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Droplet impact on a granular layer results in various morphologies of the liquid–grain
mixture. Some are concentrated and highly curved, some are extended and flatter. No
matter how the morphology looks from the top, it is generally believed that its
bottom is tightly connected to the concavely deformed granular target. In this paper
we report the discovery of a hidden cavity below a droplet residual, formed upon
impact on packings of hydrophilic grains and exposed by X-ray tomography. Its
occurrence in the parameter space is explored. We elucidate the mechanism leading
to this counterintuitive phenomenon using a dual-curvature model and an energy
criterion. This research may shed new light onto the ongoing discussion about the
origin of the so-called fossilized raindrop impressions.

Key words: drops, granular media

1. Introduction
Observing marks of a brief rain shower on the beach or on mud is a common

experience to many of us. Some of these rain imprints may even have been preserved
over geological time scales and are discovered as sedimentary structures that were
first reported back in 1839 and are known as raindrop impressions (Cunningham
1839). These impressions were suggested as a means to determine the air density
of remote eras (Lyell 1851), an idea which has been explored recently (Som et al.
2012). As their name suggests, raindrop impressions are expected to be concave pits
and, therefore, the presence of convex sedimentary features with underneath cavities
has led to speculations on alternative causes, e.g. they could be air bubbles that
dried in mud without bursting (Lyell 1851). These speculations give rise to questions
regarding the actual origin of raindrop impressions (Moussa 1974; Metz 1981). In this
paper, we will demonstrate that under some conditions a cavity is formed naturally
underneath a droplet impacting on dry sand.

From a physics perspective the morphology of the marks left by droplet impact
on granular targets depends on the impact dynamics. If the grains of the target are
wettable to the impacting liquid, the final morphology of the impact crater consists
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FIGURE 1. The formation of three morphologies; (a) truffle, (b) pie and (c) pancake. Each
row represents five consecutive snapshots of an impact. The leftmost snapshot is at the
moment of reaching the maximum expansion of the droplet, t = t∗ (namely, t∗ = 5.2 ms,
5.6 ms and 5 ms, respectively from top to bottom). The rightmost one is the last frame,
t= t f , showing the final steady state. The snapshots in between correspond to t∗ + 5 ms,
t∗ + 10 ms, t∗ + 15 ms. In each row snapshots are taken from the same viewpoint. Scale
indicators of 1 mm by 1 mm are given at the left bottom in the leftmost image of each
row.

of two parts: the deformed target surface and the liquid–grain residual. While the
deformed target surface is always concave, various morphologies of the liquid–grain
residual have been reported (Katsuragi 2010, 2011; Delon et al. 2011; Zhao et al.
2015a; Zhao, de Jong & van der Meer 2015b). Loosely speaking, the final morphology
is a consequence of the dynamics after the droplet reaches its maximum spreading
diameter. If the liquid–grain mixture is able to retract, the final residual is strongly
curved and concentrates in the centre of the crater (cf. figure 1a), the so-called
truffle and doughnut morphology (Zhao et al. 2015b). Otherwise the mixture is
‘frozen’ in its expansion state and covers most of the concave crater (cf. figure 1c).
However, even without retraction, the liquid–grain mixture could still undergo vertical
deformation while its horizontal dimension is unchanged – the centre is lifted up (cf.
figure 1b), and in some cases even protrudes from the sandy surface. Furthermore,
we discovered that this lift creates an unexpected feature associated with the last
morphology, a cavity underneath, which is only observable with X-ray tomography
(cf. figure 2h). Immediate questions that arise are where this phenomenon is located
in the parameter space and what is the underlying physical mechanism that creates
the cavity. To answer these questions, we conduct a series of experiments varying the
impacting liquid, the impact speed, the grain size and the wettability of individual
grains.

