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Abstract

The operational reliability of large mechanical equipment is typically influenced by the func-
tional effectiveness of key components. Consequently, prompt repair before their failure is
necessary to ensure the dependability of mechanical equipment. The prognostic and health
management (PHM) technology could track the system’s health state and timely detect faults.
Therefore, the remaining useful life (RUL) prediction as one of the key components of PHM is
rather important. Accurate RUL prediction results could be the data support for condition-based
equipment maintenance plans. Also, it could increase the dependability and safety of mechanical
equipment while reducing the loss of human and financial resources and meet the requirements
of sustainable manufacturing in the Industry 4.0 era. However, with the widespread use of deep
learning in the field of intelligent manufacturing, there is a lack of review on RUL prediction
based on deep learning. In this paper, different deep learning-based RUL prediction methods for
mechanical components are summarized and classified, along with their pros and cons. Then,
the case study on the C-MAPSS dataset is mainly conducted and different methods are
compared. And finally, the difficulties and future directions of the RUL prediction in practical
scenarios are discussed.

Introduction

The maintenance of equipment components runs through the entire life cycle of the equipment
and is the foundation for ensuring its reliable operation. Equipment support and maintenance
have gone through three stages of development, from initial “post maintenance” (maintenance
after failure), to mid-term “preventive maintenance” (regular maintenance), and now to pre-
dictive maintenance (PdM; maintenance before failure) (Lei et al., 2018). Obviously, maintaining
after a malfunction occurs is the most passive way. Due to the inability to respond to sudden
malfunctions in a timely manner, maintenance cycles and repair costs are too high, sometimes
even threatening human life and property safety. Preventive maintenance requires arranging
excess spare parts and idle workers for regular maintenance in advance, which leads to unrea-
sonable allocation of resources and excessive maintenance of equipment. With the introduction
of prognostic and health management (PHM) technology, PAM has received increasing attention
(Zhao et al., 2021). This technology can manage the health status of equipment components
through sensor data, intelligent algorithms, and models, and then perform equipment mainten-
ance based on the health status (Banerjee et al., 2022; Wu et al., 2022b). Among them, remaining
useful life (RUL) prediction is one of the key components of PHM technology (Wu et al., 2021a; Li
etal., 2023a), and it is also the data basis and support for PAM (Chang and Hsu, 2023). The RUL
of equipment components is generally defined as the time difference between the current
operating time and the complete shutdown or failure of the equipment due to component failure
(Rezamand et al.,, 2020). RUL is a conditional random variable that varies over time, the
surrounding environment of equipment operation, and operating conditions, as shown in
Eq. (1).

RUL=A{T —¢|T>t,M(t)}. (1)

Among them, T — ¢ represents the RUL of equipment components, T represents the failure time
of equipment operation, ¢represents the start time of equipment operation, and M (t) represents
all status information of equipment operation within the T — ¢ time interval, such as operating
conditions, operating environment, external pressure, temperature, and humidity. In the process
of daily equipment maintenance and support, if the RUL of equipment components can be
predicted, corresponding PdM and condition-based maintenance plans can be provided,
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reducing excessive or untimely maintenance, and ensuring the safe,
reliable, and sustainable operation of equipment. At the same time,
it will also reduce unnecessary resource consumption in previous
preventive maintenance (Wu et al., 2022a), in line with the national
action plan of “Made in China 2025.”

