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INFINITE QUASI-NORMAL MATRICES 

N. A. WIEGMANN 

1. Introduction. If A is a finite matrix with complex elements, and if 
A = A T (where AT denotes the transpose of A ), it is known (see [8] ) that 
there exists a unitary matrix U such that UA UT = D is a real diagonal matrix 
with non-negative elements which is a canonical form for A relative to the 
given U, UT transformation. If A is a quasi-normal matrix, i.e. a complex 
matrix such that AACT — ATAC (where A c denotes the complex conjugate of 
A and ACT denotes the complex conjugate transpose), it is known by [6; 10] 
that a necessary and sufficient condition for this to occur is that there exist a 
unitary matrix U such that UA UT is a direct sum of non-negative real numbers 
and of matrices of the form 

[-• i] 
where a and b are non-negative real numbers. \i A = —AT, the as are 0 and 
a special case of this form results (see [9], also). Here the analogous normal 
forms are obtained for the case of infinite matrices which represent completely 
continuous operators in Hilbert space P. The point of view involves operator 
theory to some extent, but ultimately the matrix point of view since the results 
are concerned essentially with normal forms of matrices. 

2. The transpose operator. First, the following facts are recalled relating 
to a completely continuous operator s/ in complex Hilbert space I2. Let 
A = (dij) be an infinite matrix which represents s/ relative to a given 
orthonormal basis. It is known that se has a polar decomposition 
stf = °léSP where SP is a positive Hermitian operator, °tt is a partially isometric 
operator whose initial set is the closure of the range of SP and whose final set is 
the closure of the range of s/, and where % is unique. (See [7; 3], or [4].) It is 
also true that & = °tt*sé (where ^ * denotes the adjoint of %) is completely 
continuous, that %^0 = 0 (see [4, p. 264, solution 105] or [7, p. 5]), and 
that s/ = °ti@ = &°ti where fy^fy* = £ is positive Hermitian. Relative 
to the given basis let S$ = tyl^ = 21% have the matrix representation 
A = UP = QU where A = (a,,), U = (w,,), P = (ptj), and Q = (qtj). This 
is true since to the product of operators there corresponds the product of cor­
responding matrices relative to the same basis. U = (utj) is not necessarily 
unitary. 
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The transpose of s/, denoted byJ^27, is a linear transformation on the con­
jugate space with a matrix representation which is the transpose of A, relative 
to the appropriate basis. For purposes here, a transpose of s/ is defined which 
is an operator on the same space I2 but also has a matrix representation which 
is the transpose of A. This is done as follows and the author is indebted to 
William L. Armacost who supplied the details in the following four paragraphs 
when the question of defining such a transpose arose in this work. 

Let {et} be the usual orthonormal basis of I2 and let x = YX=ixiei £ I2-
Define a transformation *$ as follows: 

oo 

1 = 1 

which is in I2. This is a conjugate-linear (or "semilinear") transformation from 
I2 onto I2 which is one-to-one and has the following properties (see [5, p. 357]): 
%f2 = J so «g"-1 = # ; <i£(x + y) = tfx + tfy; ^ (ax) = dtf (x) for any 
complex scalar a where à denotes the conjugate of a. Also if (x, y) denotes 
scalar or inner product, then (*1ox, y) = (x, fây) and (tëx, ^y) = (x, y) = 
(y,x); the latter implies (fëx, ^x) = | | ^ | | 2 = ||x||2 so \\Cx\\ = \\x\\ (where 
||x|| denotes the norm of x) for any x in I2. This means *$ is an isometric 
mapping. 

L e t s é be a bounded linear operator mapping I2 into I2 with (s/ejy et) = a^ 
relative to a basis {e^. Let se be the operator defined hy se = ^sé^. Then 
stf is a linear operator mapping I2 into I2 (since J^(x + y) = ^s/^ (x + y) = 
i&s/Vx) + i$sf<£y) and since 

s/(ax) = (cêsécé)(ax) = {<gs/)(â<£x) = <£(âsf<£x) = ~a<£s/Vx = atfx). 

s$ is bounded. (For 

| | j / | | = sup | k M = i | | j /x | | = sup i i zu = i | | ^ j / ^x | | = s u p | k N = i | | j / ^ | | 

since *$ is an isometry. The latter, since ^ is a one-to-one onto isometry, is 
equal to 

S U p N ^ | | = i | | j / ^ x | | = S U p | | z | | = l | | ^ | | = \\A || < 00 

s o J ^ is bounded.) And, finally, (£$eh et) = â^ since 

(jfe,, et) = (tfs/tfej, et) = W^e~W^) = (p/ej9 et) = âtJ. 

