A special issue of the Journal of Functional Programming

Contents

I The Haskell 98 Language

1 Introduction

1.1 Program Structure e e e e e
1.2 TheHaskell Kernel
1.3 Valuesand Types e
1.4 NameSPaCes« v v v o e e e e e e e e e e e

2 Lexical Structure

2.1 Notational Conventions vttt
2.2 Lexical Program Structure
23 ComMMENtS oot e e e e e e e e e e
2.4 Identifiers and Operators e e
2.5 Numeric Literals e
2.6 Character and String Literals
2.7 Layout. e e e e
3 Expressions
3.1 Brrors e e
3.2 Variables, Constructors, Operators, and Literals
3.3 Curried Applications and Lambda Abstractions
34 Operator Applications.
35 Sections e
3.6 Conditionals. e
37 LiSts . .. e
3.8 Tuples e e e
3.9 Unit Expressions and Parenthesized Expressions.
3.10 Arithmetic Sequences e
3.11 ListComprehensions ot v it
312 Let EXpressionso e e
313 Case EXPressions e e e

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

D AW W

[BN |

https://doi.org/10.1017/S0956796803000315

ii CONTENTS
3.14 DO EXpPressions i i e e e e 29
3.15 Datatypes with Field Labels 29

3.15.1 Field Selection e 30
3.15.2 Construction Using Field Labels 30
3.15.3 Updates Using Field Labels 31
3.16 Expression Type-Signatures, 32
3.17 Pattern Matching 32
3.07.1 Patterns e e 32
3.17.2 Informal Semantics of Pattern Matching 34
3.17.3 Formal Semantics of Pattern Matching 36

4 Declarations and Bindings 39

4.1 Overviewof Typesand Classes 40
4.1.1 Kinds e 41

412 Syntaxof Types. e e 41

4.1.3 Syntax of Class Assertionsand Contexts. 43

4.1.4 Semantics of Typesand Classes 44

4.2 User-Defined Datatypes e 45
4.2.1 Algebraic Datatype Declarations 45

422 Type Synonym Declarations 47

423 Datatype Renamings 48

43 TypeClasses and Overloading 49
43.1 ClassDeclarations, 49

432 Instance Declarations, 51

433 DerivedInstances o 53

4.3.4 Ambiguous Types, and Defaults for Overloaded Numeric Operations . . . 53

44 Nested Declarations e 55
441 TypeSignatures ot it e e e 55

442 Fixity Declarations 56

443 Function and Pattern Bindings 58
4431 Functionbindings., 58

4432 Patternbindings. 59

4.5 Static Semantics of Function and Pattern Bindings 60
45.1 Dependency Analysis. 60

452 Generalization e 61

453 Context ReductionErrors 61

454 Monomorphism e 62

4.5.5 The Monomorphism Restriction 63

4.6 KindInference 66

5 Modules 67
5.1 Module Structure e 68
5.2 ExportLists e e 69
5.3 ImportDeclarations e 71

5.3.1 WhatisImported 72

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

CONTENTS iii

5.3.2 Qualified Import 72

533 Local Aliases e 73

534 Examples e 73

5.4 Importing and Exporting Instance Declarations 74
5.5 Name Clashesand Closure, 74
5.5.1 Qualified Names 74

552 NameClashes. e 75

553 Closure e e e 76

5.6 StandardPrelude 77
5.6.1 ThePreludeModule 77

5.6.2 Shadowing Prelude Names 77

5.7 Separate Compilation 78
5.8 Abstract Datatypes e 78
6 Predefined Types and Classes 81
6.1 Standard Haskell Types i i 81
6.1.1 Booleans 81