2. Experimental methods
In our experiments the impacting droplet is composed of either water or ethanol

mixed with food dye (mass fraction <2 %) for visualization purposes. The radius of
the droplet Rd is fixed to 0.9 mm for ethanol. The radius of the water droplets is fixed
to 1.4 mm for most experiments and to 1.75 mm occasionally. The impacting droplet
is released from a nozzle above the substrate. Small oscillations may be induced
during the pinch-off of the droplet. Nevertheless the effect of these oscillations
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Material dg (µm) cos θw cos θe

Ceramic 98, 167, 257 0.3 —
Piranha-cleaned ceramic 98, 167, 257 0.6–0.7 1

TABLE 1. Summary of the contact angle of water and ethanol, θw and θe, and the grain
size, dg.

may safely be neglected in the inertia-driven spreading regime we focus on in our
experiments. The impact speed, U, reaches from 1.5 m s−1 to 5.5 m s−1 by altering
the falling height. The granular target consists of ceramic beads with the specific
density ρg= 6000 kg m−3. Three different grain sizes are used, and the hydrophilicity
of the grains is enhanced after cleaned with a piranha solution (see table 1) (Zhao,
de Jong & van der Meer 2017). The packing density of the bed φ is prepared in
the range of 0.59–0.63 by air fluidization and subsequent mechanical taps. While
the droplet deformation is visualized with a high-speed camera, at the same instance,
the deformation of the target surface is measured by an in-house built high-speed
laser profilometer (Zhao et al. 2015b). The impacting droplet appears to be a dark
ellipse (due to perspective) in the video. When detecting the spreading diameter
cross-correlations are computed between dark ellipse templates and the (background
subtracted) image, and the template size corresponding to the maximum correlation
gives the spreading diameter. The evolution of the crater profile with time, t, is
quantified as a function z(r, t). It is good to stress that here, as well as in all of
the analyses in this study, axisymmetry of the impact crater is assumed. Here, z
represents the vertical coordinate, and r is the in-plane radial coordinate with the
impact centre at r = 0. When the location of impact is far from the laser lines, the
part of z(r, t) close to the impact centre is unresolved. We discard the experiments
where the unresolved region is beyond r= 1 mm, and extrapolate the profile to r= 0
with a parabolic fit otherwise, where a parabola centred at r= 0 is fitted to the last 20
datapoints closest to the centre. The parabolic fitting function is given in appendix C.
This fit is implemented on the available data in the range of r < 2 mm. To estimate
the potential error the same method is applied to a fully resolved experimental profile,
and the difference between the fitted crater depth and the measured one is very small
(0.0043 mm), and is representative of potential errors made by using the fit. Note
that the corresponding error in the crater area is even smaller, since the fitted region
of r < 1 mm, the crater centre, is typically smaller than the region of interest (see
below).

Figure 1 exemplifies three residual morphologies: truffle, pie and pancake.
Those residual shapes result from different post-impact processes, as can be
seen in the experimental movies in the supplementary materials available online
at https://doi.org/10.1017/jfm.2019.742. With the acquired crater profile, z(r, t),
differences between those processes can be quantified. We first compare the profiles
at two moments in time. One moment is at t = t∗, where the impacting droplet
reaches its maximum expansion radius R∗d. The other moment is the last frame of
the experiment, t= t f , where the crater has obtained its final static state. Minutes or
hours afterwards the experiment, the liquid–grain residual is dried. Its shape may only
change slightly from that at t f . The crater profiles of experiments shown in figure 1
are presented in figure 2(a–c). While the profiles at t∗ and t f are largely identical
for the pancake shape (cf. figure 2c), both truffle and pie shapes display prominent
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FIGURE 2. (Colour online) The leftmost column (a–c) illustrates the crater profile at the
moment of maximal droplet expansion t= t∗ (dashed lines) and the moment the final static
state of the crater is reached, t= t f (solid lines). For (a,b), the differences of crater profiles
at these two moments result from the deformation of the liquid–grain mixtures, whereas
the discrepancy at the crater rim in (c) is caused by grain splashing. The middle column
(d–f ) shows the time evolution of crater area, Σ (see text for definition). The moment
t∗ of maximum droplet expansion is indicated by vertical dashed lines in (d–f ). In (e)
the dash dotted line denotes Σ(t f ). Both columns correspond to the impacts in figure 1.
The rightmost column (g–i) displays vertical cross-sections from X-ray tomograms through
the impact centre where the residual is highlighted with yellow colour. These tomograms
are scanned for droplet impacts on glass beads, different experiments from that in (a–f ).
Details can be found in appendix A.

evolution (cf. figure 2a,b). The difference between the truffle and pie shapes is clear
as well. For the truffle shape the evolution occurs through the whole crater, from rim
to the centre, and the final profile is highly curved. In contrast, for the pie shape, the
part of the profile far from the impact centre remains pinned, and the final profile is
relatively flat, with the centre lifted upwards.

