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FACTOR TREE COPULA MODELS FOR ITEM RESPONSE DATA
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Factor copula models for item response data are more interpretable and fit better than (truncated) vine
copula models when dependence can be explained through latent variables, but are not robust to violations
of conditional independence. To circumvent these issues, truncated vines and factor copula models for
item response data are joined to define a combined model, the so-called factor tree copula model, with
individual benefits from each of the two approaches. Rather than adding factors and causing computational
problems and difficulties in interpretation and identification, a truncated vine structure is assumed on the
residuals conditional on one or two latent variables. This structure can be better explained as a conditional
dependence given a few interpretable latent variables. On the one hand, the parsimonious feature of factor
models remains intact and any residual dependencies are being taken into account on the other. We discuss
estimation along with model selection. In particular, we propose model selection algorithms to choose
a plausible factor tree copula model to capture the (residual) dependencies among the item responses.
Our general methodology is demonstrated with an extensive simulation study and illustrated by analyzing
Post-Traumatic Stress Disorder.

Key words: conditional dependence, factor copula models, latent variable models, truncated vine copula
models.

Factor or conditional independence models are widely called for analyzing item response
data using much fewer unobserved/latent variables or factors (Bartholomew et al., 2011). These
are natural if the dependence amongst the d observed variables or items is assumed to arise from p
latent variables with p << d. They are parsimonious models and favorable for large dimensions
as the number of parameters isO(d) instead ofO(d2), as for, e.g., in discretized multivariate nor-
mal (MVN) models with unstructured correlation matrices (e.g., Muthén 1978; Maydeu-Olivares
2006). Nevertheless, factor models mainly assume that the items are conditionally independent
given some latent variables. This assumption implies that the dependence amongst the observed
variables is fully accounted for by the factors with no remaining dependence. This could lead
to biased estimates if the strict assumption of conditional independence is violated (Braeken et
al., 2007; Sireci et al., 1991; Chen & Thissen, 1997; Yen, 1993). The conditional independence
assumption is violated if there exists local or residual dependence. Mitigating the residual depen-
dence might be achieved by adding more latent variables to the factor model, but at the expense
of computational problems and difficulties in interpretation and identification.

To circumvent these problems, the items canbe allowed to interrelate by forming adependence
structurewith conditional dependence given a few interpretable latent variables. In this way, on the
one hand the parsimonious feature of factor models remains intact and any residual dependencies
are being taken into account on the other. This can be achieved by incorporating copulas into the
conditional distribution of factor models in order to provide a conditional dependence structure
given very few latent variables. Such copula approaches for item response data are proposed by
Braeken et al. (2007, 2013) and Braeken (2011) who explored the use of Archimedean copulas or
a mixture of the independence and comonotonicity copulas to capture the residual dependence of
traditional item response theory models. Therein simple copulas have been used for subgroups of
items that are chosen from the context with homogeneous within-subgroup dependence. This is
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due to the fact that Archimedean copulas allow only for exchangeable dependence with a narrower
range as the dimension increases (McNeil & Neslehova, 2009).

Without a priori knowledge of obvious subgroups of items that are approximately exchange-
able, wewill propose amore general residual dependence approach thatmakes the use of truncated
regular vine copula models (Brechmann et al., 2012) to construct the conditional distribution of
factor models. Within a vine copula specification, no such restrictions need to be made. To define
the conditional independence part of the model, we also use truncated vine copulas rather than
the traditional factor models for item response in Braeken et al. (2007, 2013) and Braeken (2011).
Nikoloulopoulos and Joe (2015) have proposed factor copulamodels for item response data. These
factor models can be explained as truncated C-vines rooted at the latent variables. The C-vine is
a boundary case of regular vine copulas, which is suitable if there exists a (latent) variable that
drives the dependence among the items (Nikoloulopoulos et al., 2012). For the first factor, there
are bivariate copulas that couple each item to the first latent variable and for the second factor
there are copulas that link each item to the second latent variable conditioned on the first factor
(leading to conditional dependence parameters), etc. Factor copula models with appropriately
chosen linking copulas will be useful when the items (a) have more probability in joint upper or
lower tail than would be expected with a discretized MVN, or (b) can be considered as discretized
maxima/minima or mixtures of discretized means rather than discretized means. For different
bivariate copulas, the middle part of the item characteristic curve (ICC) is similar, but can differ
more for extreme values of the latent variable because of the different tail behavior of the bivariate
copulas (Nikoloulopoulos & Joe, 2015).

The proposed parsimonious approach, that requires no priori knowledge of the subgroups
of items, can be explained as a truncated regular vine copula model that involves both observed
and latent variables, but, more simply, we derive the models as conditional dependence models
with a few interpretable latent variables that model the residual dependence of the factor copula
model via an 1-truncated vine copula. The factor copula model explains most of the dependence
and the remaining dependence is further accounted for by an 1-truncated vine copula conditioned
on the factors. Brechmann and Joe (2014) and Joe (2018) initiated the study of such conditional
dependence models with a unidimensional factor/latent variable for continuous data. The com-
bined 1-factor and 1-truncated vine model for continuous data in Brechmann and Joe (2014) is
restricted to Gaussian dependence, but Joe (2018) proposed a combination of an 1-factor copula
model with 1-truncated vine copula model with non-Gaussian bivariate copulas. Our models for
item response are discrete counterparts of themodels in Brechmann and Joe (2014) and Joe (2018)
with interpretation (the items can be considered as discretized maxima/minima or mixtures of dis-
cretized means rather than discretized means) and technical details that are quite different and
provide an extension to more than one factors. Furthermore, we propose heuristic algorithms that
automatically select the bivariate parametric copula families and 1-truncated vine tree structure
for the proposed 1- and 2-factor tree copula models for item response data.

The remainder of the paper proceeds as follows. In Sect. 1, we introduce the combined fac-
tor/truncated vine copula models for item response data. Section2 provides estimation techniques
and computational details. Section3 discusses 1-truncated vine tree structure and bivariate cop-
ula selection. Section4 has an extensive simulation study to assess the estimation techniques and
model selection algorithms. Our methodology is illustrated using real data in Sect. 5.We conclude
with some discussion in Sect. 6, followed by a brief section with software details.
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1. Factor Tree Copula Models for Item Response

This section introduces the theory of the combined factor/truncated vine copula models for
item response data. Before that, the first two subsections provide some background about vine
and factor copula models for discrete responses.

1.1. Overview and Relevant Background for Copulas

A copula is a multivariate cumulative distribution function (cdf) with uniform U (0, 1) mar-
gins. If F is a d-variate cdf with univariate margins F1, . . . , Fd , then Sklar’s (1959) theorem
implies that there is a copula C such that

F(y1, . . . , yd) = C
(
F1(y1), . . . , Fd(yd)

)
.

The copula is unique if F1, . . . , Fd are continuous, but not if some of the Fj have discrete
components.Nevertheless, ifC(·; θ) is a parametric family of copulas and Fj (·; η j ) is a parametric
model with discrete components for the j th univariate margin, then

C
(
F1(y1; η1), . . . , Fd(yd; ηd); θ

)

is a valid multivariate parametric model with univariate margins F1, . . . , Fd .
The choice of the parametric family of copulas could not be other than the class of regular

vine copulas (Bedford & Cooke, 2002) as other parametric copulas such as Archimedean, nested
Archimedean and elliptical copulas have limited dependence (Nikoloulopoulos, 2013). Regular
vine copulas are a flexible class of models that are constructed from a set of bivariate copulas in
hierarchies or tree levels (Joe, 1996; Bedford & Cooke, 2001, 2002; Kurowicka & Cooke, 2006;
Kurowicka & Joe, 2011; Joe, 2014; Gronneberg & Foldnes, 2017; Gronneberg et al., 2022). The
d-dimensional regular vine copulas are built via successive mixing from d(d − 1)/2 bivariate
linking copulas on trees. They involve d − 1 trees, the first tree represents dependence (as edges)
amongst d variables (as nodes). Then, the edges become nodes in the next tree, involving the
conditional dependencies given a common variable. This process continues until tree d − 1 that
includes two nodes and one edge, representing conditional dependence of two variables given d−2
variables (Chang&Joe, 2019).Ad-dimensional regular vine copula can cover flexible dependence
structures, different from assuming simple linear correlation structures, tail independence and
normality (Nikoloulopoulos et al., 2012), through the specification of d − 1 bivariate parametric
copulas at tree 1 and

(d−1
2

)
bivariate conditional parametric copulas at higher trees; at tree � for

� = 2, . . . , d − 1, there are d − � bivariate conditional copulas that condition on � − 1 variables.
Depending on the types of trees, various regular vine copulas can be constructed. Two boundary
cases are D-vines and C-vines. In Fig. 1, a D-vine with 6 variables and 5 trees is depicted, where
the bivariate pairs at tree 1 are Y j ,Y j+1, for j = 1, . . . , 5, and for tree � (2 ≤ � < 6), the
(conditional) bivariate pairs are Y j ,Y j+�|Y j+1, . . . ,Y j+�−1 for j = 1, . . . , 6− �. That is, for the
D-vine, conditional bivariate copulas are specified for variables j and j + � given the variables
indexed in between.