6.1.2 Characters and Strings 82

6.1.3 Lists. e 82

6.1.4 Tuples. e 82

6.1.5 TheUnitDatatype i 83

6.1.6 FunctionTypes e 83

6.1.7 ThelO and IOError Types 83

6.1.8 Other Types o e e e 83

6.2 StrictEvaluation 84
6.3 Standard Haskell Classes 84
6.3.1 TheEqClass e 86

6.32 TheOrdClass it 86

6.3.3 TheRead and Show Classes 87

6.34 TheEnumClass 88

6.3.5 TheFunctorClass 89

6.3.6 TheMonadClass i, 90

6.3.7 TheBoundedClass 91

6.4 Numbers. e e e e 91
6.4.1 Numeric Literals 92

6.4.2 Arithmetic and Number-Theoretic Operations 92

6.4.3 Exponentiation and Logarithms 93

6.4.4 Magnitudeand Sign L 94

6.4.5 Trigonometric Functions 95

6.4.6 Coercions and Component Extraction 95

7 Basic Input/Output 97
7.1 Standard /O Functions 97
7.2 Sequencing /O Operations 99
7.3 Exception Handlinginthe /OMonad 100

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

iv CONTENTS

8 Standard Prelude 103
8.1 ModulePrelude e 104

8.2 Module PreludeList e 114

8.3 Module PreludeText i i i i e 119

84 Module PreludeIO i it e e e 123

9 Syntax Reference 125
9.1 Notational Conventions i i e e 125
9.2 Lexical Syntax e 126

9.3 Layout. e e e e 128
9.4 Literate Comments v it i e e e e e e e e e 131

9.5 Context-Free Syntax 133

10 Specification of Derived Instances 139
10.1 Derived Instancesof EgqandOxrd 140
10.2 Derived Instances of Enum 140
10.3 Derived Instancesof Bounded 141
10.4 Derived Instancesof Read and Show 142
10.5 AnExample L e 143

11 Compiler Pragmas 145
11.1 Inlining e e e e e 145
11.2 Specialization e 145

II The Haskell 98 Libraries 147
12 Rational Numbers 149
12.1 LibraryRatio e 150

13 Complex Numbers 153
13.1 Library Complex o i i e e e e e e e e 154

14 Numeric Functions 157
14.1 Showing Functions 158
14.2 Reading Functions 159
14.3 Miscellaneous e 159
144 Library Numeric i e e e e 160

15 Indexing Operations 169
15.1 DerivingInstances of Ix e 170
152 Library IX o o o o e e e e e e e e 171

16 Arrays 173
16.1 Array ConsStruction vt i i e e e e e e 174
16.1.1 Accumulated Arrays e 175

16.2 Incremental Array Updates 175

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

CONTENTS v

16.3 Derived ATTays o i e e e e e e e e 176
16.4 Library ATTay o o v e e e e e e e e e e e e 176

17 List Utilities 179
17.1 Indexing Lists o . e 181
17.2 “Set” Operations v v v it e e e e e e e 181
17.3 List Transformations i 182
174 unfoldr e 182
17.5 Predicates e e e 183
17.6 The “By” Operations v v i i it it et e 183
17.7 The “generic” Operations v v v v v i i it et et 184
17.8 Further “zip” Operations v, 184
17.9 Library List o e e 184

18 Maybe Utilities 191
18.1 LibraryMaybe e 192

19 Character Utilities 193
19.1 Library Char e e 195

20 Monad Utilities 199
20.1 Naming Conventions o v v v v v it e e e e 200
20.2 ClassMonadPlus v v v v vt e e e e e e e e 200
203 Functions e e e e 201
20.4 LibraryMonad 0 e e e e 202

21 Input/Output 205
21.1 VO Errors o e e e e e e e 207
21.2 FilesandHandles 208
21.2.1 StandardHandles 209

21.2.2 Semi-ClosedHandles 209

21.2.3 FileLocking e 210

21.3 Openingand Closing Files 210
21.3.1 OpeningFiles e 210

21.3.2 ClosingFiles e 210

21.4 Determining the SizeofaFile 211
21.5 Detectingthe EndofInput 211
21.6 Buffering Operations 0 v it e e 211
21.6.1 FlushingBuffers, 212