To further quantify the crater evolution we calculate the reduced crater area by
integrating the crater profile between r=0 and r=R0, Σ(t)=π

∫ R0

0

√
1+ z′2 dr2

−πR2
0.

Here, z′ = ∂z(r, t)/∂r is the derivative of the profile with respect to r, and R0 is the
radial distance where the crater profile intersects with z = 0 at t = t∗ (cf. figure 2b).
The results corresponding to figure 2(a–c) are given in (d–f ) in the same figure. As
the flat area, A0 = πR2

0, is subtracted, Σ(t) always increases from 0 upon impact
to a local maximum at t = t∗ for all three cases (cf. figure 2d–f ). Afterwards the
time evolution Σ(t) exhibits interestingly distinct signatures corresponding to the three
typical crater profile evolutions described above. The profile of pancake shape does
not change between t∗ and t f , therefore, 1Σ =Σ(t f )−Σ(t∗)= 0 (cf. figure 2f ). In
contrast, for the truffle shape, the liquid–grain mixture contracts into a highly curved
residual, more curved than the crater profile at t∗, which results in a positive area
difference, 1Σ > 0 (cf. figure 2d). For the pie shape, as the centre of the crater is
lifted, the profile becomes flatter, and Σ decreases. Therefore, the area difference is
negative, i.e. 1Σ < 0 (cf. figure 2e). The lift of the crater centre creates a cavity
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Formation of a hidden cavity 63

revealed by the X-ray tomography scan after t f in figure 2(h) (refer to appendix A
for details of the X-ray tomogram). Hence, the sign of 1Σ can be used to indicate
morphology: 1Σ = 0 for the pancake shape, 1Σ > 0 for the truffle shape and 1Σ <
0 for the pie shape. In experiments the oscillation of the remaining liquid surface
introduces fluctuations into Σ(t) after t > t∗. When computing 1Σ we average the
data of Σ(t) in the last 2 ms to obtain the value Σ(t f ) at t f .

Figures 1 and 2 indicate that the final morphology is the outcome of the post-
impact dynamics of the liquid–grain mixture. What leads to the different post-impact
dynamics? From the formation of truffle morphology it is clear that in this case the
dynamics is dominated by the Laplace pressure, the product of the surface tension
and local curvature of the liquid–air interface, which are developed during the impact.
This also give us clues to the formation of the other two morphologies.

3. Mixing ratio
Similar to impacts on a solid surface, upon impact the droplet starts to spread,

and the circumference curvature is developed along its edges. Meanwhile, a central
curvature also arises, which is unique to impacts on deformable substrates, like the
granular target studied here (cf. figure 3 inset). These two curvatures determine the
post-impact dynamics. According to the corresponding crater dimensions (Zhao et al.
2015b, 2017; de Jong, Zhao & van der Meer 2017), the circumference curvature
is always larger than the central one. Nevertheless, their relative significance can
be altered by the degree of mixing between liquid and grains during the impact.
When there is little mixing, the circumference curvature is dominant and leads to
retraction of the liquid–grain mixture, which finally results in a ball-like shape, a
truffle. In the other extreme of complete mixing, where the whole droplet penetrates
into the granular substrate during the impact, both curvatures are lost, and no further
dynamics occurs after the impact. The final morphology preserves the maximum
expanded shape, the so-called pancake shape. However, in the intermediate range of
mixing, where more than half of the droplet is mixed with grains, the circumference
curvature is suppressed, which prevents the retraction. The radial extension of the
residual is then frozen in the expanded state. Nevertheless, the central curvature
of the top liquid–air interface may still lift the liquid–grain mixture and create the
underneath cavity displayed in figure 2(h), the pie morphology. In this dual-curvature
model the morphology appears to be a function of mixing ratio at t∗, namely the
ratio of the liquid volume that is mixed with grains, Vm, to that of the whole droplet,
Vd = 4πR3

d/3.
To estimate Vm, we first decompose it into the contact area, Ac, and the penetration

depth of the liquid into the substrate, L. Although in reality the contact area evolves
with time in a complicated manner, for the purpose of this analysis it is approximated
by a constant, namely the geometric mean of the initial droplet radius Rd and its
maximum spreading radius R∗d, i.e. Ac = πRdR∗d. The development of L is modelled
by Darcy’s law (refer to appendix B), and its solution is