Joe et al. (2010) have shown that in order for a vine copula to have (tail) dependence for all
bivariate margins, it is only necessary for the bivariate copulas in tree 1 to have (tail) dependence
and it is not necessary for the conditional bivariate copulas in trees 2, . . . , d − 1 to have (tail)
dependence. That provides the theoretical justification for the idea to model the dependence in the
first trees and then, just use the independence copulas to model conditional dependence at higher
trees without sacrificing the tail dependence of the vine copula distribution. This truncation, as
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Figure 1.
Graphical representation of a D-vine copula model with 6 variables and 5 trees.

per the terminology in Brechmann et al. (2012), provides a parsimonious vine copula model. The
�-truncated vine copula (truncated after tree �) can provide, with appropriately chosen linking
copulas, asymmetric dependence structure aswell as tail dependence (dependence among extreme
values). Joe et al. (2010) have shown that by choosing bivariate linking copulas appropriately,
vine copulas can have a flexible range of lower/upper tail dependence and different lower/upper
tail dependence parameters for each bivariate margin.

In the context of multivariate discrete data, upper or lower tail dependence means that more
probabilities can be assigned in the joint upper or joint lower tails. Hence, choices of copulas
with upper or lower tail dependence are better if the items have more joint upper or lower tail
probability than would be expected with the discretized MVN model (Muthén, 1978). Note in
passing that the discretized MVN distribution is a special case of the vine copula model with
discrete margins. If all bivariate copulas are bivariate normal (BVN) in the vine copula model,
then the resulting model is the discretized MVN.

1.2. Factor Copula Models

LetY = {Y1, . . . ,Yd} denote the vector with the item response variables that are all measured
on an ordinal scale; Y j ∈ {0, . . . , K j−1}. Let the cutpoints in the uniformU (0, 1) scale for the j th
item be a j,k , k = 1, . . . , K −1, with a j,0 = 0 and a j,K = 1. These correspond to a j,k = �(α j,k),
where α j,k are cutpoints in the normal N (0, 1) scale.

The p-factor model assumes that Y, with corresponding realizations y = {y1, . . . , yd}, is
conditionally independent given the p-dimensional latent vector X = (X1, . . . , X p). The joint
probability mass function (pmf) of the p-factor model is

πd(y) = Pr(Y1 = y1, . . . ,Yd = yd) =
∫ d∏

j=1

Pr(Y j = y j |X1 = x1, . . . , X p = xp) dFX(x),

(1)
where FX is the distribution of the latent vectorX. The factor copulamethodology (Nikoloulopou-
los & Joe, 2015) uses a set of bivariate copulas that link the items to the latent variables to specify
Pr(Y j = y j |X1 = x1, . . . , X p = xp). Below we include the theory for one and two factors.

For the 1-factor model, let X1 be a latent variable that is standard uniform. From Sklar (1959),
there is a bivariate copula CX1 j such that Pr(X1 ≤ x,Y j ≤ y) = CX1 j

(
x, Fj (y)

)
for 0 ≤ x ≤ 1
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Figure 2.
Graphical representation of an 1-factor copula model with d = 5 items.

where Fj (y) = a j,y+1 is the cdf of Y j . Then, it follows that

Fj |X1(y|x) := Pr(Y j ≤ y|X1 = x) = ∂CX1 j (x, a j,y+1)

∂x
= C j |X1(a j,y+1|x). (2)

Hence, the pmf for the 1-factor copula model becomes

πd(y) =
∫ 1

0

d∏
j=1

Pr(Y j = y j |X1 = x) dx =
∫ 1

0

d∏
j=1

f j |X1(y j |x) dx,

where

f j |X1(y|x) = C j |X1(a j,y+1|x) − C j |X1(a j,y |x). (3)

Note in passing that (3) is the ICC for the 1-factor copula model. The copula CX1 j controls the
shape of the ICC.

The 1-factor copula model can be explained as an 1-truncated C-vine copula model rooted at
the latent variable X1. For the d-dimensional 1-factor copula model, the pairs at tree 1 are Y j X1
for j = 1, . . . , d and for higher trees the (conditional) copula pairs are set to independence. That
is the 1-factor copula model has d bivariate copulas CX1 j that link Y j , j = 1, . . . , d with X1
in the 1st tree of the C-vine, and independence copulas in all the remaining trees of the C-vine
(truncated after the 1st tree). From the results in Joe et al. (2010) and Krupskii and Joe (2013),
upper or lower tail dependent copulas in tree 1 will lead to items that have more probability in
joint upper or lower tail than would be expected with a discretized MVN. Figure2 depicts the
graphical representation of a 1-factor copula model with d = 5 items as an 1-truncated C-vine.

For the 2-factor copula model, let X1, X2 be latent variables that are independent uniform
U (0, 1) random variables. Let CX1 j be defined as in the 1-factor copula model and CX2 j be a
bivariate copula such that

Pr(X2 ≤ x2,Y j ≤ y|X1 = x1) = CX2 j
(
x2, Fj |X1(y|x1)

)
,

where Fj |X1 is given in (2). Here, we are making the simplifying assumption that the conditional
copula for the univariate distributions FX2|X1 = FX2 and Fj |X1 does not depend on x1; this is a
model assumption as by Sklar’s theorem there exist such bivariate copulas that in general depend
on x1 ∈ [0, 1]. Then for 0 ≤ x1, x2 ≤ 1,
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Figure 3.
Graphical representation of a 2-factor copula model with d = 5 items. Note that the factors are linked to one another with
an independent copula in Tree 1.

FX2 j |X1(x2, y|x1) := Pr(Y j ≤ y|X1 = x1, X2 = x2) = ∂

∂x2
Pr(X2 ≤ x2,Y j ≤ y|X1 = x1)

= ∂

∂x2
CX2 j

(
x2, Fj |X1(y|x1)

)
= C j |X2

(
Fj |X1(y|x1)|x2

)
. (4)

Hence, the pmf for the 2-factor copula model is

πd(y) =
∫ 1

0

∫ 1

0

d∏
j=1

Pr(Y j = y j |X1 = x1, X2 = x2) dx1dx2

=
∫ 1

0

∫ 1

0

d∏
j=1

fX2 j |X1

(
x2, y j |x1

)
dx1dx2,

where

fX2 j |X1(x2, y|x1) = C j |X2

(
Fj |X1(y|x1)|x2

)
− C j |X2

(
Fj |X1(y − 1|x1)|x2

)
. (5)

Note in passing that (5) is the ICC for the 2-factor copula model. The copulas CX1 j ,CX2 j control
the shape of the ICC.

The 2-factor copula model can be explained as a 2-truncated C-vine. For the d-dimensional
2-factor copulamodel, the pairs at tree 1 are Y j X1 for j = 1, . . . , d, the pairs at tree 2 are Y j X2|X1
for j = 1, . . . , d, and for higher trees the (conditional) copula pairs are set to independence. That
is the 2-factor copula model has d bivariate copulas CX1 j that link Y j , j = 1, . . . , d with X1 in
the first tree of the C-vine, d bivariate copulas CX2 j that link Y j , j = 1, . . . , d with X2 given
X1 in the second tree of the C-vine, and independence copulas in all the remaining trees of the
C-vine (truncated after the second tree). Figure3 depicts the graphical representation of a 2-factor
copula model with d = 5 items as a 2-truncated C-vine. From the results in Joe et al. (2010) and
Krupskii and Joe (2013), upper or lower tail-dependent copulas in trees 1 and 2 will lead to items
that have more probability in joint upper or lower tail than would be expected with a discretized
MVN.
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1.3. Combined Factor/Truncated Vine Copula Models

In this section,we combine the factor copulamodelwith an 1-truncated vine copula to account
for the residual dependence.

