem 1 and Hartman's
Theorem.

An affirmative answer to the question Q below would yield another
generalization of Lemma 1.

Q. I F is a linear \(n)- parameter family on I for |\(n)|< 2, is F
an unrestricted n- parameter family on I7? (')\(n)l denotes the
length of the partition \(n).) That the answer to Q is yes for
n=4 follows from Lemma 1 and from Lemma 2 below. Q is as
yet unsolved for n> 5.

LEMMA 2. ¥ F is a linear \(n)-parameter family for \(n) = (n-1,1)
and (n-2,2) (or for \(n) = (4, n-1) and (2, n-2)), then F is an
(n-2,1,1)- parameter (or (1, 1, n- 2)- parameter) family on I.

Proof. Let f be a non-trivial member of F with f(l)(xi) =0 for

i=0,1,2, ..., -3, = f = h < <
i 1, 2 n f(xz) (x3) 0 where x) < x, <xg are('t)hree
i

points in I. Let p = (x2 +x3)/2 and pick g e F satisfying g (x1) =0

for i=0,1,2,...,n-2 and g(p) = f(p)/2 # 0. (We assume without
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).)

loss of generality that f(x) < 0 in (xi, XZ) and f(x)> 0 in (XZ’ X,

g(x) >0 for x >x

so there are points in (xz, x_ ) at which

1’ 3
f(x) - g(x) > 0. Let M be the set of real numbers v such that
f(x) - v g(x) > 0 for some points in (XZ’ x3) . Let Yo = Sup M. Then
there is a point X in (xz, x3) such that h=1f - Yo 8 satisfies

h(x )= h'(x ) = 0. Also h(l)(xi) =0 for i=0,1,2, ..., n-3.

F is a (n-2,2)- parameter family, so h(x) = 0 for all x in I. This
of course is impossible since h(xz) = —’yo g(xz) < 0. The other half

of the lemma follows in a similar fashion.

In terms of boundary value problems for ordinary differential
equations, question (Q can be phrased as follows:

If every two point boundary value problem is solvable, is every
boundary value problem solvable?

Acknowledgement. Thanks are due to the University of Alberta and
the Canadian Mathematical Congress Summer Research Institute for
support of this research.

Added in proof. The author has recently become aware of two
papers ([6] and [7]) which answer the last question in the affirmative
for a linear differential equation with continuous coefficients.
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