With the arrival of the Industry 4.0 era, the high-quality devel-
opment of equipment intelligent manufacturing has become a top
priority, and researching the RUL prediction of intelligent equip-
ment is the foundation of serving intelligent manufacturing. Due to
the increasingly complex system and component mechanisms of
large-scale equipment, it is becoming increasingly difficult to
achieve precise mathematical modeling of complex physical equip-
ment systems. Deep learning models, with their powerful model-
fitting ability, can fit the degradation process of equipment entities
in complex systems and ever-changing working environments,
providing a more flexible, practical, and intelligent way to construct
equipment degradation models (Ranasinghe et al., 2022). The RUL
prediction method based on deep learning only requires monitor-
ing the sensor data of the degradation process of the equipment
entity model, and then establishing and training an effective deep
neural network model to predict the RUL. Based on the RUL
prediction results, equipment maintenance plans can be arranged
according to the actual situation (Wang et al., 2020). It can ensure
equipment reliability, prevent sudden downtime risks, allocate
resources reasonably, save manpower, material resources, and
financial resources, and ensure the safety of personnel. The equip-
ment RUL prediction method based on deep learning has changed
the inherent development, production, use, and support modes of
equipment. For equipment developers, achieving fault diagnosis
and RUL intelligent prediction and design closed-loop is crucial.
This process cannot only continuously improve the quality of
equipment but also achieve intelligent analysis and decision-
making through state monitoring and prediction, providing users
with more reliable and intelligent equipment services. For equip-
ment users, RUL prediction can improve equipment reliability and
safety, reduce support and maintenance costs, and achieve refined
equipment management through rapid deployment, immediate
response, and continuous support (Angadi and Jackson, 2022;
Ochella et al., 2022). This intelligent analysis and decision-making
cannot only improve the reliability and stability of equipment but
also provide comprehensive support for data management and
decision-making during equipment operation, and provide more
comprehensive and efficient public services for equipment oper-
ation. Therefore, promoting the intelligent research of RUL pre-
diction based on deep learning in the field of equipment support is a
necessary path.

At present, RUL prediction methods for mechanical equipment
can be divided into three main categories, which, respectively, are
model-based methods, data-driven methods, and hybrid model-
based methods (Ochella et al., 2022). Model-based RUL prediction
methods for components require accurate mathematical and the-
oretical modeling of complex systems. It requires accurate expres-
sion of the components’ degradation mechanism, which is difficult
to achieve for large and complex mechanical equipment (Ge et al.,
2021). The data received during the operation of mechanical equip-
ment is becoming more and more accessible due to the ongoing
development of sensor technology and the intelligence of mechan-
ical equipment. Data-driven RUL prediction methods use the data
obtained from sensors to predict the RUL in combination with
relevant data processing techniques. The data-driven strategy does
not require prior expertise in expert systems or knowledge of the
mechanism and process of component deterioration but only
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requires the analysis and processing of the collected data to perform
RUL prediction by mining the information features implied in
the data and building the corresponding prediction models (Yin
et al,, 2022), which has gained the attention of many researchers.
Among them, data-driven RUL prediction methods include three
major categories: initial statistical learning methods, shallow
machine learning methods, and deep learning methods (Ferreira
and Gongalves, 2022). Statistical learning methods require sufficient
prior knowledge to build statistical models. Traditional machine
learning models have poor fitting ability to nonlinear models, while
deep learning models have more powerful model representation
ability and feature extraction ability for nonlinear systems, which
have attracted a wide range of scholars to conduct research studies in
recent years (Rauf et al., 2022). The term “hybrid model approach”
describes the complete fusion of different prediction techniques,
such as model-model fusion, model-data fusion, data—data fusion,
and data—digital twin (DT) fusion, to address the shortcomings of a
single model. Which model to select and how to combine different
models are the primary areas of research for hybrid methods.

In summary, as the systems and component mechanisms of
large-scale equipment become increasingly complex, traditional
model-based methods are becoming increasingly difficult to apply
to practical industrial environments. In recent years, RUL predic-
tion models based on deep learning have strong model fitting
capabilities, which can be unrestricted by complex equipment
mechanisms or not solely rely on expert experience (Ochella
et al., 2022). Therefore, significant achievements have been made
in related research, including but not limited to new theoretical
explorations, technological innovations, and practical solutions to
real-world problems. These achievements have attracted wide-
spread attention and recognition in both academia and industry
and have had a positive impact on the development and application
of this field (Xu et al., 2021a).