In an 1-truncated vine or Markov tree (if one is restricted to the first tree, that is truncation at
level 1, then the result is a Markov tree dependence structure where two variables not connected
by an edge are conditionally independent given the variables in the tree between them) with d
variables, d − 1 of the d(d − 1)/2 possible pairs are identified as the edges of a tree with d nodes
corresponding to the items, i.e., there are a total of d − 1 edges, where two connected pairs of
items form an edge. Let j and k be indices for any pairs of items with 1 ≤ j < k ≤ d. For a
given vine tree structure, let E denote the set of edges. Each edge of jk ∈ E is represented with a
bivariate copula C jk such that

Pr(Y j ≤ y j ,Yk ≤ yk) = C jk
(
Fj (y j ), Fk(yk)

) = C jk(a j,y j+1, ak,yk+1).

Since the densities of vine copulas can be factorized in terms of bivariate linking copulas and
lower-dimensional margins, they are computationally tractable for high-dimensional continuous
variables. Nevertheless, the cdf of d-dimensional vine copula lacks a closed form and requires
(d − 1)-dimensional integration (Joe, 1997). Hence, in order to derive the d-dimensional pmf
using finite differences of the d-dimensional cdf (e.g., Braeken et al. 2007 or Nikoloulopoulos
2013) poses non-negligible numerical challenges. This problem has been solved by Panagiotelis
et al. (2012) who decomposed the d-dimensional pmf into finite differences of bivariate copula
cdfs. Hence, the pmf of an 1-truncated vine model takes the form

πd(y) =
d∏
j=1

Pr(Y j = y j )
∏
jk∈E

Pr(Y j = y j ,Yk = yk)

Pr(Y j = y j )Pr(Yk = yk)
, (6)

wherePr(Y j = y j ,Yk = yk) = C jk(a j,y j+1, ak,yk+1)−C jk(a j,y j , ak,yk+1)−C jk(a j,y j+1, ak,yk )+
C jk(a j,y j , ak,yk ) and Pr(Y = y) = a j,y+1 − a j,y .

The pmf of an 1-truncated vine copula in (6) can be used in the pmf of the factor copula
model in (1) instead of the product to capture any residual dependencies. Hence, the pmf of the
combined factor/truncated vine copula model takes the form

πd(y) =
∫ d∏

j=1

Pr
(
Y j = y j |X = x

) ∏
jk∈E

Pr
(
Y j = y j ,Yk = yk |X = x

)

Pr
(
Y j = y j |X = x

)
Pr (Yk = yk |X = x)

dFX(x).

With one factor and an 1-truncated vine given the latent variable X1 (hereafter 1-factor tree),
let C jk;X1 be a bivariate copula such that

Pr(Y j ≤ y j ,Yk ≤ yk |X1 = x1) = C jk;X1

(
Fj |X1(y j |x1), Fk|X1(yk |x1)

)
,

where Fj |X1 and Fk|X1 are given in (2). Here, we are making the simplifying assumption that the
conditional copula for the univariate distributions Fj |X1 and Fk|X1 does not depend on x1; this is a
model assumption as by Sklar’s theorem there exist such bivariate copulas that in general depend
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Figure 4.
Graphical representation of a 1-factor tree copula model with d = 5 items. The first tree is the 1-factor model. The residual
dependence is captured in Tree 2 with an 1-truncated vine model.

on x1 ∈ [0, 1]. Then, for a given 1-truncated vine structure with a set of edges E , the pmf of the
1-factor tree copula model is

πd(y) =
∫ 1

0

d∏
j=1

f j |X1

(
y j |x

) ∏
jk∈E

f jk|X1(y j , yk |x1)
f j |X

(
y j |x

)
fk|X (yk |x) dx, (7)

where

f jk|X1(y j , yk |x1) = C jk;X1

(
F+
j |X1

, F+
k|X1

) − C jk;X1

(
F−
j |X1

, F+
k|X1

)

−C jk;X1

(
F+
j |X1

, F−
k|X1

) + C jk;X1

(
F−
j |X1

, F−
k|X1

)

and f j |X
(
y j |x

)
, fk|X (yk |x) are given in (3). In the above, F+

j |X1
= Fj |X1(y|x) and F−

j |X1
=

Fj |X1(y − 1|x).
The 1-factor tree copula model can be explained as a 2-truncated vine copula model. For

the d-dimensional 1-factor tree copula model, the pairs at tree 1 are Y j X1 for j = 1, . . . , d, the
pairs at tree 2 are Y jYk |X1 for jk ∈ E , and for higher trees the (conditional) copula pairs are set
to independence. That is the 1-factor tree copula model has d bivariate copulas CX1 j that link
Y j , j = 1, . . . , d with X1 in the first tree of the vine, d − 1 bivariate copulas C jk;X1 that link Y j

with Yk given X1 in the second tree of the vine, and independence copulas in all the remaining
trees of the vine (truncated after the second tree). From the results in Joe et al. (2010) and Krupskii
and Joe (2013), upper or lower tail-dependent copulas in trees 1 and 2 will lead to items that have
more probability in joint upper or lower tail than would be expected with a discretized MVN.
Figure4 depicts the graphical representation of a 1-factor tree copula model with d = 5 items as
a 2-truncated vine. Tree 1 shows the typical 1-factor model, while tree 2 accounts for the residual
dependence by the pairwise conditional dependencies of two items conditioned on the factor X1.

With two factors and an 1-truncated vine given the latent variables X1, X2 (hereafter 2-factor
tree), let C jk;X1,X2 be a bivariate copula cdf such that

Pr(Y j ≤ y j ,Yk ≤ yk |X1, X2) = C jk;X1X2

(
FX2 j |X1(x2, y j |x1), FX2k|X1(x2, yk |x1)

)
,

where FX2 j |X1 and FX2k|X1 are given in (4). Here, we are making the simplifying assumption
that the conditional copula for the univariate distributions FX2 j |X1 and FX2k|X1 does not depend

https://doi.org/10.1007/s11336-023-09917-6 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-023-09917-6


784 PSYCHOMETRIKA

on x1; this is a model assumption as by Sklar’s theorem there exist such bivariate copulas that in
general depend on x1 ∈ [0, 1]. Then, for a given 1-truncated vine structure with a set of edges E ,
the pmf of the 2-factor tree copula model is

πd(y) =
∫ 1

0

∫ 1

0

d∏
j=1

fX2 j |X1

(
x2, y j |x1

) ∏
jk∈E

f jk|X1X2(y j , yk |x1, x2)
fX2 j |X1

(
x2, y j |x1

)
fX2k|X1 (x2, yk |x1) dx1dx2,

(8)
where

f jk|X1X2

(
y j , yk |x1, x2) = C jk;X1,X2

(
F+
X2 j |X1

, F+
X2k|X1

) − C jk;X1,X2

(
F−
X2 j |X1

, F+
X2k|X1

)

− C jk;X1,X2

(
F+
X2 j |X1

, F−
X2k|X1

) + C jk;X1,X2

(
F−
X2 j |X1

, F−
X2k|X1

)

and fX2 j |X1(x2, y j |x1), fX2k|X1(x2, yk |x1) are as in (5). In the above F+
X2 j |X1

= FX2 j |X1(x2, y|x1)
and F−

X2 j |X1
= FX2 j |X1(x2, y − 1|x1).