L(t)=

√
2κP

µl(1− φ)
t. (3.1)

In the above equation the permeability of the substrate, κ = (1 − φ)3d2
g/(180φ2),

is defined by the Carman–Kozeny relation (Carman 1956), and µl is the dynamic
viscosity of the liquid. The driving pressure P consists of two parts: the inertia
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FIGURE 3. (Colour online) Main plot: crater area difference, 1Σ , plotted versus the
estimated mixing ratio Vm/Vd. The sign of 1Σ , here normalized by the corresponding
flat area A0, indicates the final morphology. The morphology develops with the estimated
mixing ratio Vm/Vd. Three regimes can be distinguished which are in accordance with the
residue morphology shown in figure 1: a, truffle; b, pie; c, pancake. See text for details
and for the definition of 1Σ and A0. Inset: a sketch of the two curvatures occurring in
a spread droplet. In practice, the droplet (blue) is mixed with grains which are not drawn
here.

pressure and capillary pressure, where the effect of wettability of grains on the liquid
penetration is included in the latter. The complete expression of P can be found in
appendix B and Zhao et al. (2017). In the model the spreading time is estimated as
half of the intrinsic capillary oscillation time of the droplet (Richard, Clanet & Quere
2002; Okumura et al. 2003; Delon et al. 2011), τc =

1
2

√
(π/6)(ρlD3

0/σ), where σ is
the surface tension of the liquid. With all the quantities in (3.1) defined, we could
finally evaluate Vm = (1 − φ)AcL(τc). Note that the factor (1 − φ) accounts for the
presence of grains in the mixture. The resultant Vm increases with impact speed U,
grain size dg and wettability, cos θc.

The normalized crater area development 1Σ/A0 is plotted against mixing ratio
Vm/Vd in figure 3. Three regimes corresponding to individual morphologies can be
defined according to the sign of 1Σ : a. 1Σ > 0, the truffle regime; b. 1Σ < 0, the
pie regime; and c. 1Σ ≈ 0, the pancake regime. As morphology develops with the
mixing ratio, the first cross-over, between regime a and b, is found at Vm/Vd ≈ 0.55,
where approximately half of the droplet is mixed with grains, and the circumference
curvature is lost. As a result, surface tension is not able to retract the droplet anymore,
as discussed in Zhao et al. (2015b). The second cross-over, between b and c, is at
Vm/Vd ≈ 1, where the whole droplet penetrates into the granular substrate, and the
liquid–grain mixture is completely frozen at its maximum expansion. Because of mass
conservation, Vm/Vd > 1 is physically clearly not expected, and it simply indicates
that the whole droplet penetrates into the granular target before reaching t = τc. In
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fact, this is consistent with a transition of the droplet spreading dynamics. It has
been shown that the viscous dissipation of liquid penetrating into the granular target
becomes the largest energy sink in this regime (Zhao et al. 2017). Hence, regime
c may also be interpreted from an energy perspective: no further dynamics would
happen after the impact energy is largely dissipated by the viscosity of the liquid
moving in the pores between the grains.

4. Lifting criterion
Both the wettability and the size of the grains play a role in the degree of mixing,

and thus in the formation of final morphologies. In general, increasing the grain size
or the wettability enhances the mixing ratio. For instance, impacts on dg = 257 µm
result in the pancake shape, while impacts on dg = 98 µm do not enter that regime.
Although the dual-curvature model introduced above captures this general tendency
of the morphology development, in regime b (0.55<Vm/V0 < 1) there are impacts of
relatively large dg and low U that actually end in the pancake shape (1Σ ≈ 0) rather
than the expected pie morphology. Therefore, the mixing ratio alone is not sufficient
to explain the formation of pie morphology. The missing factor is the force balance. If
the crater is too shallow, the Laplace pressure offered by the central curvature cannot
overcome the gravitational pressure, then no lifting would occur.