21.7 RepositioningHandles 213
21.7.1 Revisitingan I/O Position, . 213

21.7.2 SeekingtoaNew Position 213

21.8 Handle Properties e 213
219 TextInputand Output e 214
21.9.1 CheckingforInput 214

21.9.2 ReadingInput. 214

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

vi

219.3 Reading Ahead
21.9.4 Reading the EntireInput
219.5 TextOutput i
21.10 Examples
21.10.1 Summing Two Numbers
21.102Copying Files oL
2111 Library IO [] o o o o

22 Directory Functions
23 System Functions

24 Dates and Times

241 Library Time

25 Locales

25.1 LibraryLocale

26 CPU Time

27 Random Numbers
27.1 The RandomGen class, and the StdGen generator

272 TheRandomclass
27.3 The global random number generator

Bibliography

Index

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

CONTENTS

219

223

225

........... 227

231

........... 231

233

235

........... 236
........... 239
........... 240

241

https://doi.org/10.1017/S0956796803000315

Preface

“Some half dozen persons have written technically on combinatory logic, and most of
these, including ourselves, have published something erroneous. Since some of our fel-
low sinners are among the most careful and competent logicians on the contemporary
scene, we regard this as evidence that the subject is refractory. Thus fullness of expo-
sition is necessary for accuracy,; and excessive condensation would be false economy
here, even more than it is ordinarily.”

Haskell B. Curry and Robert Feys
in the Preface to Combinatory Logic [4], May 31 1956

In September of 1987 a meeting was held at the conference on Functional Programming Languages
and Computer Architecture (FPCA ’87) in Portland, Oregon, to discuss an unfortunate situation in
the functional programming community: there had come into being more than a dozen non-strict,
purely functional programming languages, all similar in expressive power and semantic underpin-
nings. There was a strong consensus at this meeting that more widespread use of this class of
functional languages was being hampered by the lack of a common language. It was decided that
a committee should be formed to design such a language, providing faster communication of new
ideas, a stable foundation for real applications development, and a vehicle through which others
would be encouraged to use functional languages. This book describes the result of that commit-
tee’s efforts: a purely functional programming language called Haskell, named after the logician
Haskell B. Curry whose work provides the logical basis for much of ours.

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

viii PREFACE
Goals

The committee’s primary goal was to design a language that satisfied these constraints:

1. It should be suitable for teaching, research, and applications, including building large systems.
2. It should be completely described via the publication of a formal syntax and semantics.

3. It should be freely available. Anyone should be permitted to implement the language and
distribute it to whomever they please.

4. Tt should be based on ideas that enjoy a wide consensus.

5. It should reduce unnecessary diversity in functional programming languages.

Haskell 98: language and libraries

The committee intended that Haskell would serve as a basis for future research in language design,
and hoped that extensions or variants of the language would appear, incorporating experimental
features. Haskell has indeed evolved continuously since its original publication. By the middle of
1997, there had been four iterations of the language design (the latest at that point being Haskell
1.4). At the 1997 Haskell Workshop in Amsterdam, it was decided that a stable variant of Haskell
was needed; this stable language is the subject of this book, and is called Haskell 98.

Haskell 98 was conceived as a relatively minor tidy-up of Haskell 1.4, making some simplifications,
and removing some pitfalls for the unwary. It is intended to be a “stable” language in sense the
implementors are committed to supporting Haskell 98 exactly as specified, for the foreseeable future.

The original Haskell Report covered only the language, together with a standard library called the
Prelude. By the time Haskell 98 was stabilised, it had become clear that many programs need
access to a larger set of library functions (notably concerning input/output and simple interaction
with the operating system). If these program were to be portable, a set of libraries would have to be
standardised too. A separate effort was therefore begun by a distinct (but overlapping) committee
to fix the Haskell 98 Libraries.