The 2-factor tree copula model can be explained as a 3-truncated vine. For the d-dimensional
2-factor tree copula model, the pairs at tree 1 are Y j X1 for j = 1, . . . , d, the pairs at tree 2 are
Y j X2|X1 for j = 1, . . . , d, the pairs at tree 3 are Y jYk |X1X2 for jk ∈ E , and for higher trees the
(conditional) copula pairs are set to independence. That is the 2-factor tree copula model has d
bivariate copulas CX1 j that link Y j , j = 1, . . . , d with X1 in the first tree of the vine, d bivariate
copulas CX2 j that link Y j , j = 1, . . . , d with X2 given X1 in the second tree of the vine, d − 1
bivariate copulas C jk;X1X2 that link Y j with Yk given X1 and X2, in the third tree of the vine,
and independence copulas in all the remaining trees of the vine (truncated after the third tree).
From the results in Joe et al. (2010) and Krupskii and Joe (2013), upper or lower tail dependent
copulas in trees 1, 2 and 3 will lead to items that have more probability in joint upper or lower
tail than would be expected with a discretized MVN. Figure5 depicts the graphical representation
of a 2-factor tree copula model with d = 5 items as a 3-truncated vine. Trees 1 and 2 show the
2-factor copula model, while tree 3 involves the pairwise conditional dependencies of two items
given the factors.

For parametric 1-factor and 2-factor tree copula models, we let CX1 j , CX2 j and C jk;X be
parametric bivariate copulas, say with parameters θ1 j , θ2 j , and δ jk , respectively. For the set of all
parameters, let θ = {a jk, θ1 j , δ jk : j = 1, . . . , d; k = 1, . . . , K − 1; jk ∈ E} for the 1-factor
tree copula model and θ = {a jk, θ1 j , θ2 j , δ jk : j = 1, . . . , d; k = 1, . . . , K − 1; jk ∈ E} for the
2-factor tree copula model.

1.4. Choices of Parametric Bivariate Copulas

In line with Nikoloulopoulos and Joe (2015), we use bivariate parametric copulas that can
be used when considering latent maxima, minima or mixtures of means. For different dependent
items based on latent maxima or minima, multivariate extreme value and copula theory (e.g.,
Joe 1997) can be used to select suitable copulas that link observed to latent variables. Copulas
that arise from extreme value theory have more probability in one joint tail (upper or lower) than
expected with a discretized MVN distribution or a MVN copula with discrete margins. If item
responses are based on discretizations of latent variables that are means, then it is possible that
there can bemore probability in both the joint upper and joint lower tail, comparedwith discretized
MVN models. This happens if the respondents consist of a ‘mixture’ population (e.g., different
locations or genders). From the theory of elliptical distributions and copulas (e.g., McNeil et al.
2005), it is known that the multivariate Student-t distribution as a scale mixture of MVN has more
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Figure 5.
Graphical representation of a 2-factor tree copula model with d = 5 items. The first and second trees represent the 2-factor
model. The residual dependence is captured in Tree 3 with an 1-truncated vine model. Note that the factors are linked to
one another with an independent copula in Tree 1.

dependence in the tails. Extreme value and elliptical copulas can model item response data that
have reflection asymmetric and symmetric dependence, respectively.

A bivariate copula C is reflection symmetric if its density satisfies c(u1, u2) = c(1− u1, 1−
u2) for all 0 ≤ u1, u2 ≤ 1. Otherwise, it is reflection asymmetric often with more probability in
the joint upper tail or joint lower tail. Upper tail dependence means that c(1−u, 1−u) = O(u−1)

as u → 0 and lower tail dependence means that c(u, u) = O(u−1) as u → 0. If (U1,U2) ∼ C for
a bivariate copulaC , then (1−U1, 1−U2) ∼ Ĉ , where Ĉ(u1, u2) = u1+u2−1+C(1−u1, 1−u2)
is the survival or reflected copula of C ; this “reflection" of each uniformU (0, 1) random variable
about 1/2 changes the direction of tail asymmetry. Choices of copulas with upper or lower tail
dependence are better if the items have more probability in joint lower or upper tail than would
be expected with the BVN copula. This can be shown with summaries of polychoric correlations
in the upper and lower joint tail (Kadhem & Nikoloulopoulos, 2021).

After briefly providing definitions of tail dependence and reflection symmetry/asymmetry,
we provide below the bivariate copula choices we consider:

• The elliptical bivariate normal (BVN) copula with cdf

C(u1, u2; θ) = �2

(
�−1(u1; ν),�−1(u2; ν); θ

)
, −1 ≤ θ ≤ 1,

where� is the univariate standard normal cdf and�2 is the cdf of a BVN distribution with
correlation parameter θ . A model with BVN copulas has latent (ordinal) variables that can
be considered as (discretized) means, and there is less probability in both the joint upper
and joint lower tail as the BVN copula has reflection symmetry and tail independence.

• The extreme value Gumbel copula with cdf

C(u1, u2; θ) = exp
[
−

{
(− log u1)

θ + (− log u2)
θ
}1/θ]

, θ ≥ 1.
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Amodelwith bivariateGumbel copulas has latent (ordinal) variables that can be considered
as (discretized) maxima, and there is more probability in the joint upper tail as the Gumbel
copula has reflection asymmetry and upper tail dependence.

• The survival Gumbel (s.Gumbel) copula with cdf

C(u1, u2; θ) = u1 + u2 − 1 + exp
[
−

{(− log(1 − u1)
)θ + (− log(1 − u2)

)θ
}1/θ]

,

θ ≥ 1.

A model with bivariate s.Gumbel copulas has latent (ordinal) variables that can be con-
sidered as (discretized) minima, and there is more probability in the joint lower tail as the
s.Gumbel copula has reflection asymmetry and lower tail dependence.

• The elliptical bivariate tν copula with cdf

C(u1, u2; θ) = T2
(
T −1(u1; ν), T −1(u2; ν); θ, ν

)
, −1 ≤ θ ≤ 1,

where T (; ν) is the univariate Student-t cdf with (non-integer) ν degrees of freedom, and
T2 is the cdf of a bivariate Student-t distribution with ν degrees of freedom and correlation
parameter θ . A model with bivariate tν copulas has latent (ordinal) variables that can be
considered as mixtures of (discretized) means, since the bivariate Student-t distribution
arises as a scale mixture of bivariate normals. A small value of ν, such as 1 ≤ ν ≤ 5, leads
to a model with more probabilities in the joint upper and joint lower tails compared with
the BVN copula as the tν copula has reflection symmetric upper and lower tail dependence.

For the residual dependence part of the model in addition to the aforementioned bivariate
parametric copulas for computational improvements, we can use the Archimedean Frank copula
with cdf

C(u1, u2; θ) = −θ−1 log

{
1 + (e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}
, θ ∈ (−∞,∞) \ {0},

reflection symmetry and tail independence. Its tail independence is not a distributional concern
about the tail dependence/asymmetry between the items due to the main result in Joe et al. (2010):
for all the bivariate margins to havemore probability in the joint lower or upper tail, it only suffices
that the bivariate copulas in the first trees (factor part) to have upper/lower tail dependence and is
not necessary for the bivariate copulas in the higher trees (residual dependence part) to have tail
dependence. For discrete data, such as item response, the Frank copula has the same tail behavior
with the BVN copula but provides simplified computations as it has a closed from cdf and thus, it
can be preferred over the BVN copula for the residual dependence part of the model that involves
finite differences of bivariate copula cdfs.

In our candidate set, families that have different strengths of tail behavior are included. These
families are sufficient to account for tail asymmetry in item response data. Nikoloulopoulos and
Karlis (2008) have shown that it is hard to choose a copula with similar properties from real data,
since copulas with similar (tail) dependence properties provide similar fit.
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2. Estimation

With sample size n and data y1, . . . , yn , the joint log-likelihood of the factor tree copula
models is

�(θ; y1, . . . , yn) =
n∑

i=1

logπd(yi ; θ), (9)

with πd(y) as defined in (7) and (8) for the 1-factor and 2-factor tree copula model, respectively.
Maximization of (9) is numerically possible but time-consuming for large d because of many
univariate cutpoints and dependence parameters. Hence, we approach estimation using the two-
step IFM method proposed by Joe (2005) that can efficiently, in the sense of computing time and
asymptotic variance, estimate the model parameters.

In the first step, the cutpoints are estimated using the univariate sample proportions. The
univariate cutpoints for the j th item are estimated as â j,k = ∑k

y=0 p j,y , where p j,y , y =
0, . . . , K − 1 for j = 1, . . . , d are the univariate sample proportions. In the second step of
the IFM method, the joint log-likelihood in (9) is maximized over the copula parameters with the
cutpoints fixed as estimated at the first step. The estimated copula parameters can be obtained by
using a quasi-Newton (Nash, 1990) method applied to the logarithm of the joint likelihood.

