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INFINITE QUASI-NORMAL MATRICES
N. A. WIEGMANN

1. Introduction. If A is a finite matrix with complex elements, and if
A = A7 (where A7 denotes the transpose of 4), it is known (see [8]) that
there exists a unitary matrix U such that UA U” = D is a real diagonal matrix
with non-negative elements which is a canonical form for 4 relative to the
given U, UT transformation. If 4 is a quasi-normal matrix, i.e. a complex
matrix such that 447 = ATA4° (where 4 ¢ denotes the complex conjugate of
A and A°7? denotes the complex conjugate transpose), it is known by [6; 10]
that a necessary and sufficient condition for this to occur is that there exist a
unitary matrix U such that U4 U7 is a direct sum of non-negative real numbers
and of matrices of the form

5]
—b a

where ¢ and b are non-negative real numbers. If A = — A7, the a’s are 0 and
a special case of this form results (see [9], also). Here the analogous normal
forms are obtained for the case of infinite matrices which represent completely
continuous operators in Hilbert space /2. The point of view involves operator
theory to some extent, but ultimately the matrix point of view since the results
are concerned essentially with normal forms of matrices.

2. The transpose operator. First, the following facts are recalled relating
to a completely continuous operator .27 in complex Hilbert space 2. Let
A = (a;;) be an infinite matrix which represents &/ relative to a given
orthonormal basis. It is known that &/ has a polar decomposition
A = UP where P is a positive Hermitian operator, % is a partially isometric
operator whose initial set is the closure of the range of & and whose final set is
the closure of the range of .97, and where % is unique. (See [7; 3], or [4].) It is
also true that & = %*o/ (where %* denotes the adjoint of %) is completely
continuous, that X*U P = P (see [4, p. 264, solution 105] or [7, p. 5]), and
that & = UP = QU where UPU* = 2 is positive Hermitian. Relative
to the given basis let &/ = U = 29 have the matrix representation
A = UP = QU where A = (ay), U = (44;), P = (pi;), and Q = (g;;). This
is true since to the product of operators there corresponds the product of cor-
responding matrices relative to the same basis. U = (u;;) is not necessarily
unitary.
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The transpose of &, denoted by .27 7, is a linear transformation on the con-
jugate space with a matrix representation which is the transpose of 4, relative
to the appropriate basis. For purposes here, a transpose of & is defined which
is an operator on the same space /2 but also has a matrix representation which
is the transpose of A. This is done as follows and the author is indebted to
William L. Armacost who supplied the details in the following four paragraphs
when the question of defining such a transpose arose in this work.

Let {e;} be the usual orthonormal basis of /2 and let x = > ix.e; € 2
Define a transformation % as follows:

a0
ng = Z X i€y
i=1

which is in /2. This is a conjugate-linear (or ‘‘semilinear’’) transformation from
12 onto I* which is one-to-one and has the following properties (see [5, p. 357]):
Cr=F s0o € 1=%; Cx+y) =Fx+ Fy; €(ax) = a% (x) for any
complex scalar ¢ where @ denotes the conjugate of a. Also if (x, y) denotes
scalar or inner product, then (%x,y) = (v, €y) and (¥x, €y) = (x,y) =

(v, x); the latter implies (¥x, Tx) = ||€x||> = ||*||> so ||Cx|| = ||*|| (where
||x|| denotes the norm of x) for any x in /2. This means % is an isometric
mapping.

Let.% be a bounded linear operator mapping /* into /* with (Heje) = ay
relative to a basis {e}. Let o/ be the operator defined by & = 4./ ¢ . Then
&/ is a linear operator mapping /2 into 2 (sinceZ (x + y) = €L C (x + y) =
(€A €x) + (6% y) and since
oL (ax) = (CALC) (ax) = (64)(@Fx) = € @A Cx) = abA Cx = alx).
o/ is bounded. (For

1 || = supiiai=al| ]| = supiiay—1l| €5/ Fal| = supijziimal | B

since € is an isometry. The latter, since % is a one-to-one onto isometry, is
equal to
supjesi=1| & €x|| = supjjzn=|| Hx|| = || 4 ]| <

s0.o/ is bounded.) And, finally, (&Zej, e;) = d,; since
Ly, ;) = (CACeser) = (A Cey, Cei) = Hey, e1) = au.