The Haskell 98 Language and Library Reports were published in February 1999.

Revising the Haskell 98 Reports

After a year or two, many typographical errors and infelicities had been spotted. I took on the role
of gathering and acting on these corrections, with the following goals:

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

PREFACE ix

e Correct typographical errors.

o Clarify obscure passages.

e Resolve ambiguities.

e With reluctance, make small changes to make the overall language more consistent.
This task turned out to be much, much larger than I had anticipated. As Haskell becomes more
widely used, the Report has been scrutinised by more and more people, and I have adopted hundreds
of (mostly small) changes as a result of their feedback. The original committees ceased to exist when

the original Haskell 98 Reports were published, so every change was instead proposed to the entire
Haskell mailing list.

This book is the outcome of this process of refinement. It includes both the Haskell 98 Language
Report and the Libraries Report, and constitutes the official specification of both. It is not a tut-
orial on programming in Haskell such as the “Gentle Introduction” [9], and some familiarity with
functional languages is assumed.

The entire text of both Reports is available online (see ‘Haskell Resources’ on p. x).

Extensions to Haskell 98

Haskell continues to evolve, going well beyond Haskell 98. For example, at the time of writing
there are Haskell implementations that support:

¢ Syntactic sugar, including:

pattern guards;

recursive do-notation;

lexically scoped type variables;

meta-programming facilities;

e Type system innovations, including:

multi-parameter type classes;

functional dependencies;

existential types;

local universal polymorphism and arbitrary rank-types;
o Control extensions, including:

— monadic state;

— exceptions;

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

X PREFACE

— concurrency.

There is more besides. Haskell 98 does not impede these developments. Instead, it provides a stable
point of reference, so that those who wish to write text books, or use Haskell for teaching, can do
so in the knowledge that Haskell 98 will continue to exist.

Haskell Resources

The Haskell web site
http://haskell.org

gives access to many useful resources, including:

e Online versions of the language and library definitions, including a complete list of all the
differences between Haskell 98 as published in February 1999 and this revised version.

Tutorial material on Haskell.

Details of the Haskell mailing list.

Implementations of Haskell.

Contributed Haskell tools and libraries.

Applications of Haskell.

We welcome your comments, suggestions, and criticisms on the language or its presentation in the
report, via the Haskell mailing list.

Building the language

Haskell was created, and continues to be sustained, by an active community of researchers and
application programmers. Those who served on the Language and Library committees, in particular,
devoted a huge amount of time and energy to the language. Here they are, with their affiliation(s).

Arvind (MIT)

Lennart Augustsson (Chalmers University)
Dave Barton (Mitre Corp)

Brian Boutel (Victoria University of Wellington)
Warren Burton (Simon Fraser University)

Jon Fairbairn (University of Cambridge)

Joseph Fasel (Los Alamos National Laboratory)
Andy Gordon (University of Cambridge)

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

PREFACE xi

Maria Guzman (Yale University)

Kevin Hammond (Uniiversity of Glasgow)

Ralf Hinze University of Bonn)

Paul Hudak [editor] (Yale University)

John Hughes [editor] (University of Glasgow; Chalmers University)
Thomas Johnsson (Chalmers University)

Mark Jones (Nottingham University)

Dick Kieburtz (Oregon Graduate Institute)

John Launchbury (University of Glasgow; Oregon Graduate Institute)
Erik Meijer (Utrecht University)

Rishiyur Nikhil (MIT)

John Peterson (Yale University)

Simon Peyton Jones [editor] (University of Glasgow; Microsoft Research Ltd)
Mike Reeve (Imperial College)

Alastair Reid (University of Glasgow)

Colin Runciman (University of York)

Philip Wadler [editor] (University of Glasgow)

David Wise (Indiana University)

Jonathan Young (Yale University)

Those marked [editor] served as the co-ordinating editor for one or more revisions of the language.