For the 1-factor tree copula model, numerical evaluation of the joint pmf can be achieved
with the following steps:

1. Calculate Gauss–Legendre quadrature (Stroud & Secrest, 1966) points {xq : q =
1, . . . , nq} and weights {wq : q = 1, . . . , nq} in terms of standard uniform.

2. Numerically evaluate the joint pmf in (7) via the following approximation:

nq∑
q=1

wq

d∏
j=1

f j (y j |xq)
∏
jk∈E

f jk|X1(y j , yk |xq )
f j |X (y j |xq) fk|X (yk |xq ) .

For the 2-factor tree copula model, numerical evaluation of the joint pmf can be achieved
with the following steps:

1. Calculate Gauss–Legendre quadrature (Stroud & Secrest, 1966) points {xq1 : q1 =
1, . . . , nq} and {xq2 : q2 = 1, . . . , nq} and weights {wq1 : q1 = 1, . . . , nq} and {wq2 :
q2 = 1, . . . , nq} in terms of standard uniform.

2. Numerically evaluate the joint pmf in (8) via the following approximation in a double
sum:

nq∑
q1=1

nq∑
q2=1

wq1wq2

d∏
j=1

fX2 j |X1 (xq2 , y j |xq1 )
∏
jk∈E

f jk|X1X2 (y j , yk |xq1 , xq2 )
fX2 j |X1 (xq2 , y j |xq1 ) fX2k|X1(xq2 , yk |xq1 )

.

With Gauss–Legendre quadrature, the same nodes and weights are used for different func-
tions; this helps in yielding smooth numerical derivatives for numerical optimization via quasi-
Newton. Our comparisons show that nq = 25 quadrature points are adequate with good precision.

3. Model Selection

In this section, we will discuss model selection strategies for the factor tree copula models.
Section3.1 proposes tree structure selectionmethods for the residual dependence part of themodel

https://doi.org/10.1007/s11336-023-09917-6 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-023-09917-6


788 PSYCHOMETRIKA

that assume the factor tree copulamodels are constructedwithBVNcopulas. Section3.2proposes a
heuristic algorithm that sequentially selects suitable bivariate copulas to account for any tail depen-
dence/asymmetry. Similar heuristics have been successfully used for selecting suitable bivariate
copulas to account for any tail dependence/asymmetry in factor (Kadhem & Nikoloulopoulos,
2021) and structured factor (Kadhem & Nikoloulopoulos, 2023a) copula models.

3.1. 1-Truncated Vine Tree Structure Selection

The 1-truncated vine tree structure is unknown; hence, it has to be determined. The number
of different possible 1-truncated vines in d dimensions is large. Hence, we need a way of selecting
a reasonable tree. Following earlier contributions on the model selection of truncated vine copula
models (e.g., Brechmann et al. 2012), we will heuristically proceed by modeling the most strong
dependencies in the tree and construct a tree on d nodes corresponding to the d variables, where all
nodes are connected by a common edge, that is, have d −1 neighbors. These edges have a weight
according to a measure of pairwise dependence, say r jk , between the respective two variables.
We find the maximum spanning tree, which is a tree on all nodes that maximizes the pairwise
dependencies, using the well-known algorithm of Prim (1957). That is we find the tree with d −1
edges E that minimizes

∑
E log(1 − r2jk). The minimum spanning tree algorithm of Prim (1957)

guarantees to find the optimal solution when edge weights between nodes 1 ≤ k < j ≤ d are
given by log(1 − r2jk).

We use two different measures of pairwise dependence. The first measure is the estimated
polychoric correlation (Olsson, 1979). The sample polychoric correlation for all possible pairs of
items can be estimated as

ρ̂ jk = argmaxρ

n∑
i=1

log
(
�2(α j,yi j+1, αk,yik+1; ρ) − �2(α j,yi j+1, αk,yik ; ρ)

− �2(α j,yi j , αk,yik+1; ρ) + �2(α j,yi j , αk,yik ; ρ)
)
, 1 ≤ j < k ≤ d,

where �2(·, ·; ρ) is the BVN cdf with correlation parameter ρ.
The second measure of pairwise dependence that we exploit is based on the p-factor copula

models with BVN copulas. When all the bivariate copulas are BVN, the p-factor copula model
is the same as the discretized MVN model with a p-factor correlation matrix, also known as the
p-dimensional normal ogive model (Nikoloulopoulos & Joe, 2015). The 1-factor copula model
with BVN copulas is the same as the variant of Samejima’s (1969) graded response IRT model,
known as normal ogive model (McDonald, 1997) with a 1-factor correlation matrix R = (r jk)
with r jk = θ1 jθ1k for j �= k. The 2-factor copula model with BVN copulas is the same as the
bidimensional (2-factor) normal ogive model with a 2-factor correlation matrix R = (r jk) with
r jk = θ1 jθ1k + θ2 jθ2k[(1 − θ21 j )(1 − θ21k)]1/2 for j �= k. The parameter θ1 j of CX1 j is the

correlation of the underlying normal variable Z j of Y j with Z01 = �−1(X1), and the parameter
θ2 j of CX2 j is the partial correlation between Z j and Z02 = �−1(X1) given Z01. Subsequently,
for all possible pair of items we can estimate the partial correlations between Z j and Zk given
Z01 and between Z j and Zk given Z01, Z02 via the relations

ρ̂ jk;Z01 = ρ̂ jk − θ̂1 j θ̂1k√
(1 − θ̂21 j )(1 − θ̂21k)

and ρ̂ jk;Z01,Z02 = ρ̂ jk;Z01 − θ̂2 j θ̂2k√
(1 − θ̂22 j )(1 − θ̂22k)

,

respectively, where θ̂1 j , θ̂1k are the estimated unidimensional normal ogive model’s parameters
and θ̂1 j , θ̂1k, θ̂2 j , θ̂2k are the estimated bidimensional normal ogive model’s parameters. We refer
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to Nikoloulopoulos and Joe (2015, Sect. 2.3) for further details and explanations on the normal
ogive models as special cases of factor copula models.

We call polychoric and partial correlation selection algorithmwhen the pairwise dependencies
are the polychoric and partial correlations, respectively. The polychoric correlation selection
algorithm selects the edges E of the tree that minimize the sum of the weights log(1− ρ̂2

jk), while

the partial correlation selection algorithm the sum of the weights log(1− ρ̂2
jk;Z01

) for the 1-factor

tree copula model and log(1 − ρ̂2
jk;Z01,Z02

) for the 2-factor tree copula model.

3.2. Bivariate Copula Selection

We propose a heuristic method that selects appropriate bivariate copulas for the proposed
models. It starts with an initial assumption that all bivariate copulas are BVN and independent
copulas in the factor and 1-truncated vine copula model, respectively. Then, sequentially suitable
copulas with lower or upper tail dependence are assigned where necessary to account for more
probability in one or both joint tails. For ease of interpretation, we do not mix Gumbel, s.Gumbel,
tν and BVN for a single tree of the model; e.g., for the 2-factor tree copula model we allow
three different copula families, one for the first factor, one for the second factor and one for the
1-truncated vine (residual dependence part of the model).

The selection algorithm involves the following steps:

1. Start with a factor tree copula model with BVN and independent copulas in the factor
and 1-truncated vine copula parts of the model, respectively.

2. Factor part

(a) Factor 1

i. Fit all the possible models, iterating over all the bivariate copula candidates
that link each of the items to X1.

ii. Select the bivariate copula that corresponds to the highest log-likelihood.
iii. Replace the BVN with the selected bivariate copula that links each of the

items to X1.

(b) Factor 2

i. Fit all the possible models, iterating over all the copula candidates that link
each of the items to X2.

ii. Select the bivariate copula that corresponds to the highest log-likelihood.
iii. Replace BVN with the selected bivariate copula that links each of the items

to X2.

3. 1-truncated vine part

(a) Select the best 1-truncated vine tree structure E using both the polychoric and
partial correlation selection algorithms proposed in Sect. 3.1.

(b) Fit all the possible models, iterating over all the bivariate copula candidates that
link the pairs of items ∈ E given the factors.