The lifting of the liquid–grain mixture is a process where surface energy, Es is
converted into gravitational energy Eg. The condition under which lifting can be
initiated is given by d(Es + Eg)/dt|t=t∗ < 0. This condition is path dependent. To
obtain a criterion in terms of accessible experimental quantities we introduce a
virtual lifting process, where the concave liquid–grain mixture at t∗ is raised to be
flat. Following this deformation the centre depth of the crater Zc is decreased from
Z∗c to 0. Note that here depth is used for the downwards direction. Using the chain
rule and dZc/dt< 0 the lifting criterion can be rewritten now as

d(Es + Eg)

dZc

∣∣∣∣
Zc=Z∗c

> 0. (4.1)

If the crater profile is parabolic, z(r, Zc)= Zc(r2/R2
0 − 1), one can readily obtain the

proportionalities Eg ∝ V(Zc) ∝ Zc and Es ∝ Σ(Zc) ∝ Z2
c (details in appendix C).

Furthermore, the excess surface energy Es decreases from σΣ∗ to 0, and the
gravitational energy Eg increases from 0 to ρmL̄gV∗ (cf. figure 4). Here, g= 9.8 m s−2

is the gravitational acceleration, ρm = ρl(1− φ)+ ρgφ is estimated as the density of
the mixture and L̄=Vm/[πR∗d

2(1−φ)]=LRd/R∗d is the average mixing layer thickness.
Also, Σ∗=Σ(t∗) and V∗=π

∫ R0

0 z(r, t∗) dr2 are the crater area and the crater volume
at t∗ or when Zc = Z∗c . Let 1Es = σΣ

∗ and 1Eg = ρmL̄gV∗ denote the total virtual
change of Es and Eg respectively. Both energies can then be written explicitly as a
function of Zc Eg=1Eg(1− Zc/Z∗c ) and Es=1Es(Zc/Z∗c )

2. Substituting this into (4.1)
results in the lifting criterion,

1Es

1Eg
> 0.5. (4.2)

Note that 1Es and 1Eg can be computed from the measured crater profile at t∗.
The measured energy ratio of the data in regime b and regime c in figure 3 is

plotted against the mixing ratio in figure 5. It can be seen that the data points
corresponding to the pancake shape in regime b (0.55< Vm/Vd < 1) are at or below

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

74
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.742


66 S.-C. Zhao, R. de Jong and D. van der Meer

En
er

gy

Lifting

Es + Eg

ßÍ*

®mLgV*

Es 
Eg

0
Zc

Z*
c

FIGURE 4. (Colour online) A sketch of the virtual lifting process. The lifting process is
denoted by the decrease of Zc. The lifting may occur if the total energy Es+Eg decreases
at the beginning of the lifting, i.e. equation (4.1).
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FIGURE 5. (Colour online) The data in regimes b and c in figure 3 are plotted versus
the ratio of the virtual change of the surface energy, 1Es, and the gravitational energy,
1Eg. See text for their definitions. The same symbols and colours as that in figure 3 are
used here. The dashed line indicates the predicted lifting criterion, 1Es/1Eg= 0.5, which
separates the pie and pancake shapes in the overlapping range of mixing ratio.

the proposed lifting criterion 1Es/1Eg= 0.5, whereas the pie data all lie well above.
For a given mixing ratio the energy ratio is proportional to the product of two impact
parameters: the area-to-volume ratio, Σ∗/V∗, and squared the maximum expansion
radius of the droplet, R∗d