In addition, dozens of other people made helpful contributions, some small but many substan-
tial. They are as follows: Kris Aerts, Hans Aberg, Sten Anderson, Richard Bird, Stephen Blott,
Tom Blenko, Duke Briscoe, Paul Callaghan, Magnus Carlsson, Mark Carroll, Manuel Chakravarty,
Franklin Chen, Olaf Chitil, Chris Clack, Guy Cousineau, Tony Davie, Craig Dickson, Chris Dor-
nan, Laura Dutton, Chris Fasel, Pat Fasel, Sigbjorn Finne, Michael Fryers, Andy Gill, Mike Gunter,
Cordy Hall, Mark Hall, Thomas Hallgren, Matt Harden, Klemens Hemm, Fergus Henderson, Dean
Herington, Ralf Hinze, Bob Hiromoto, Nic Holt, Ian Holyer, Randy Hudson, Alexander Jacob-
son, Patrick Jansson, Robert Jeschofnik, Orjan Johansen, Simon B. Jones, Stef Joosten, Mike Joy,
Stefan Kahrs, Antti-Juhani Kaijanaho, Jerzy Karczmarczuk, Wolfram Karl, Kent Karlsson, Richard
Kelsey, Siau-Cheng Khoo, Amir Kishon, Feliks Kluzniak, Jan Kort, Marcin Kowalczyk, Jose Labra,
Jeff Lewis, Mark Lillibridge, Bjorn Lisper, Sandra Loosemore, Pablo Lopez, Olaf Lubeck, Ian Ly-
nagh, Christian Maeder, Ketil Malde, Simon Marlow, Michael Marte, Jim Mattson, John Meacham,
Sergey Mechveliani, Erik Meijer, Gary Memovich, Randy Michelsen, Rick Mohr, Andy Moran,
Graeme Moss, Arthur Norman, Nick North, Chris Okasaki, Bjarte M. @stvold, Paul Otto, Sven
Panne, Dave Parrott, Ross Patterson, Larne Pekowsky, Rinus Plasmeijer, Ian Poole, Stephen Price,
John Robson, Andreas Rossberg, George Russell, Patrick Sansom, Felix Schroeter, Julian Seward,
Nimish Shah, Christian Sievers, Libor Skarvada, Jan Skibinski, Lauren Smith, Raman Sundaresh,
Ken Takusagawa, Satish Thatte, Simon Thompson, Tom Thomson, Tommy Thorn, Dylan Thurston,
Mike Thyer, Mark Tullsen, David Tweed, Pradeep Varma, Malcolm Wallace, Keith Wansbrough,
Tony Warnock, Michael Webber, Carl Witty, Stuart Wray, and Bonnie Yantis.

Finally, aside from the important foundational work laid by Church, Rosser, Curry, and others
on the lambda calculus, we wish to acknowledge the influence of many noteworthy programming

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

xii PREFACE

languages developed over the years. Although it is difficult to pinpoint the origin of many ideas, we
particularly wish to acknowledge the influence of Lisp (and its modern-day incarnations Common
Lisp and Scheme); Landin’s ISWIM; APL; Backus’s FP [1]; ML and Standard ML; Hope and
Hope™; Clean; Id; Gofer; Sisal; and Turner’s series of languages culminating in Miranda.! Without
these forerunners Haskell would not have been possible.

Simon Peyton Jones
Cambridge, November 2002

"Miranda is a trademark of Research Software Ltd.

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

Part 1

The Haskell 98 Language

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

JFP 13 (1): i—xii, 1-6, January 2003. © 2003 Cambridge University Press
DOI: 10.1017/S0956796803000315 Printed in the United Kingdom

Chapter 1

Introduction

Haskell is a general purpose, purely functional programming language incorporating many recent
innovations in programming language design. Haskell provides higher-order functions, non-strict
semantics, static polymorphic typing, user-defined algebraic datatypes, pattern-matching, list com-
prehensions, a module system, a monadic I/O system, and a rich set of primitive datatypes, including
lists, arrays, arbitrary and fixed precision integers, and floating-point numbers. Haskell is both the
culmination and solidification of many years of research on non-strict functional languages.