Next, define the T-transpose of .27, denoted by /T, to be the linear trans-

formation /T = o/* = G.A/*% where L* is the adjoint of . 7T is a linear
transformation on /2 into /? for which the usual transpose properties hold:

AB) = BT, (A + B) = AT + BT
and (@)T = . Also,
(&/Ten e;) = ('9?*%7 ;) = (ejyyei) = (-52{61, e;) = a;;

so the matrix of &7 is the transpose of the matrix of &7.
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Other properties of /T are as follows: (¥*)T = CAC = . AT = o/* =
()* since (6L C)* = CA*F because

(CAC)x,y) = (A Cx, €y) = (€x,L*Cy) = (x, CL*Cy) =

(x, €A *Ey)
for all x and y in /2. If & is Hermitian, so is ./ T since (Z7)* = (€./*€)* =
(CAC) = €CL*C =L, 1f & is unitary, so is. &7, since if & is unitary,
AA* = A%/ = F and so
ALY = (CACY (GAC) = (6AC) (EA*F)

= CAA*C = CC = S

and similarly T (& T)* = 4. Similarly, if & is a partial isometry, then so is
/T, (It is also evident that if &/ is unitary so is &, and if &/ is Hermitian,
s0 is.o.) Also, (ZT)* = (Z*).

Furthermore, if &/ is completely continuous, so is %7, and therefore so is

AT = (&?)*. It is to be shown that if x, — x, i.e., if x, converges to x weakly,
then Ja?xn —x, ie., Zx, converges to A x strongly. This will follow if it is
shown that x, — x implies ¥x, — Fx which in turn implies A, — A x.
C(€y)| = |(x. — x, €y)| = |(x, — x, €y)| — 0 for each y in [* since 2, — 2
if and only if (2., ¥) — (2, ¥) for each y in I2. So E'x, — . Since & is com-
pletely continuous, ./ %'x, — .o/ €'x. Therefore,

L %0 — Ax|| = || €A Crn — CACx|| = ||C (A ECxw — A Cx)|| =
|| € x, — A Cx|| -0

so.%/ is completely continuous.

Let.o/ T denote the transpose of &7, as above, and let A 7 denote the transpose
of matrix 4 relative to a given basis. Since &/ = #P = 2%, then /T =
PIYT = YTDT, andso AT = PTUT = UTQ7, where %™ and U7 are partial
isometries, ZT, 2T, PT and Q7 Hermitian.

3. The T-symmetric case. Let &/ be a completely continuous operator in
12 such that relative to some orthonormal basis {e,}, (Ze;, e;) = (& e, ¢,), i.e.,
ay; = a;; for A determined by .27 relative to this basis. (That such operators
and matrices do exist and non-trivially is evident if one takes a completely
continuous operator &, and forms & + %™ which is in 2 and completely
continuous, since &7 is such.) Such an operator.% for which the above is true
will be called T-symmetric and denoted by &/ =.2/T.

The following analog for the finite case will be shown:

TaEOREM 1. If A is the matrix, relative to an orthonormal basis, of a completely
continuous operator o/ =L, i.e. such that A = AT, there is a unitary matrix U
such that UAUT = D is a real diagonal matrix.

https://doi.org/10.4153/CJM-1973-084-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-084-6

INFINITE QUASI-NORMAL MATRICES 823

If o/ =.o/7, then from the above it follows that A = UP = 47 = UTQT
where P = P¢T (where the latter denotes the complex conjugate-transpose of
P) and Q7 = (Q7)°T = Q. This means that P = Q7; for #? = &/ */ =
LT = (AA*)T = (22T = (27)? and since P and QT are positive
operators, it follows that 2 = 2T and P = Q7.