2, i.e. 1Es/1Eg ∝ Σ
∗R∗d

2/V∗. Both Σ∗/V∗ and R∗d increase
with impact speed U (refer to appendix C). Therefore, the impacts with large dg

and/or higher wettability but small U in regime b fail to meet the lifting criterion.
With the established criterion we could discuss its possible application to the

raindrop impression mentioned in the beginning. In nature, raindrops fall at
their terminal velocity. For a droplet radius of 1.4 mm, the terminal velocity is
approximately 7 m s−1. First, we evaluate the mixing ratio as a function of grain size
dg using (3.1). Parameters used in the evaluation are the packing density of the target
φ = 0.59, the contact angle of the grains cos θc = 0.4 and the maximum spreading
radius of the droplet R∗d/Rd = 4. It is possible to reach regime b of the mixing ratio
for the grain size range of 35–75 µm. Silt falls in such a size range (Boggs 1995),
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and its mineral origin is quartz and feldspar, lighter than ceramic beads used here.
Therefore, the density of the mixture ρm would be smaller. Furthermore, the larger
impact speed results in a larger R∗d, and the area volume ratio, Σ∗/V∗ would be
comparable to the impacts shown here (appendix C). It is therefore very likely that
the resultant 1Es/1Eg would have satisfied the lift criterion. In conclusion, it is
possible for raindrop impact on a substrate like silt to result in the pie morphology
with a underneath cavity. It is however worth pointing out that the curvature of the
final pie shape is unlikely to exceed that of the liquid–grain mixture at t∗ (although
the sign is opposite). The radius of curvature of the final morphology is larger than
both the horizontal and vertical dimensions, R∗d and Z∗c . Therefore, the underneath
cavity created by droplet impacts should be well distinguishable from that resulting
from a nearly spherical bubble in the mud.

5. Conclusion
In this work, we first discuss the discovery of a counterintuitive cavity between

the impacting droplet and the deformed granular target using X-ray tomography
in figure 2. Its presence in the parameter space is further characterized by the
distinct crater profile evolution measured by laser profilometry. It turns out that the
morphologies of the liquid–grain residual develop depending on the mixing ratio
between the liquid and grains. The cavity creation phenomenon is located in the
regime of parameter space where the mixing ratio is intermediate (cf. figure 3). In
this regime the circumference curvature of the deformed droplet is suppressed by
liquid–grain mixing, while the central curvature of the liquid layer on the top leads
to the lift of the liquid–grain mixture and the creation of the cavity underneath. The
dual-curvature model gives the necessary condition for the lifting, but turns out not
to be sufficient, i.e. there are experiments in this regime that do not show any lifting.
The missing condition is the force balance. We derive a simple lifting criterion in
terms of experimentally accessible quantities in (4.2), which successfully separates
lifting from the no-lifting morphologies in this regime (cf. figure 5). Towards the
end of this exploration we would like to point out one more detail that needs further
attention. In the derivation of the lifting criterion in (4.2) we assume a parabolic
crater profile. A parabola has the maximum curvature at its centre which implies that
the lifting process is led by the centre of the mixture. In practice, the profile may
deviate from a parabola and may have the maximum curvature away from centre
(refer to appendix D). In spite of the difference between the model and experiments,
the validity of the resultant criterion appears to be robust.
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Supplementary movies are available at https://doi.org/10.1017/jfm.2019.742.

Appendix A. X-ray tomography

The X-ray tomography scanning was performed with the Nanotomr at the
Max-Planck Institute of Dynamics and Self-Organization in Göttingen, Germany.
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1 mm

FIGURE 6. A vertical cross-section of a tomogram scan for water droplet impact on a
packing of soda-lime beads. The impact speed, the grain size and the droplet size are the
same as figure 2(h). However, the packing density is lower, namely equal to 0.55.

The droplet impacts shown in figure 2(g–i) were conducted on substrates consisting
of soda-lime beads with various grain sizes, droplet diameters and impact speeds.
Figures 2(g) and 2(h) are of the same grain size dg ∼ 90 µm and the same droplet
diameter 2.73 mm, but with impact speeds U = 2.6 m s−1 and U = 4.2 m s−1.
Figure 2(i) is a scan of an impact with U = 4.2 m s−1, dg ∼ 250 µm and droplet
diameter 3.2 mm. To distinguish the liquid–grain mixture and the rest of the
substrate the impacting droplet is mixed with a suspension of caesium nanoparticles
which appears bright in the tomogram. The liquid–grain residual is highlighted in
figure 2(g–i) accordingly. Note that the initial packing density may influence the
morphology. For the tomograms shown in figure 2(g–i) the initial packing density
is 0.55, 0.57 and 0.58 respectively. In figure 6 a cross-section of a tomogram is
shown for the same impact parameters as figure 2(h), but with a reduced initial
packing density of 0.55. Similar to figure 2(h) a cavity can be seen. The details of
the morphology display differences, for instance, the centre is concave.