This book defines the syntax for Haskell programs and an informal abstract semantics for the mean-
ing of such programs. We leave as implementation dependent the ways in which Haskell programs
are to be manipulated, interpreted, compiled, etc. This includes such issues as the nature of pro-
gramming environments and the error messages returned for undefined programs (i.e. programs that
formally evaluate to L).

1.1 Program Structure

In this section, we describe the abstract syntactic and semantic structure of Haskell, as well as how
it relates to the organization of the rest of the report.

1. At the topmost level a Haskell program is a set of modules, described in Chapter 5. Modules
provide a way to control namespaces and to re-use software in large programs.

2. The top level of a module consists of a collection of declarations, of which there are sev-
eral kinds, all described in Chapter 4. Declarations define things such as ordinary values,
datatypes, type classes, and fixity information.

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

4 CHAPTER 1. INTRODUCTION

3. Atthe next lower level are expressions, described in Chapter 3. An expression denotes a value
and has a static type; expressions are at the heart of Haskell programming “in the small.”

4. At the bottom level is Haskell’s lexical structure, defined in Chapter 2. The lexical structure
captures the concrete representation of Haskell programs in text files.

This book proceeds bottom-up with respect to Haskell’s syntactic structure.

The chapters not mentioned above are Chapter 6, which describes the standard built-in datatypes
and classes in Haskell, and Chapter 7, which discusses the 1/O facility in Haskell (i.e. how Haskell
programs communicate with the outside world). Also, there are several chapters describing the Pre-
lude, the concrete syntax, literate programming, the specification of derived instances, and pragmas
supported by most Haskell compilers.

Examples of Haskell program fragments in running text are given in typewriter font:

let x =1
Zz = Xty
in z+1

“Holes” in program fragments representing arbitrary pieces of Haskell code are written in italics, as
in if e; then ey, else es. Generally, the italicized names are mnemonic, such as e for expres-
sions, d for declarations, ¢ for types, etc.

1.2 The Haskell Kernel

Haskell has adopted many of the convenient syntactic structures that have become popular in func-
tional programming. In this Report, the meaning of such syntactic sugar is given by translation into
simpler constructs. If these translations are applied exhaustively, the result is a program written in a
small subset of Haskell that we call the Haskell kernel.

Although the kernel is not formally specified, it is essentially a slightly sugared variant of the lambda
calculus with a straightforward denotational semantics. The translation of each syntactic structure
into the kernel is given as the syntax is introduced. This modular design facilitates reasoning about
Haskell programs and provides useful guidelines for implementors of the language.

1.3 Values and Types

An expression evaluates to a value and has a static type. Values and types are not mixed in Has-
kell. However, the type system allows user-defined datatypes of various sorts, and permits not
only parametric polymorphism (using a traditional Hindley-Milner type structure) but also ad hoc
polymorphism, or overloading (using type classes).

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

1.4. NAMESPACES 5

Errors in Haskell are semantically equivalent to L. Technically, they are not distinguishable from
nontermination, so the language includes no mechanism for detecting or acting upon errors. How-
ever, implementations will probably try to provide useful information about errors (see Section 3.1).

1.4 Namespaces

There are six kinds of names in Haskell: those for variables and constructors denote values; those
for type variables, type constructors, and type classes refer to entities related to the type system;
and module names refer to modules. There are two constraints on naming:

1. Names for variables and type variables are identifiers beginning with lowercase letters or
underscore; the other four kinds of names are identifiers beginning with uppercase letters.

2. Anidentifier must not be used as the name of a type constructor and a class in the same scope.

These are the only constraints; for example, Int may simultaneously be the name of a module,
class, and constructor within a single scope.

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

https://doi.org/10.1017/50956796803000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000315