Next, define the T-transpose of s/, denoted by J3/T , to be the linear trans­
formation j / T = Sif* = ^ j / * ^ 7 wheres/* is the adjoint of s/. j / T is a linear 
transformation on I2 into I2 for which the usual transpose properties hold: 

and (c^T)T = s/. Also, 

(&/rejf et) = (&/*ejt et) = (ejts/et) = (séeu ej) = aH 

so the matrix of s/T is the transpose of the matrix of s/. 
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Other properties oîsfT are as follows: (s/*)r = ^sé^ = se. s/T = se* = 

( j / )* since (Vs/V)* = % / * < ^ because 

( ( % / ^ ) x , y) = (j/^fx, ^ y ) = Wx^*Vy) = (x, tfs/^y) = 

for all x and y in /2. If se is Hermitian, so is s/r since («fl/T)* = (tfs/*^)* = 
( % / < ^ ) * = % / # < ^ = J / T . If J / is unitary, so is j / T , since if s/ is unitary, 

J / J / * = s/*s/ = J and so 

(s/T)*s/r = (&s/*<g)* (&s/*<$) = ( % / S f ) (Vs/*V) 

= "êsésé*^ = W = J 
and similarly s/T(<s/T)* = J^. Similarly, if se is a partial isometry, then so is 

s/T. (It is also evident that if s/ is unitary so iss/, and if s/ is Hermitian, 

so iss/.) Also, (s/T)* = (s/*)T. 

Furthermore, if se is completely continuous, so is stf, and therefore so is 
j / T = («a/)*. It is to be shown that if i.e., if xn converges to x weakly, 
thenJzfxn —*S$x, \.e.,s/xn converges to s/x strongly. This will follow if it is 
shown that xn —^ x implies ^x w —̂  *iox which in turn implies S$xn -+séx. 
If xn - x, \{^xn - <gx, y)\ = \{$Xn - Vxy V (& y))\ = \($(xn - x), 
&(Çfy)| = \{xn — x, cé?y)\ = | (xn — x, cé?y)\ —> 0 for each y in I2 since zn —^ z 
if and only if (zn, y) —> (z, y) for each y in P. So ^ x w —̂  fëx. Since J3^ is com­
pletely continuous, s/fëxn —^sé^x. Therefore, 

\\âtxn -S/X\\ = W^St^Xn - <£S/Vx\\ = WV&VXn ~ se^x)\\ = 

so J ^ is completely continuous. 
Let J3/T denote the transpose oi&/, as above, and let A T denote the transpose 

of matrix A relative to a given basis. Since s/ = °tt£P = Q°tt, then J / T = 
^ > T ^ T = ^ T ^ T , and so A T = P7 1^2 7 = [7 r(? r , where ^ T and t/77 are partial 
isometries, ^ T , â T , PT and QT Hermitian. 

3. The T-symmetric case. Let *$/ be a completely continuous operator in 
/2 such that relative to some orthonormal basis {et}, Ç^fej} et) = (£^rejl e^, i.e., 
atj = da for A determined by s/ relative to this basis. (That such operators 
and matrices do exist and non-trivially is evident if one takes a completely 
continuous operator 38, and forms 38 + 38 which is in P and completely 
continuous, since 38T is such.) Such an operator^/ for which the above is true 
will be called T-symmetric and denoted by s/ = s/T. 

The following analog for the finite case will be shown: 

THEOREM 1. If A is the matrix, relative to an orthonormal basis, of a completely 
continuous operators/ = se , i.e. such that A = AT, there is a unitary matrix U 
such that UA UT = D is a real diagonal matrix. 
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If st = J / T , then from the above it follows that A = UP = AT = UTQT 

where P = PCT (where the latter denotes the complex conjugate-transpose of 
P) and QT = (QT)CT = Qc. This means that P = QT; for 0>2 = s/*s/ = 
(s/*)rs/T = ( J / J / * ) T = («g2)T = ( ^ T ) 2 and since 0> and QT are positive 
operators, it follows that 0> = 2>T and P = QT. 