Therefore A = UP = QU = PTU. Since %7 is completely continuous, &
and £ are completely continuous Hermitian operators so there exist (infinite)
unitary matrices W and V such that WPW¢T = D and VQV°T = D, are real
diagonal matrices. In particular assume D is diagonal with real diagonal ele-
ments A\; where lim A, = 0 as 7 becomes infinite. Then it follows that
WCeAWECT = WOCUWCTWPWCT = WEPTWITWCUWCT or, if X = WCUWCT,
XD = DX and X is such that U is the matrix of a partial isometry and
W€ and W€T are unitary. Since % is a partial isometry, #*% = K is such
that 42 =4 is Hermitian (see [2, p. 153], for example) which means that
UcTU = (U°TU)? so that
(WUCTWTY(WCUWET) = (WUCTWT)Y(WeUWCT)(WUCTWT)(WCUWET)
(WUCTWITWCUWET)?
or X¢TX = (X°7TX)?2 There are two possible cases. (a) If no \; = 0 in D,
then since lim,_ A; = 0, there can be only a finite number / of the x; such that
M = Ao = ...\ is the \; of largest value. Since X commutes with D, X =
X, 4+ X’ where X} is of finite dimension /. Then X °7X = (X°7X)? which is
Hermitian. (It follows that the roots of X;°7X; are either 1, 0 or both.) From
UCT UP = P follows WUCTWTWCUWCTWPWCT = WCTPWor X¢TXD =
D. This means that X;°TX;\; = M J; where \; # 0 and so X:°7X, = I,
where I is a suitably finite-dimensional identity matrix, so that X is unitary.
X’ can now be treated in the same way and by such successive steps involving
\; of like value, X = X; 4+ X, + X; + ... where the latter is a direct sum
of the X; and conformable to the blocks of like diagonal elements in D and
where each such X ; has the properties of X above. (b) If some \; = 0 (either
finite or infinite in number) by following the stepwise process described above
D can become a direct sum of such \;I; blocks, \; # 0, interspersed with direct
sums of 0’s. If X = (x,,) and if 0 appears in the ¢-z and j-j positions of D for
1 # j then x4, %45, %55, and x;; are not necessarily 0. (The matrix composed of
all such x,, is the matrix of a partial isometry.) But X is such that W4 W¢7T =
DX is a direct sum of A\ X, \; ## 0, interspersed with 0’s along the diagonal.
If for some k all A\; = 0 for ¢« > &, then D may be taken to be in the form
M1 4 Nols + ... F NeiJi1 + O (where 0 is an infinite matrix of 0's) with
the \; # 0. In this case WCAWCT = WCUPWCT = WCUWCTWPWCT =
XD = MX: + NXe + ... F A1 X1 + 0 where the latter is an infinite
matrix of zeros.

From A = UP = QU = AT = U?QT = UPor 4 = UP = U?P follows
WCeAWECT = WeUWCTWPWCT = WCUTWCTWPWCT = XD = X7D. This
means that each X ; corresponding to \; # 0 is such that A, X; = N\, X7 or that
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X, = X,T where X, is unitary. So for each X, for which \; # 0, there exists
a real orthogonal matrix W; such that W, X , W7 is complex diagonal and
unitary. (For if M = M + iM,, M, and M, real, is unitary and symmetric,
M, and M, are commutative real symmetric matrices which can be diagonalized
by the same real orthogonal matrix.) So there is a complex unitary matrix 7°
(a direct sum of W, and 1’s corresponding to 0’s in D) such that TA77 is a
diagonal matrix with diagonal elements of the form A, A real (including 0)
and approaching 0 as one moves along the diagonal and |u| = 1. If S is the
diagonal matrix with diagonal elements u~!/2 in corresponding position, when
XA % 0and 1 when A = 0, .S is unitary and STAT7S7? is a real diagonal matrix
with diagonal elements \; where \; — 0 as 2 — 0.

4. The T-skew symmetric case. Let &/ be a completely continuous
operator in /2 such that relative to some orthonormal basis {e}, (Ze;, ;) =
— (L Tey, e1), e, a; = —ay;; for A = (ay;) determined by . relative to this
basis. (That such operators and matrices do exist is evident if one takes a
completely continuous operator & as before and forms & — 7T which is
in /2 and completely continuous.) Such an operator will be called T-skew-
symmetric and denoted by /T = —o7.

The following analog for the finite case is to be shown:

THEOREM 2. If A s the matrix, relative to an orthonormal basis, of a completely
continuous operator S = — /", i.e. suchthatA = — A7, thereis a unitary matrix
U such that UA U™ s a direct sum of 0's and of matrices of the form

0 N
-\ 0

where \: 1s real and lim A\; = 0 as 1 — 0.