However, there is a lack of summary and comparison of relevant
research work and results based on deep learning. At the beginning
of RUL prediction research based on deep learning, we assumed
that there is a complete equipment (running to failure) dataset, and
the goal of the study is to apply basic deep learning methods to these
datasets with good prediction accuracy. Although these deep learn-
ing methods perform better and better on the aforementioned
datasets, they cannot be applied in practical scenarios. Due to the
complexity and variability of real-world scenarios, it is considerably
difficult to have a complete and simple dataset for deep learning
models to learn. Based on this, researchers have proposed many
methods to solve these challenging problems in practical scenarios.
In a word, basic methods are only the first step in applying deep
learning to RUL prediction, and only by truly solving the challen-
ging problems in practical scenarios can the above methods be put
into practice. Therefore, in order to master and further understand
the RUL prediction methods and technology based on deep learn-
ing, this paper summarizes the research and application of deep
learning models in equipment RUL prediction in recent years, and
summarizes and classifies them as shown in Figure 1, which include
single basic method, combined methods, and some special and
useful issues to solve the challenging problems.

In this paper, some basic deep learning methods used for RUL
prediction are discussed in the “Deep learning-based RUL predic-
tion methods” section. Several significant solutions to address the
corresponding issues of RUL prediction are summarized by com-
paring the research directions highlighted in various literature in
the “Methods to solve challenging problems in RUL predictions”
section. Then, a case study and method comparison for turbofan
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Figure 1. Deep learning-based remaining useful life prediction methods for equipment components.

engines are discussed in the “Case study” section. Finally, based on
the summary of the deep learning-based RUL prediction research and
methods, the pros and cons of different methods are categorized, and
the challenges and development trends of RUL prediction methods
for equipment components are proposed in the “Conclusions” sec-
tion. Especially, the equipment components investigated in this paper
and the corresponding datasets are shown in Table 1, which include
bearings (Liao et al., 2016; Hu et al., 2019; Zhao et al., 2020; Cao et al,,
2021; Ding et al., 2022; Zhu et al., 2022), turbofan engines, and lithium
batteries (Lin and Li, 2022; Wang et al., 2022a; Zhu et al,, 2022).

In conclusion, our contributions can be outlined as follows.

1) We comprehensively summarize the commonly used deep
learning methods to predict the equipment components RUL,
as well as the new techniques to address the real-world appli-
cation issues, including DTs, transfer learning (TL) techniques,
and Bayesian techniques.

2) We conduct the case study on the C-MAPSS dataset and com-
pare different RUL prediction methods on the dataset.

3) We compare the pros and cons of different deep learning
methods and discuss the difficulties and some future directions
about the RUL prediction in practical scenarios, which could
promote the early practical application of deep learning methods.

Deep learning-based RUL prediction methods

This section reviews the principles and applications of the basic deep
learning methods commonly used for components’ RUL prediction.
Most of the literature studies the improvement of RUL prediction
accuracy by using a single method or combined methods.

Recurrent neural network

Recurrent neural network (RNN) was first studied in 1980 as a
network for processing sequential data. And then with the deep-
ening and progress of theory and computing power, it became a
kind of deep learning algorithm in the early 2000s and was
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Table 1. Equipment components and the corresponding datasets

Equipment components  Datasets

Bearings FEMTO-ST bearing dataset (PHM 2012) (Guo et
al., 2017; Chen et al., 2021; Lu et al., 2021; Wu
et al.,, 2021b; Cheng et al., 2022; Man et al.,
2022), XJTU-SY bearing dataset (Guo et al.,
2017; Xia et al., 2021; Cheng et al., 2022; Pan
etal., 2022), Rocket Engine Ni—-Cu—Ag bearing

dataset (Pan et al., 2022)