Therefore A = UP = QU = PTU. Since S$ is completely continuous, SP 
and St are completely continuous Hermitian operators so there exist (infinité) 
unitary matrices IF and F such that WPWCT = D and VQVCT = Di are real 
diagonal matrices. In particular assume D is diagonal with real diagonal ele­
ments \i where lim X* = 0 as i becomes infinite. Then it follows that 
WCAWCT = WCUWCTWPWCT = WCPTWTWCUWCT or, if X = WCUWCT, 
XD = DX and X is such that U is the matrix of a partial isometry and 
Wc and WCT are unitary. Since % is a partial isometry, °U*°ll = K is such 
that J^2 = J ^ is Hermitian (see [2, p. 153], for example) which means that 
UCTU = (UCTU)2 so that 

(WUCTWT)(WCUWCT) = (WUCTWT)(WCUWCT)(WUCTWT)(WCUWCT) 

= (wuCTwTwcuwCTy 
or XCTX = (XCTX)2. There are two possible cases, (a) If no X* = 0 in D, 
then since lim^œXi = 0, there can be only a finite number I of the xt such that 
Xi = X2 = . . . \i is the \ t of largest value. Since X commutes with D, X = 
X1 + X' where Xx is of finite dimension /. Then XCTX = (XCTXY which is 
Hermitian. (It follows that the roots of XiCTX1 are either 1, 0 or both.) From 
JJCT UP = p f0 i io w s WUCTWTWCUWCTWPWCT = WCTPWor XCTXD = 
D. This means that X1

CTXi\1 = XiA where Xi ^ 0 and so XiC77Xi = Iu 

where I\ is a suitably finite-dimensional identity matrix, so that Xi is unitary. 
X' can now be treated in the same way and by such successive steps involving 
\ t of like value, X — Xi + X2 + X3 + . . . where the latter is a direct sum 
of the X i and conformable to the blocks of like diagonal elements in D and 
where each such Xt has the properties of Xi above, (b) If some X* = 0 (either 
finite or infinite in number) by following the stepwise process described above 
D can become a direct sum of such XJi blocks, \ t ^ 0, interspersed with direct 
sums of 0's. If X = (xst) and if 0 appears in the i-i and j-j positions of D for 
i 7^ j then xiU xij} xju and x;j- are not necessarily 0. (The matrix composed of 
all such Xij is the matrix of a partial isometry.) But X is such that WCA WCT = 
DX is a direct sum of \tXu \ t ^ 0, interspersed with 0's along the diagonal. 
If for some k all X* = 0 for i > ky then D may be taken to be in the form 
Xili + X2/2 + • • • + XJ_IJTZ_I + 0 (where 0 is an infinite matrix of 0's) with 
the X, ^ 0. In this case WCAWCT = WCUPWCT = WCUWCTWPWCT = 
XD = \\X\ + X2X2 + . . . + X _̂i Xt-i + 0 where the latter is an infinite 
matrix of zeros. 

From A = UP = QU = AT = UTQT = UTP or A = UP = UTP follows 
WCAWCT = WCUWCTWPWCT = WCUTWCTWPWCT = XD = XTD. This 
means that each Xt corresponding to X̂  ^ 0 is such that XiXi = \tX

T or that 
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Xf = XiT where Xt is unitary. So for each X\, for which Xi 9e 0, there exists 
a real orthogonal matrix Wt such that WiXiWiT is complex diagonal and 
unitary. (For if M = Mi + iM2, Mi and M2 real, is unitary and symmetric, 
Mi and M2 are commutative real symmetric matrices which can be diagonalized 
by the same real orthogonal matrix.) So there is a complex unitary matrix T 
(a direct sum of Wt and l 's corresponding to 0's in D) such that TATT is a 
diagonal matrix with diagonal elements of the form X/x, X real (including 0) 
and approaching 0 as one moves along the diagonal and |/z| = 1. If S is the 
diagonal matrix with diagonal elements yrl/2 in corresponding position, when 
X ̂  0 and 1 when X = 0, 5 is unitary and STATTST is a real diagonal matrix 
with diagonal elements X* where X̂  —•» 0 as i —> 00. 

4. The T-skew symmetric case. Let se be a completely continuous 
operator in I2 such that relative to some orthonormal basis {et), (f#eh et) = 
— ($/Tej, et), i.e., atj = — an for A = (a if) determined by s/ relative to this 
basis. (That such operators and matrices do exist is evident if one takes a 
completely continuous operator Se as before and forms 31 — S§r which is 
in I2 and completely continuous.) Such an operator will be called T-skew-
symmetric and denoted byJ^/T = —se. 

The following analog for the finite case is to be shown: 

THEOREM 2. If A is the matrix, relative to an orthonormal basis, of a completely 
continuous operator s/ = — s/r, i.e. such that A = —AT, there is a unitary matrix 
U such that UA UT is a direct sum of 0''s and of matrices of the form 

r 0 xfi 
L-x* oj 

•where A,- is real and lim X,- = 0 as i —* oo . 