The proof parallels that as found in the reference [9] given above. If
A =—A T then = UP = QU = —AT = —-P™Y" = —YT D" which
means4d =UP = QU = —PTUT = —UTQ7. As before, P? = (Q7)? from which
P = Q7. (P = —QF would not be possible since Q7 is positive and P must
also be positive.) The proof proceeds, in the reference given, by considering
the non-singular and singular case. Here the proof is along lines similar to the
T-symmetric case as follows. Let WPW T = D be real diagonal with diago-
nal elements \; where W is unitary. From A = UP = QU = P7U it follows,
as above, that X = WCUW€®? is such that XD = DX, and if no \; = 0,
X is a direct sum of X;, X, ..., each finite dimensional; and if some \; = 0
then DX is a direct sum of finite dimensional A\, X ; interspersed with direct
sums of 0’s. As before, the finite-dimensional X ; are unitary and from 4 =
UP = —U7TP, it follows that XD = —X7D and so each finite dimensional
X, = —X,7. By |[9, Lemma 1, p. 438], if X is a (finite-dimensional) complex,
unitary, skew-symmetric matrix, there exists a complex unitary V such that
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VXVT = Eis a direct sum of 2 X 2 matrices of the form

[

An inspection of the proof of that lemma reveals that the V described is
actually a product of matrices S7" where 7 is real orthogonal such that 77X 77
is a direct sum of 2 X 2 blocks of the form

Y o i)

where a is non-zero complex and e& = 1. In the present case if 7', is the real
orthogonal matrix which performs this on the X, then if T is the correspond-
ing direct sum of 1's (corresponding to 0’s in the diagonal of D) and of these
T, TWCAWECTTT is a direct sum of 0’s and of X\;4;, \; ¥ 0, where each 4, is
adirect sum of 2 X 2 matrices of the form (i). If & = ¢ and S is an appropriate
direct sum of 1's and of 2 X 2 matrices of the form

0 e—1'49/2
— e—i0/2 0 ,

then STWCAWCTTTST is a direct sum of matrices of the form

0 i
—\; 0

5. The quasi-normal case. Let .27 be a completely continuous operator.
Then so are Z*, /* and (Z*Z)T = AT (A*)T = AT (A T)*. By defini-
tion, an operator %/ will be said to be quasi-normal if Zo/* = (F*L)T =
A T(/*)T =/ Te/. (That such operators do exist may be seen as follows.
Let &# be an operator which, relative to some orthonormal basis, has an
infinite matrix which is a direct sum of matrices of the form

(ii) I: a; bi:l
—b; a;
where the a; and b, are non-negative real numbers and > 2(a;2 + 0:%) < .
Then & is a completely continuous operator (see [2, Exercise 1, p. 177]). Let
be a unitary operator, and so %7 is also unitary. Then #Z %" is completely
continuous and meets, non-trivially, the above definition, as can be directly
verified.)
The following theorem results:

where \; 0 as 71— 0.

THEOREM 3. If A 1s the matrix, relative to an orthonormal basis, of a completely
continuous quasi-normal operator &, i.e., A A* = LT (Z*)", there is a unitary
matrix U such that UAUT is a direct sum of maitrices of the form (ii) above,
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where a; and b; are real and a; — 0 and b;— 0 as 1 becomes infinite, and of 1 X 1
real ¢; where c¢; — 0 as 1 becomes infinite.

Let .o/ be quasi-normal and completely continuous and let .o/ =.% +.9
where ¥ = 1/2(Z +Z7T) and T = 1/2(Z — ") so that ¥ = .¥T and

7 = =7 T. The proof proceeds as in the finite case as follows. Since .&Z.o/* =
AT ()T, it follows that (¥ + I ) (F* +T*) = (FT+ T )(F*+T*)"
or

Il

& =L+ T
=& =T)N*=T")

OLL*+ ST *+ TS* +ITT*=LS* - FT*—TS*+TT *s0
FT* = —7.F*. Relative to the given basis, the corresponding matrix pro-
duct becomes ST°T = —7S¢T or —ST¢ = —1S¢ or ST¢ = T1S° By
Theorem 1 there exists a unitary matrix U such that USU? = D is a real
diagonal matrix of the form described there. If UT'U” = M, then MD = DM¥€.
If the diagonal elements of D are d;, and if M = (¢;;), then ¢,;d; = d;%;; where
t,; = —t;. Three possibilities may occur: if d; = d; % 0, then {;; is real;
if d; =d,=0,¢; is arbitrary (though M = — M7 still holds); and if
d; # d;, then t; = 0, for if £;; = a + b, then (¢ + ib)d; = d;(a — D) and
a(d; — d;) = 0 implies ¢ = 0 and b(d; + d;) = 0 implies d; = —d; (which
is not possible since the d; are real and non-negative and d; # d;) or b = 0