Turbofan dataset from NASA C-MAPSS (PHM
2008) (Yu-hui et al., n.d.; Li et al., 2018; Che et
al., 2019; Chen et al., 2019; Ellefsen et al.,
2019; Al-Dulaimi et al., 2020; Gao, 2020; Li et
al., 2020b; Sayah et al., 2021; Xiong et al.,
2021; Xu et al., 2021c; Al-Khazraji et al., 2022;
Chadha et al., 2022; Fan et al., 2022; He et al.,
2022a; Krokotsch et al., 2022; Li et al., 2022b;
Remadna et al., 2022; Yuan et al., 2022; Zhang
etal., 2022; Zheng et al., 2022; Jiangyan et al.,
2024), Newly issued N-CMAPSS dataset
(Li et al., 2022b)

Turbofan engines

Lithium batteries Lithium battery dataset from CALCE of the
University of Maryland (Wu et al., 2022a),
Graphite/LiCoO, battery dataset (Yu et al.,
2020), Lithium battery dataset from NASA

(Liang et al., n.d.; Wang et al., 2022b)

continuously used in the field of natural language processing
(NLP), such as text generation, machine translation, and semantic
recognition. The core of RNN is the existence of a memory func-
tion, which can remember the previous sequence of the current
sequence and thus obtain the relationship between data at different
moments. The health status of equipment components is con-
stantly degraded over time, so the data monitored by the sensors
are the time-series data that can be processed by RNN. Guo et al.
(2017) used RNN to predict the RUL of bearings, and a better
prediction performance was obtained. However, RNN suffers from
severe gradient disappearance problems and cannot capture long-
time dependence during gradient descent backpropagation. There-
fore, the literature on the prediction of component RUL using RNN
alone has been almost unretrieved in recent years.

Long short-term memory (LSTM) network is a special kind of
RNN, mainly to solve the gradient disappearance problem dur-
ing the training of long sequences; the structure is shown in
Figure 2.

As can be seen from Figure 2, the LSTM structure has three
controlled gates, which are called the forget gate, the input gate, and
the output gate. The forget gate processes the information of h;_;
and x; through the sigmoid cell to determine how much informa-
tion is retained by the cell state C;_;, as shown in Eq. (2):

ft:O'(Wf'[htfl,xt]‘i‘bf). (2)

The input gate processes the information of h,_; and x, through
the sigmoid unit to determine how much information to update.
The updated information is obtained by processing the information
of h;_; and x; by the tanh unit, as shown in Egs. (3) and (4):

it:(T(W,"[ht_l,xt]"'bi), (3)
Cl’ = tanh(WC . [ht_l,xt] + bC) (4)

Then the cell state C,_, is updated to C;according to the input gate
and forget gate, as shown in Eq. (5):

Yao Pan et al.
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Figure 2. Single-layer structure of long short-term memory.

Ct:ft*Ct_1+it>kC,. (5)

Finally, the A, is determined according to C,, the output gate h;_,
and x;, as shown in Egs. (6) and (7):

Ot:O_(WU' [htfl,xt] +b0), (6)

ht =0y * tanh(Ct). (7),

where * represents the Hadamard product, h; is passed to the next
layer, and the above operation is continued. Compared with RNN,
the cell state C; is added to make the memory time series data
longer. By stacking LSTM units, the multilayer LSTM networks are
constructed to mine the time-series information inside the data and
predict the RUL. Gao (2020) proposed a deep learning model based
on the LSTM algorithm and feedforward neural network to achieve
high prediction accuracy on the C-MAPSS dataset; Sayah et al.
(2021) developed a framework for testing the robustness of deep
LSTM networks to ensure the confidence and quality of the training
model, and the effectiveness of the framework is validated on the
C-MAPSS dataset.