(c) Select the bivariate copula that corresponds to the highest log-likelihood.
(d) Replace the independence copula with the selected bivariate copula that links each

pair of items ∈ E given the factors.
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4. Simulations

Extensive simulation studies are conducted to assess the (a) efficiency of the proposed estima-
tion method, (b) performance of the model selection algorithms to select the correct 1-truncated
vine tree structure for the residual dependence part of the model and (c) reliability of using the
heuristic algorithm to select the true (simulated) bivariate linking copulas.

We randomly generated 1, 000 datasets with sample size n = 500 and d = {8, 16, 24} items
with K = 5 equally weighted categories from an 1-factor and 2-factor tree copula models with
Gumbel copulas. The items in the last tree are either serially connected in ascending order with
an 1-truncated D-vine or randomly connected with a 1-truncated regular vine.

For the Gumbel copulas, we set the copula parameters in Kendall’s τ scale via the functional
relation,

τ(θ) = 1 − θ−1. (10)

We use τ ’s in equally spaced sequences, i.e., τ(θ1 j , j = 1, . . . , d) = {0.70, . . . , 0.40} and
τ(θ2 j , j = 1, . . . , d) = {0.55, . . . , 0.25} for the factor copula parts of the models and
τ(δ jk, jk ∈ E) = {0.40, . . . , 0.10} for the 1-truncated vine copula part of the model for the
1-factor and 2-factor tree copula model, respectively.

Tables 1 and 2 present the resulting biases, standard deviations (SD) and root mean square
errors (RMSE), scaled by n, from the simulations of the 1-factor and 2-factor tree copula models
with Gumbel copulas, respectively, and an 1-truncated D-vine residual dependence structure. The
results indicate that the proposed approximation method is efficient for estimating the factor tree
copula models and the efficiency improves as the dimension increases.

In Fig. 6, we report the frequency of a pair of items is correctly selected as an edge for
each of the edges of the 1-truncated vine from the simulations of the 1- and 2-factor tree copula
models with Gumbel copulas with d = 8, d = 16 and d = 24 items for both the partial and
polychoric correlation selection algorithms. It has been shown that the partial correlation selection
algorithm as the dimension increases performs extremely well for the 1-truncated D-vine residual
dependence structure, but poorly for the 1-truncated regular vine structure. The quite contrary (or
complimentary) results are seen for the polychoric correlation selection algorithm. The polychoric
correlation selection algorithm rather performs extremely well in selecting the true edges in the
1-truncated regular vine residual dependence structure. It is most accurate for the initial edges,
while it is less accurate for the final edges. This is because the dependence strength is represented
in descending order as τ = {0.40, . . . , 0.10}, so the polychoric correlation selection algorithm is
highly reliable to select the edges with stronger dependence. The edges with weaker dependence
are not easily quantified and can be approximatedwith other edges that lead to a similar correlation
matrix or even accounted for by the previous trees (factor copula models).

To examine the reliability of using the heuristic algorithm to select the true (simulated)
bivariate linking copulas, 100 datasets with sample sizes n = {100, 300, 500} and d = {8, 16, 24}
items with K = {3, 5} equally weighted categories were generated from the 1-factor tree copula
model with Gumbel copulas at the first tree and t3 copulas at the second tree. The items in the
second tree are serially connected in ascending order with an 1-truncated D-vine.We use the same
true τ ’s as in our preceding simulation study; for the tν copulas, we set the copula parameters in
Kendall’s τ scale via the functional relation,

τ(θ) = 2

π
arcsin(θ). (11)

Table 3 presents the number of times each of the bivariate linking copulas was chosen over the
100 simulation runs. It is revealed that the model selection algorithm performs extremely well
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Table 2.
Small sample of size n = 500 simulations (103 replications) and d = 24 items with K = 5 equally weighted categories
from a 2-factor tree copula model with Gumbel copulas and an 1-truncated D-vine residual dependence structure and
resultant biases, root mean square errors (RMSE), and standard deviations (SD), scaled by n, for the IFM estimates.

1st tree (1st factor of 2-factor copula)
τ 0.70 0.69 0.67 0.66 0.65 0.63 0.62 0.61 0.60 0.58 0.57 0.56

nBias −5.74 −3.26 −0.07 2.35 3.96 4.12 3.60 3.94 4.05 3.73 4.58 4.27
nSD 26.55 26.96 27.90 27.43 25.80 24.89 25.15 24.57 23.62 23.93 23.89 23.53
nRMSE 27.16 27.15 27.90 27.53 26.11 25.23 25.41 24.89 23.97 24.22 24.33 23.91

1st tree (1st factor of 2-factor copula, continued)
τ 0.54 0.53 0.52 0.50 0.49 0.48 0.47 0.45 0.44 0.43 0.41 0.40

nBias 3.74 4.83 4.17 5.08 4.28 4.56 5.15 4.80 4.82 4.05 4.42 2.96
nSD 23.21 23.04 22.38 23.15 22.39 23.75 22.93 22.04 22.38 21.99 22.71 21.74
nRMSE 23.51 23.54 22.77 23.70 22.80 24.18 23.50 22.56 22.89 22.36 23.14 21.94

2nd tree (2nd factor of 2-factor copula)
τ 0.55 0.54 0.52 0.51 0.50 0.48 0.47 0.46 0.45 0.43 0.42 0.41

nBias 4.31 1.24 2.81 0.39 −0.58 −1.81 −2.58 −3.06 −6.03 −6.58 −8.23 −9.13
nSD 40.65 41.80 42.93 45.05 43.16 42.69 41.67 40.68 40.38 41.00 41.35 39.73
nRMSE 40.88 41.82 43.02 45.05 43.17 42.73 41.75 40.79 40.83 41.52 42.16 40.76

2nd tree (2nd factor of 2-factor copula, continued)
τ 0.39 0.38 0.37 0.35 0.34 0.33 0.32 0.30 0.29 0.28 0.26 0.25

nBias −9.58 −12.73 −13.14 −11.90 −9.67 −10.48 −12.89 −11.57 −11.57 −12.77 −11.14 −8.04
nSD 41.24 41.35 40.48 40.60 41.84 42.41 40.90 38.62 40.15 37.78 39.96 38.41
nRMSE 42.34 43.27 42.56 42.31 42.94 43.68 42.88 40.31 41.78 39.88 41.49 39.25

3rd tree (1-truncated D-vine copula)
τ 0.40 0.39 0.37 0.36 0.35 0.33 0.32 0.30 0.29 0.28 0.26 0.25

nBias 0.10 −4.49 −9.56 −10.74 −9.52 −9.21 −6.47 −4.90 −2.94 −3.25 −0.50 −0.21
nSD 32.64 35.17 31.46 28.61 27.74 24.35 24.49 22.53 25.08 23.54 22.79 20.38
nRMSE 32.64 35.46 32.88 30.56 29.33 26.03 25.33 23.06 25.25 23.76 22.80 20.38

3rd tree (1-truncated D-vine copula, continued)
τ 0.24 0.22 0.21 0.20 0.18 0.17 0.15 0.14 0.13 0.11 0.10

nBias 0.85 1.52 2.04 0.34 1.66 1.66 1.76 2.45 2.02 2.29 2.25
nSD 21.06 20.56 20.37 22.01 20.16 20.08 19.14 19.56 18.21 18.11 18.33
nRMSE 21.07 20.61 20.48 22.01 20.23 20.15 19.22 19.71 18.33 18.25 18.47

with different choices of linking copulas as the sample size n, the number of items d or categories
K increases. As the number of categories decreases, the tail asymmetries of the items cannot be
easily quantified; hence, bivariate parametric copulas are less distinguishable. If the true bivariate
copula has distinct dependence properties (e.g., the Gumbel copula), then the algorithm selects
the true copula with a high probability. Low selection rates occur for small samples/dimensions
if the true copulas have similar tail dependence properties, since it is then difficult to distinguish
among parametric families of copulas (Nikoloulopoulos & Karlis, 2008). For example, when the
true bivariate copula is the t3 the algorithm selected either t2, t3 or t5, because tν copulas with a
small degree of freedom ν provide similar reflection symmetric tail dependence.
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Figure 6.
Small sample of size n = 500 simulations (103 replications) and d = {8, 16, 24} items with K = 5 equally weighted
categories from 1-factor and 2-factor tree copula models with Gumbel copulas and an 1-truncated D- or regular (R) vine
residual dependence structure and resultant number of times a pair of items is correctly selected as an edge for each of
the edges of the 1-truncated D- or R-vine copula for both the partial and polychoric correlation selection algorithms.