Appendix B. The evaluation of mixing ratio
To evaluate the volume of the liquid mixed with grains, Vm, we use Darcy’s law to

model the penetration of the droplet into the granular substrate,

Q=
κAc

µl
∇P. (B 1)

In the above equation the permeability of the substrate, κ = (1 − φ)3d2
g/(180φ2), is

defined by the Carman–Kozeny relation (Carman 1956), where ∇P is the pressure
gradient, Ac is the contact area between the droplet and the substrate and µl is the
dynamic viscosity of the liquid. Since the pressure gradient is mainly in the vertical
direction, equation (B 1) can be reduced to a scalar equation. Denote the penetration
depth of the liquid as L, and the pressure gradient can be estimated as P/L. On
the other hand, volume conservation gives (1 − φ)Ac dL/dt = dVm/dt = |Q|, when
taking the presence of the grains in the mixing layer into account. All together (B 1)
becomes an ordinary differential equation for the mixing layer thickness L with respect
to time t,

dL
dt
=

κP
µl(1− φ)L

. (B 2)

Its solution is (3.1) in the main text.
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The driving pressure P consists of two components: the capillary pressure Pc and
the inertial pressure Pi. The capillary pressure is independent of the details of the
impact dynamics as soon as the liquid contacts the sand and can be obtained from
experimental parameters, Pc= 4σ cos θc/dc, where dc= (2(1− φ)/3φ)dg is the average
diameter of capillaries between grains derived from the Carman–Kozeny relation. On
the other hand, the inertial pressure needs to be corrected with the deformation of
the substrate, Pi = ρlU2Rd/(Rd + Z∗c ), as the deceleration of the droplet is reduced
in comparison with the impact on a solid surface. Here, ρl is the liquid density,
and Z∗c is the maximum vertical deformation of the substrate measured by the crater
profile. This correction relates to the effective energy transfer during impact (Zhao
et al. 2015b) and has been validated by the analysis of R∗d (Zhao et al. 2015b, 2017)
and crater formations (de Jong et al. 2017). Another difference between Pi and Pc

is their action period; Pi acts during an inertial time scale, τi = 2(Rd + Z∗c )/U. In
contrast, Pc lasts as long as the contact between liquid and grains exists. As we are
interested in the liquid–grain mixing until the maximum droplet spreading is reached,
the spreading time is estimated as half of the intrinsic oscillation time of the droplet,
τc=

1
2

√
(π/6)(ρlD3

0/σ), where σ is the surface tension of the liquid. These two time
scales provide relative weights for Pi and Pc in the spreading phase of the droplet,
and the average effect of the total pressure is evaluated as P= (τi/τc)Pi + Pc (Zhao
et al. 2017). The two components of P also correspond to two length scales; Rd is
the length scale of the action of the inertial pressure. Due to droplet spreading, the
capillary pressure acts over a larger length scale of R∗d. The contact area Ac used in
the main text accounts for this difference.

Appendix C. Virtual lifting process

In the main text we consider a virtual lifting process, where the crater profile is a
parabola,

z(r, Zc)= Zc

(
r2

R2
0
− 1
)
. (C 1)

The centre depth Zc is decreased during the lifting, while the position where the profile
intersects with 0, r= R0, is fixed. This process is sketched in figure 7.

The profile represents the top surface of the liquid–grain mixture. The area of the
top surface can be written as an explicit function of Zc,

Σ(Zc) = π

∫ R0

0

√
1+ z′2 dr2

−πR2
0

=
πR4

0

6Z2
c

[(
1+ 4

Z2
c

R2
0

)3/2

− 1

]
−πR2

0

≈ 2πZ2
c . (C 2)

The last step is obtained by the expansion to the second order of Z2
c/R

2
0, when the

crater is shallow, i.e. 4Z2
c � R2

0. The corresponding surface energy Es = σΣ(Zc) is
thus quadratic in Zc.

On the other hand, the lift of the mixture increases the gravitational energy,
Eg(Zc). Denote the density of the liquid–grain mixture as ρm, and assume the
average thickness of the mixture, L̄, is constant during lifting. Given Eg(Z∗c ) = 0,
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z