The proof parallels that as found in the reference [9] given above. If 
s/ = - j / T , t h e n j / = q/S? = £W = - J / T = - ^ T ^ T = - ^ T i 2 T which 
means^ = UP = QU = -PTUT = - UTQT. As before, P2 = (QT)2 from which 
P = QT. (P = —QT would not be possible since QT is positive and P must 
also be positive.) The proof proceeds, in the reference given, by considering 
the non-singular and singular case. Here the proof is along lines similar to the 
T-symmetric case as follows. Let WPWCT = D be real diagonal with diago­
nal elements X* where W is unitary. From A — UP = QU = PTU it follows, 
as above, that X = WCUWCT is such that XD = DX, and if no X< = 0, 
X is a direct sum of Xi, X2, . . . , each finite dimensional; and if some Xz = 0 
then DX is a direct sum of finite dimensional XtXi interspersed with direct 
sums of 0's. As before, the finite-dimensional Xt are unitary and from A = 
UP = —UTP, it follows that XD = —XTD and so each finite dimensional 
Xt = —X/. By [9, Lemma 1, p. 438], if X is a (finite-dimensional) complex, 
unitary, skew-symmetric matrix, there exists a complex unitary V such that 
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VXVT = E is a direct sum of 2 X 2 matrices of the form 

[-Î il 
An inspection of the proof of that lemma reveals that the V described is 
actually a product of matrices ST where T is real orthogonal such that TXTT 

is a direct sum of 2 X 2 blocks of the form 

0) [-« ;] 
where a is non-zero complex and aâ = 1. In the present case if Tt is the real 
orthogonal matrix which performs this on the Xu then if T is the correspond­
ing direct sum of l's (corresponding to O's in the diagonal of D) and of these 
Tu TWCAWCTTT is a direct sum of O's and of \iAu \ t 9^ 0, where each At is 
a direct sum of 2 X 2 matrices of the form (i). If a = eie and S is an appropriate 
direct sum of l's and of 2 X 2 matrices of the form 

[0 e-id/2~] 

îct sum of ma 

[ 0 \tl 
then STWCAWCTTTST is a direct sum of matrices of the form 

where X* —> 0 as i —» co . 

5. The quasi-normal case. Let se be a completely continuous operator. 
Then so are s/s/*, sé*stf and (5 /* j / ) T = J / T ( < Q / * ) T = J / T ( ^ T ) * . By defini­
tion, an operator se will be said to be quasi-normal if S$sé* = (&/*£/)T = 
J 3 / T ( ^ * ) T =s/rs/. (That such operators do exist may be seen as follows. 
Let Se be an operator which, relative to some orthonormal basis, has an 
infinite matrix which is a direct sum of matrices of the form 

(ii) r at b~\ 
\_-bi at] 

where the at and bt are non-negative real numbers and XJLi(a7;
2 + bt

2) < co. 
Then & is a completely continuous operator (see [2, Exercise 1, p. 177]). Let °tt 
be a unitary operator, and so ^ T is also unitary. Then %£$% is completely 
continuous and meets, non-trivially, the above definition, as can be directly 
verified.) 

The following theorem results: 

THEOREM 3. If A is the matrix, relative to an orthonormal basis, of a completely 
continuous quasi-normal operators/, i.e.,s/ç/* — s/T (&/*)1', there is a unitary 
matrix U such that UA UT is a direct sum of matrices of the form (ii) above, 
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where at and bt are real and at —> 0 and bi—>Oasi becomes infinite, and oflXl 
real ct where Ci—* 0 as i becomes infinite. 

Let s/ be quasi-normal and completely continuous and let <$/ = y + 3T 
where y = 1 / 2 (^ + j / T ) and T = 1/2(3? - s/T) so that y = yT and 
^T = —J r T . The proof proceeds as in the finite case as follows. Since S$stf* = 

^T(c5/*)T, it follows that (y +^~)(y* +<r*) = (yT+<rT)(y*+<r*)r 

or 

(y +<r)(y* +^*) = (y -<r)([yTy + [^Tn 
= (y -3T)(y* -*r*) 

soyy* + y^r* + 3ry* + T3r* = yy* - y*r* - sry* + ^ r * so 
(f^* — —&r(f*^ Relative to the given basis, the corresponding matrix pro­
duct becomes STCT = -TSCT or -STC = -TSC or STC = TSC. By 
Theorem 1 there exists a unitary matrix U such that USUT = D is a real 
diagonal matrix of the form described there. If UTUT = M, then MD = DMC. 
If the diagonal elements of D are du and if M = (tu), then tijdj = dt ti:j where 
tji = —tij. Three possibilities may occur: if di = dt ^ 0, then ttj is real; 
if dj = dt = 0, ttj is arbitrary (though M = —MT still holds); and if 
dj 7e- dt, then ttj = 0, for if ttj = a + ^ , then (a + i6)<^ = dt(a — ib) and 
a(d^ — di) = 0 implies a = 0 and b(dt -{- dj) = 0 implies dt = —dj (which 
is not possible since the dt are real and non-negative and dj 9^ dt) or b = 0 
so tij = 0 . 