Other simulations we have done with unequally weighted categories show that the algorithms
are not sensitive to the threshold placement as for the ordinal marginal distributions we use the
step or empirical distribution function Fj (y) = a j,y+1 with jumps at 0, . . . , K − 1.

5. Application

In this section, we illustrate the proposedmethodology by analyzing d = 20 items from a sub-
sample of n = 221 veterans who reported clinically significant Post-Traumatic Stress Disorder
(PTSD) symptoms (Armour et al., 2017). The items are divided into four domains: (1) intru-
sions (e.g., repeated, disturbing and unwanted memories), (2) avoidance (e.g., avoiding external
reminder of the stressful experience), (3) cognition and mood alterations (e.g., trouble remem-
bering important parts of the stressful experience) and (4) reactivity alterations (e.g., taking too
many risks or doing things that could cause you harm). Each item is answered in a five-point
ordinal scale: “0 = Not at all," “1 = A little bit," “2 = Moderately," “3 = Quite a bit" and “4
= Extremely". The dataset and its complete description can be found in Armour et al. (2017)
or in the R package BGGM (Williams & Mulder, 2020). With four domains, one might antic-
ipate four factors or one factor and four residual dependence clusters. The proposed factor-tree
copula models do not require a priori knowledge of obvious subgroups and form a dependence
structure with conditional dependence given one or two latent variables rather than mitigating
the conditional independence using four factors. The evaluation of the joint likelihood requires
only low-dimensional integration, as in the 1- and 2-factor copula models while a 4-factor copula
model would require 4-dimensional integration.

For some items, it is plausible that a veteran might be thinking about the maximum trauma (or
a high quantile) of many past events. For example, for the items in the first domain, a participant
might reflect on past relevant events where an intrusion affected their life; then by considering
the worst case, i.e., the event where the negative effect of an intrusion in their life was substantial,
they choose an appropriate ordinal response. For some of the other items, one might consider a
median or less extreme harm of past relevant events. To sum up, the items appear to be a mixed
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Table 4.
Average observed polychoric correlations ρN and lower/upper semi-correlations ρ−

N /ρ
+
N for all pairs of items for the

Post-Traumatic Stress Disorder dataset, along with the corresponding theoretical correlation and semi-correlations for
BVN, t2, t5, Frank, Gumbel, and survival Gumbel (s.Gumbel) copulas.

ρN ρ−
N ρ+

N

Observed 0.35 0.26 0.47
BVN 0.35 0.16 0.16
t2 0.35 0.49 0.49
t5 0.35 0.35 0.35
Frank 0.35 0.10 0.10
Gumbel 0.35 0.11 0.37
s.Gumbel 0.35 0.37 0.11

selection between discretized averages and maxima so that a factor model with more probability
in the joint upper tail might be an improvement over a factor model based on a discretized MVN.

The interpretations as above suggest that a factor treewith a combination ofGumbel andBVN
or tν copulas might provide a better fit. To further explore the above interpretations, we calculate
the average of lower and upper polychoric semi-correlations (Kadhem&Nikoloulopoulos, 2023a,
2021) for all variables to check if there is any overall tail asymmetry. For comparison, we also
report the theoretical semi-correlations under different choices of copulas. Choices of copulas
with upper or lower tail dependence are better if the items have more probability in joint lower or
upper tail than would be expected with the BVN copula. For the BVN and tν copulas ρ−

N = ρ+
N ,

while for the Gumbel and s.Gumbel copulas ρ−
N < ρ+

N and ρ−
N > ρ+

N , respectively. The sample
versions of ρ+

N , ρ−
N for item response data are the polychoric correlations in the joint lower

and upper quadrants of Y j and Yk (Kadhem & Nikoloulopoulos, 2021). Table 4 shows averages
of the polychoric semi-correlations ρN for all pairs along with the theoretical upper/lower semi-
correlations ρ−

N /ρ
+
N under different choices of copulas. Overall, we see that there is more observed

polychoric correlation in the joint upper tail than the joint lower tail, i.e.,ρ+
N = 0.47 > ρ−

N = 0.26,
suggesting that factor tree copula models with a combination of Gumbel and t5 bivariate copulas
might be plausible given that the t5 copulas provide the same lower and upper tail dependence or
semicorrelation, while theGumbel copulas provide only upper tail dependence or semicorrelation.
Their combination is required to model the reflection asymmetric tail dependence shown by the
observed polychoric semi-correlations.

We then select a suitable 1-truncated vine tree structure using the polychoric and partial
correlation selection algorithms proposed in Sect. 3.1 and compute various discrepancy mea-
sures between the observed polychoric correlation matrix Robserved and the correlation matrix
Rmodel based on factor tree copula models with BVN copulas. We report the maximum abso-
lute correlation difference D1 = max |Rmodel − Robserved|, the average absolute correlation
difference D2 = avg|Rmodel − Robserved| and the correlation matrix discrepancy measure
D3 = log

(
det(Rmodel)

) − log
(
det(Robserved)

) + tr(R−1
modelRobserved) − d. We aim to obtain a

dependence structure that results in the lowest discrepancy measure; this will indicate a suitable
vine structure for the item response data on hand. For a baseline comparison, we also compute the
discrepancy measures for the 1- and 2-factor (tree) copula models with BVN copulas. The factor
copula models with BVN copulas are equivalent to the uni- and bidimensional normal ogive mod-
els, and the factor tree copula models use the uni- and bidimensional normal ogive models as the
factor parts of the models, while the residual dependence parts are discretizedMVN distributions.
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Table 5.
Measures of discrepancy between the observed polychoric correlation matrix and the correlation matrix based on the
1-factor, 2-factor, 1-factor tree, and 2-factor tree copula models with BVN copulas, along with the AICs, Vuong’s 95%
CIs, for the 1-factor, 2-factor, 1-factor tree, and 2-factor tree copula models with BVN and selected copulas for the Post-
Traumatic Stress Disorder dataset. Alg.1: partial correlation selection algorithm; Alg. 2: polychoric correlation selection
algorithm.

Factor copula 1-factor tree copula 2-factor tree copula
1-factor 2-factor Alg.1 Alg.2 Alg.1 Alg.2

BVN copulas
D1 0.40 0.30 0.23 0.20 0.15 0.20
D2 0.08 0.05 0.05 0.05 0.03 0.05
D3 4.53 2.80 1.75 1.83 1.17 1.75
#parameters 20 39 39 39 58 58
AIC 12,031.1 11,764.0 11,632.4 11,642.1 11,549.1 11,611.8
Selected copulas
#parameters 20 40 39 39 59 59
AIC 11,800.4 11,413.5 11,355.3 11,344.89 11,189.1 11,240.3
Vuong’s 95% CI1 ( 0.21, 0.63) (0.25, 0.79) (0.37, 0.89) (0.43, 0.91) ( 0.54, 1.09) (0.58, 1.11)
Vuong’s 95% CI2 (1.50, 2.31) (0.99, 1.67) (0.79, 1.40) (0.83, 1.40) – (0.69, 1.24)
Vuong’s 95% CI3 (1.17, 1.80) (0.60, 1.02) (0.30, 0.63) (0.27, 0.61) – (−0.002, 0.23)

1Selected factor (tree) copula models versus their Gaussian analogues.
2Selected 2-factor tree copula model with Alg.1 versus other fitted models with BVN copulas.
3Selected 2-factor tree copula model with Alg.1 versus other fitted models with selected copulas.