Zc = 0 (t = tf)

Zc = Z*
c/2

Zc = Z*
c (t = t* )

r

r = R0

FIGURE 7. A sketch of the virtual lifting process.

the gravitational energy can be computed by the integral of volume elements lifted
from z(r, Z∗c ) to z(r, Zc)

Eg(Zc) = ρmgL̄π

∫ r=R0

r=0
[z(r, Zc)− z(r, Z∗c )] dr2

= ρmgL̄[V(Z∗c )− V(Zc)]. (C 3)

Substituting the parabolic profile in (C 1) into the above definition gives

Eg(Zc)= ρmgL̄
π

2
R2

0(Z
∗

c − Zc). (C 4)

The gravitational energy in (C 4) is seen to be linear with Zc.
Applying (C 2) and (C 4) to the lifting criterion (see the main text),

dEs + dEg

dZc

∣∣∣∣
Zc=Z∗c

> 0, (C 5)

one obtains the lift criterion in terms of total virtual change of Es and Eg, 1Es/
1Eg> 0.5. One may easily check that the obtained criterion is equivalent to the force
condition where the surface tension force exceeds that of gravity.

This energy ratio can be further written explicitly,

1Es

1Eg
=

σ

ρmg
Σ(Z∗c )
V(Z∗c )

1
L̄

∝
Σ(Z∗c )
V(Z∗c )

R∗d
2

Vm
=
Σ∗

V∗
R∗d

2

Vm
. (C 6)

Both Σ∗ and V∗ are measurable in experiments. The average thickness of the liquid–
grain mixture is evaluated, L̄ = Vm/R∗d

2. For a given mixing ratio Vm, the larger the
spreading of the droplet, R∗d, and/or the larger area volume ratio, Σ∗/V∗, the larger
the energy ratio is. The value of R∗d is a monotonic increasing function of the impact
speed U. The area volume ratio measured in experiments increases with U for small
impact speed but largely saturates for high speed (cf. figure 8). Therefore, roughly
speaking, for a given mixing ratio, 1Es/1Eg increases with U.

The analysis above is performed on a parabolic crater shape and its virtual lifting
process. For axisymmetry shapes of higher order the lifting path is expected to be
more complex. Nevertheless, a similar procedure could still be applied to obtain
the lifting criterion. The resultant lifting criterion in that case may however not be
expressed as the ratio of the total virtual change of energies.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

74
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.742


Formation of a hidden cavity 71

0.4

0.3

0.2

0.1

0
1.0 1.5 2.0 2.5 3.0 3.5

Í
* /

V
*  (m

m
-

1 )

Impact speed U (m s-1)
4.0 4.5 5.0 5.5 6.0

FIGURE 8. (Colour online) The ratio of the area and volume Σ∗/V∗ is measured from
the experimental profile at t∗. The scattering for a given U reflects the influence of the
varying packing fraction of the granular target.

Appendix D. Experimental lifting process

In practice the lifting process may be different from that sketched in figure 7, and
the profile may deviate from a parabola. An example can be seen in figure 9, where
the curvature around r=Rd is larger than that at the centre. As a consequence, lifting
is initiated by decreasing the curvature at Rd, and the central curvature is enhanced to
further lift the residual. This lifting process is different from the virtual one depicted
in figure 7. However, this difference is not significant enough to invalidate the lifting
criterion introduced here.

0.4

(a)

(b)

0.2

0

-0.2Cu
rv

at
ur

e 
(m

m
-

1 )

6 8 10 12 14

Centre

16

Rd

18 20
t (ms)

FIGURE 9. (Colour online) (a) Snapshots of the crater height profile at the moment
reaching maximum depth and 5 ms and 10 ms afterwards. (b) Time evolution of the
curvature in the (r, z)-plane in the centre and at a distance equal to the original droplet
radius, r = Rd. The data are from an experiment in regime b for a water droplet impact
with U= 4.1 m s−1, Rd= 1.4 mm, dg= 98 µm and cos θ = 0.6. The crater profiles shown
here are fully resolved by the laser profilometry and therefore do not contain any fitting.
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