Compared with RNNs, LSTMs have made great progress in
prediction performance and are widely used in the research litera-
ture. To further improve the ability of LSTM to predict RUL,
variants such as bi-directional LSTM (Bi-LSTM), gated recurrent
unit (GRU), and bi-directional GRU (Bi-GRU) have also been
increasingly applied to the component’s RUL prediction. Yu et al.
(2020) proposed a Bi-LSTM-based network model averaging
method to predict the RUL of graphite/LiCoO, batteries and got
improved prediction accuracy. Chen et al. (2019) first performed
feature selection by the kernel principle component analysis
method to address the problem of excessive parameters due to
redundancy of sensor data features, and then fed the features into
the GRU network to predict the RUL of the turbofan engine.
Al-Dulaimi et al. (2020) applied Bi-GRU to the C-MAPSS dataset
as part of the hybrid framework and obtained a higher accuracy for
the turbofan engine’s RUL.

Convolutional neural network

Convolutional neural network (CNN) was developed based on the
concept of perceptual wilderness proposed in the 1960s and
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formally introduced by Yann LeCun of New York University
in 1988. Compared with other network structures, the most import-
ant feature of CNN is the addition of convolutional and pooling
layers. The purpose of convolution is to extract the deeper features
of the input, and the pooling layer after the convolution layer is used
to compress the amount of data and parameters. The mathematical
expression of convolution once and the simple structure diagram
are shown in Eq. (8):

yc:fc(‘x'kc-'-b)’ (8)

where f_represents the activation function, x represents the input, -
represents the convolution operation, k. represents the convolution
kernel, and b represents the bias. The most important feature of
CNN is the use of local connectivity and weight sharing, which on
the one hand reduces the number of weights making the network
easy to train and optimize, and on the other hand, reduces the
complexity of the network model and reduces the risk of model
overfitting to some extent.

In the field of RUL prediction for equipment components,
CNNs have been used in many studies for their powerful feature
extraction capability. A single deep CNN (DCNN) structure or the
CNN as a feature extractor for other methods is often chosen in the
literature to improve the prediction accuracy of RUL. Li et al. (2018)
used DCNN to mine the high-dimensional depth features of the
C-MAPSS dataset to obtain more accurate RUL prediction values.
Ma and Mao (2020) added the idea of convolution operation in
CNN to the LSTMs, and proposed a new convolutional LSTM
(CLSTM) network, which can capture both temporal frequency
information and learn temporal information, and achieved higher
prediction accuracy compared with DCNN. Liang et al. (n.d.) used
the CNN as a feature extractor for lithium battery degradation data,
and the features associated with lithium battery degradation were
extracted, and then used the Bi-LSTM to integrate the temporal
features and predict the RUL.

One-dimensional CNN (1D-CNN) is a network dedicated to
time series. Distinct from CNNs applied to image processing, the
convolution kernel of 1D-CNN is one-dimensional. Compared
with models such as RNN and LSTM, the training convergence
of 1D-CNN is faster. In recent years, it is promising to obtain RUL
predicting results in the field of equipment components that are not
inferior to those of LSTM. Man et al. (2022) first used a generative
adversarial network for data augmentation, and then the aug-
mented data were trained adversarially using 1D-CNN, achieving
smaller mean absolute deviations and mean square root errors for
prediction results. Zheng et al. (2022) used 1D-CNN as part of the
fused deep learning model to mine data for temporal features to aid
RUL prediction. Wang et al. (2022b) used the 1D-CNN to mine the
high-dimensional time-series features within the lithium battery
data and obtained more accurate battery health state assessment
values. Hong et al. (2021) combined the concepts of Dilated CNN
and EfficientNet, and added the dilated kernels in all hidden layers
to cover a larger range of the convolutional kernels’ perceptual
fields, which better captured the deeper features of the signal.