(& +I)*+T™)

SO ti]' = 0.
So if USUT = D then the following two cases arise: (a) If no d; = 0, the
d; may be arranged so d; = d;q for ¢ =1, 2, 3, ... and relabelled d,, d,,

ds, ... with d; # d; when i # j. Then UT'UT = Ty + T» + .. .is a direct
sum conformable to D where the 7°; are real, finite dimensional, and infinite
in number and 7°; = —7';7; for each such 7'; there exists a real orthogonal
Vi such that V7,7, is a direct sum of 0’s and of matrices of the form

5 o]
—b 0
where b is real (see [1, p. 65] for the real even dimension skew-symmetric
matrix case). (b) If some d; = 0 (either finite or infinite in number) and if
UTUT = (¢4) ,when 0 is in the ¢-¢ and j-j position for ¢ 5 j, then ¢4, ¢, ¢4
and {;; are not necessarily 0 but the matrix 7” composed of all such ¢, taken in
order (which could be finite or infinite and distributed throughout UT U7)
is complex skew-symmetric. For such a 77, finite or infinite, there exists a
complex unitary W such that W7’ W7 is the direct sum described in Theorem 1
of [9] if 77 is finite, or such that W7”"WT7 is the direct sum described in Theorem
2 above if 77 is infinite.

To examine each of these cases consider the following representative sample
as a guide in which UAU* = USU" + UT'U" =
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[ d\I, T [1: 0 ]
d2[2 0 T2
013 Ty 0 Ty
dil4 4 0 T, 0
075 —T1.7T 0 Ty

where the d; are non-zero and d; > d; for ¢ < j.

If the number of 0’s in the diagonal of USU7 is finite, so is the number of
T';;, and a simple rearrangement of the 7°;; into a single complex skew-sym-
metric block in the given order is possible under a real orthogonal transforma-
tion and this block will correspond to a diagonal of 0's in USU” while retaining
the diagonal form in the latter. If 1 is a direct sum of real V; acting on the T,
as in (a) and of the appropriate unitary matrix acting on (7';;) of Theorem 1
of [9], VUAUTVT gives the form desired.

If the number of diagonal 0's in USU7 is infinite so that 77 = (T;) is
infinite, by Theorem 2 in this article there is a unitary matrix W such that
WIT'"W?T = F is a direct sum of the form of Theorem 2. Let W = (W,;) be
sectioned according to the sectioning of 77 = (7';;). Let I/ be an infinite matrix
formed as follows: in UT'U” let each T'; be replaced by the real orthogonal T,
as described in (a) above, and let each T';; be replaced by W,;. Then
VUSUTVT = USU7?, and VUTU?V7T has a form in which each 7'; in UTU”T
is replaced by the form F; described in (¢) and each T';; in UT' U7 is replaced
by F;; where F = (F,;) is sectioned as (7";;) is. In the sample case above
VUTUTVT has the form

F, 0

0 F,
Fu 0 Fp
0 Fy 0

Because of the form of F either Fy;, all j # 1, in the same row as Fy; are 0 or
not. But if not, because of the direct-sum form of F, at most one of them,
namely Fis, can be different from 0 and if so, the only nonzero element « in
an Fj, must occur in the lower left corner position (and in the upper right
corner position of — Fi,7). A suitable interchange of the row and column
containing —a and a and of F4 can bring the upper left block of VUT UTVT
into the desired form without altering the diagonal form of USU7”. Repeating
this process with each subsequent F;; as needed brings the matrix 4 into the
desired form under the required transformation.
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In the case of a finite # X # matrix with complex elements it is true that
every matrix is similar to its transpose. Here, since &/ T = €./*%, it is true
if A has a polar form &f = UP, AT = CPU*C = CU*UPU*E =
CU*A U*E but this provides no matrix connection between 47 and 4. For
the case in which %7 is quasi-normal, the following observation holds. Let
UAUT = F be the direct sum as described in the preceding theorem. Then
UATUT = FT. If W is an appropriate direct sum of 2 X 2 matrices

0 1
1 0
and 1's, WFW?T = FT from which U"WUAUTWTU® = AT or VAV? =

AT where V = U°?WU is unitary. Therefore, a linear operator ¥ on /2 does

exist so that ¥ /¥ T = /7.
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