After finding a suitable vine structure, we construct a plausible factor tree copula model, to
analyze any type of items, by using the proposed heuristic algorithm in Sect. 3.2. We use the AIC
at the IFM estimates as a rough diagnostic measure for model selection between the models. In
addition, we use the Vuong (1989) procedure that is based on the sample version of the difference
in Kullback–Leibler divergence. Let Model 1 and Model 2 have parametric pmfs π

(1)
d (y; θ̂1) and

π
(2)
d (y; θ̂1), respectively; θ̂1, θ̂2 are the IFM estimates. The procedure computes the average D̄

of the log differences Di = log

[
π

(2)
d (yi ;̂θ2)

π
(1)
d (yi ;̂θ1)

]
between the two parametric models. Vuong (1989)

has shown that asymptotically
√
nD̄/s ∼ N (0, 1); s2 = 1

n−1

∑n
i=1(Di − D̄)2. Hence, the AIC

adjusted Vuong’s 95% CI is D̄ − n−1[dim(̂θ2) − dim(̂θ1)] ± 1.96 × 1√
n
σ . If it includes 0, then

Model 1 and Model 2 are considered to be non-significantly different, while if it is above 0, then
Model 2 is favorable and considered to fit better than Model 1. We will compare the (1) selected
factor (tree) copula models (Model 2) versus their Gaussian analogues (Model 1), (2) selected
factor tree copula model according to AIC (Model 2) versus all the other factor (tree) copula
models with BVN copulas (Model 1), and (3) selected factor tree copula model according to AIC
(Model 2) versus all the other factor (tree) copulas models with selected copulas (Model 1).

Table 5 shows that the observed polychoric correlation matrix of the data has a 2-factor tree
structure according to the discrepancy measures. The table also gives the AICs and the 95%CIs of
Vuong’s tests for all the fitted models. The best fitted model, based on AIC values, is the 2-factor
tree copula model obtained from the partial correlation selection algorithm. From the Vuong’s
95%Cls, it is shown that 2-factor tree copula model provides a big improvement over its Gaussian
analogue and outperforms all the other fitted models except the 2-factor tree obtained from the
polychoric correlation selection algorithm. The tree selection algorithms might not yield into the
same ‘true’ vine tree; however, closely approximated factor tree copula models are achieved.
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Table 6 includes the copula parameter estimates in Kendall’s τ scale and their standard errors
(SE) for the selected 2-factor and 2-factor tree copula models. The latter is obtained from the
partial selection algorithm. It has the t2 for the first tree, Gumbel for the second tree, and t5 for
the third tree. The 2-factor tree copula model is mostly constructed with tν bivariate copulas with
a small ν which are suitable for both positive and negative dependence; however, the highest
dependence is found in the second factor which is constructed with Gumbel copulas. This is in
line with both the initial interpretations and preliminary analysis which suggest that some items
can be considered as discretized maxima. To show the improvement of the copula models over
their Gaussian analogues, we also report the 2-factor and 2-factor tree copula models with BVN
copulas. The former is equivalent to the bidimensional normal ogive model and the latter uses the
bidimensional normal ogive model as the factor part of the model, while the residual dependence
part is a discretized MVN distribution. For the two-factor copula model with BVN copulas or
bidimensional normal ogive model, one parameter for the second factor is set to zero and the
likelihood is maximized with respect to other 2d−1 parameters. We report the varimax transform
of the loadings (a reparametrization of 2d parameters), converted to factor copula parameters via
the relations in Sect. 3.1. However, using other than BVN copulas, the two-factor copula model
is near-identifiable with 2d bivariate linking copulas, as it as been demonstrated by Krupskii
and Joe (2013) and Nikoloulopoulos and Joe (2015) and no rotation is required. In terms of
identifiability of signs of parameters, the factor copula model based on tν is like that based on
BVN. If θ1 j → −θ1 j , j = 1, . . . , d or if θ2 j → −θ2 j , j = 1, . . . , d, then the model is the
same, because only the orientation of the latent variable has been reversed. For simplicity, we
report these correlation parameters as being positive for stronger dependence. To make it easier
to compare different models, we convert the Gumbel/s.Gumbel and BVN/tν copula parameters
to Kendall’s τ ’s via the relation in (10) and (11), respectively.

The bigger differences between the factor models with the selected copulas and the factor
models with BVN copulas are seen in the estimated parameters or loadings (τ̂ s converted to BVN
copula parameters θ̂1 j and θ̂2 j with the inverse of the relation in (11) and then to loadings with the
relations in Sect. 3.1) for the first and second factor. These are the estimated parameters at tree 1
and tree 2 of the 3-truncated vine which along with the copula choice form the tail asymmetries
among the items. The estimates of the factor models with BVN copulas are biased as BVN copulas
have zero tail dependence. At the residual dependence part of the model which is the tree 3 of the
3-truncated vine, the differences are negligible as the tail asymmetries (if any) among the items
have already accounted in the lower order trees (factor part of the model).

Interestingly, for the factor models with the selected copulas, the Kendall’s τ ’s in the 2-factor
copula model are roughly equivalent to the estimates in the first and second factors of the 2-factor
tree copula model. Most of the dependence is captured in the first two trees, resulting in weak to
medium residual dependencies in the 1-truncated vine copula model, but significantly larger from
independence. Interpreting the estimated parameters, the latent variable for maxima is positively
associated with all items, while the other latent variable is both positively and negatively associ-
ated with some of the items. The residual dependencies reveal that there is stronger association
between the 10th and 11th items that are “Blame of self or others" and “Negative trauma-related
emotions," respectively. In addition, there is moderate association between items 9 and 11 that
are “Negative beliefs" and “Negative trauma-related emotions," respectively. With similar mod-
erate dependence found between items 4 and 9 that are “Negative beliefs" and “Emotional cue
reactivity," respectively.
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6. Discussion

We have proposed combined factor/truncated vine copula models to capture the residual
dependence for item response data. They form conditional dependence of the items given the latent
variables and go beyond the factormodels where the items are conditionally independent given the
latent variables. By combining the factor copula models with an 1-truncated vine copula model,
we construct conditional dependence models given very few interpretable latent variables. The
combined factor/truncated vine structure has the form of (i) primary dependence being explained
by one or two latent variables, and (ii) conditional dependence of item response variables given
the latent variables (Joe, 2018). They are especially useful and interpretable when there are a few
latent variables that can explain most but not all of the dependence in the item responses.

The flexibility of the factor tree copula models endorses the significance of model selection.
In practice, one has to first select the 1-truncated vine tree structure E and then, suitable bivariate
copulas to account for more probability in the one or both joint tails. We tackle these model
selection issues by proposing heuristic algorithms to choose a plausible factor tree copula model
that can adequately capture the (residual) dependencies among the item responses.We have shown
that the proposed models provide a substantial improvement over the 1-factor and 2-factor (tree)
copula models with selected (BVN) copulas on the basis of the AIC and Vuong’s statistics. The
1-factor and 2-factor tree copula models with BVN can be viewed as first-order models if models
based on other tail dependent copulas are called. After finding some well-fitting models based on
an assumption of a discretized MVN, we can convert to a parameterization with correlations in
the first tree and partial correlations in subsequent trees and then, extend to a vine copula model
by replacing each correlation by a bivariate copula and each partial correlation by a bivariate
copula applied to conditional distributions. We consider the 1- and 2-factor tree copula models
to be reasonable parsimonious models as most of the dependence is explained via the first few
trees in the factor model. This is because that for all the bivariate margins to have upper/lower
tail dependence, it only suffices that the bivariate copulas in the first trees (factor part) to have
upper/lower tail dependence and is not necessary for the bivariate copulas in the higher trees after
the 1-truncated vine to have tail dependence (Joe et al., 2010).

In the proposed models, the conditional independence and residual dependence parts are
modeled separately. The residual dependencies are taken into account by a Markov tree without
changing anything to the conditional independence model part. This means that we can remain
within a well-known and conceptually attractive framework as offered by the factor copulamodels
when applying a factor tree copula model. This will be attractive to practitioners that have a basic
and conceptual understanding of factor models, but are less familiar with complicated models that
are available to tackle the problem of residual dependence. The main change in the factor copula
model is only in the formulation of the joint conditional distribution, while the conditional part of
the model, i.e., the unique loading parameters, these are τ̂ s converted to BVN copula parameters
θ̂1 j and θ̂2 j with the inverse of the relation in (11) and then to loadings with the relations in
Sect. 3.1, is left intact.

Software

R functions for estimation, simulation and model selection of the factor tree copula models are
part of the R package FactorCopula (Kadhem & Nikoloulopoulos, 2023b).
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