So if USUT = D then the following two cases arise: (a) If no dt = 0, the 
dt may be arranged so dt ^ di+i for i = 1, 2, 3, . . . and relabelled di, d2, 
d3, . . . with di 7e- dj when i 9^ j . Then UTUT = T\ + T2 + • • • is a direct 
sum conformable to Z} where the 7\ are real, finite dimensional, and infinite 
in number and Tt = —TiT; for each such 7\ there exists a real orthogonal 
Vi such that V\T\V\T is a direct sum of 0's and of matrices of the form 

0 6"| 
-b OJ 

where b is real (see [1, p. 65] for the real even dimension skew-symmetric 
matrix case), (b) If some dt = 0 (either finite or infinite in number) and if 
UTUT = (ttj) ,when 0 is in the i-i and j-j position for i 9^ j , then tiu ttj, tju 

and tjj are not necessarily 0 but the matrix T' composed of all such tTS taken in 
order (which could be finite or infinite and distributed throughout UTUT) 
is complex skew-symmetric. For such a T', finite or infinite, there exists a 
complex unitary I^such that WT' WT is the direct sum described in Theorem 1 
of [9] if T' is finite, or such that WT'WT is the direct sum described in Theorem 
2 above if T' is infinite. 

To examine each of these cases consider the following representative sample 
as a guide in which VA UT = USUT + UTUT = 
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d2l2 

Oh 
dj.± 

075 

where the dt are non-zero and dt > dj for i < j . 
If the number of O's in the diagonal of USUT is finite, so is the number of 

Tij, and a simple rearrangement of the Ttj into a single complex skew-sym­
metric block in the given order is possible under a real orthogonal transforma­
tion and this block will correspond to a diagonal of O's in USUT while retaining 
the diagonal form in the latter. If F is a direct sum of real Vi acting on the Tt 

as in (a) and of the appropriate unitary matrix acting on (Ttj) of Theorem 1 
of [9], VUA UTVT gives the form desired. 

If the number of diagonal O's in USUT is infinite so that V = (Tij) is 
infinite, by Theorem 2 in this article there is a unitary matrix W such that 
WT'WT = F is a direct sum of the form of Theorem 2. Let W = (Wa) be 
sectioned according to the sectioning of T' = (Tij). Let V be an infinite matrix 
formed as follows: in UTUT let each Tt be replaced by the real orthogonal Vt 

as described in (a) above, and let each T{j be replaced by Wij. Then 
VUSUTVT = USUT, and VUTUTVT has a form in which each Tt in UTUT 

is replaced by the form Ft described in (a) and each Ttj in UTUT is replaced 
by Ftj where F = (Ftj) is sectioned as (T{j) is. In the sample case above 
VUTUTVT has the form 

[Fx 0 1 
I 0 F2 | 

^ u 0 F12 • • • I 
0 FA 0 I 

-F12
T 0 F22 • • • 

Because of the form of F either Fljy all j 9e 1, in the same row as Fu are 0 or 
not. But if not, because of the direct-sum form of F, at most one of them, 
namely Fu, can be different from 0 and if so, the only nonzero element a in 
an Fi2 must occur in the lower left corner position (and in the upper right 
corner position of —Fi2

T). A suitable interchange of the row and column 
containing —a and a and of F± can bring the upper left block of VUTUTVT 

into the desired form without altering the diagonal form of USUT. Repeating 
this process with each subsequent Fa as needed brings the matrix A into the 
desired form under the required transformation. 

Tx 0 
o r2 

Tu O T12 . 
o r4 o 
-T12

T 0 T22 . 
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In the case of a finite n X n matrix with complex elements it is true that 
every matrix is similar to its transpose. Here, s inces / T = ^s/*^', it is true 
if A has a polar form J / = °USP, séT = <€SPfy*^ = &<%*<%&><%*& = 
fâ &*£/&* fâ but this provides no matrix connection between A T and A. For 
the case in which s/ is quasi-normal, the following observation holds. Let 
UA UT = F be the direct sum as described in the preceding theorem. Then 
UA TUT = FT. If W is an appropriate direct sum of 2 X 2 matrices 

ro i i 
U oj 

and l's, WFWT = FT from which UCTWUAUTWTUC = A T or VA VT = 
A T where V = UCTWU is unitary. Therefore, a linear operator 'f on I2 does 
exist so t h a t ^ W ^ T = J / T . 
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