Deep belief network

Deep belief network (DBN) first appeared (Hinton and Salakhutdi-
nov, 2006) published in Science by Geoffrey Hinton, a deep learning
guru, for image data compression. In the literature (Hinton and
Salakhutdinov, 2006), it is pointed out that DBN consists of a
multilayer stacked restricted Boltzmann machine (RBM), which is
essentially a constructed special neural network. RBM contains two

layers of neurons: the visible layer (visible variables) and the hidden
layer (hidden variables). The visible layer is used for data input and is
also called the input layer; the hidden layer is used for mining the
implicit features of the input data, so it is also called the feature
extractor. RBM is a probabilistic undirected graph model, that is,
there are only two states, representing the activated and inactive
states. Liao et al. (2016) used the RBM incorporating the regulariza-
tion item to deeply extract the monitoring information related to
failure degradation trends, and then predicted the RUL of bearings
based on the similarity method; RBM is often used in the field of
components’ RUL prediction to extract features and then combines
other methods for RUL prediction. In recent years, RBM has
appeared less in the papers about RUL, and most of the literature
uses stacked RBM (i.e., DBN), and the specific structure of DBN is
shown in Figure 3. By stacking the RBMs, the hidden layer of the first
RBM is used as the hidden layer of the second RBM, which makes the
implicit features extracted by the hidden layer deeper and more
representative.

DBN opens the door to deep learning model extensions, which
can be used not only for classification problems but also for regres-
sion problems and is widely used in various fields such as image
processing, NLP, remote sensing classification, and RUL prediction.
Hu et al. (2019) toke the DBN as part of a bearing diagnostic model,
primarily for mining the deep hidden features behind the monitoring
data. Peng et al. (2019) proposed an unsupervised health index
(HI) construction method, extracted the hidden features correspond-
ing to the system fault states based on DBNs, and constructed HI
according to the distance between the degradation and fault states.
Che et al. (2019) developed a PHM model based on multiple deep
learning algorithms and embedded the DBNs into the model, obtain-
ing low error rates and biases on the turbofan engine dataset. Li et al.
(2020b) used the DBN to extract the engine timing information
processed by LSTM, built the corresponding degradation HI, and
then predicted the RUL based on the degradation curve and thresh-
old. Zhang et al. (2022) proposed a joint training model to visualize
the degraded features extracted by DBN, and the joint training
guarantees the computational efficiency of the prediction process,
which shows great performance on the engine dataset.

Autoencoder

The concept of autoencoder (AE) was first introduced in 1986 by
Rumelhart in the literature (Rumelhart et al., 1986). It is a typical
unsupervised learning algorithm.AE consists of an encoder and a
decoder. In the encoding stage, the encoder maps the input data
into a low-dimensional space by encoding and compressing them,
whereas in the decoding stage, the decoder achieves unsupervised
feature learning by reducing the original input data. Similar to
RBM, stacked AE (SAE) can be achieved by stacking multiple layers
of AE, and its structure is shown in Figure 4.

Similar to DBN, SAE can mine the deep features of data and has
been applied to many practical aspects of life. These applications
make AE a broader development prospect. Al-Khazraji et al. (2022)
made full use of the unsupervised feature extraction capability of
AE and used the extracted features from AE as the input of DBN,
achieving a lower root mean square error (RMSE) for the RUL
prediction of the engine dataset. Wu et al. (2021b) proposed a
prediction model for different degradation stages, and embedded
AE into the model, obtaining higher RUL prediction accuracy on
Hilbert transformed bearing signals. Nguyen et al. (2022) used a
pre-training and fine-tuning SAE approach to train the network
parameters of the DNN, built degenerate HI from the original data,
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Figure 4. Structure of stacked autoencoder.

and then predicted the RUL by computing the Kullback—Leibler
divergence with the labeled samples. Chen et al. (2021) used a deep
convolutional AE based on quadratic functions to solve the problem
that the prior knowledge is required to construct HI. By directly
extracting relevant information from the original data to construct
HI, they obtained great bearings’ RUL prediction. Yu-hui et al. (n.d.)
incorporated time scales into the process of extracting HI, and used the
AE to extract nonlinear features of the engine, showing good RUL
prediction on the C-MAPSS dataset. Lu et al. (2021) proposed a
generative adversarial learning framework, and used LSTM as a gen-
erator and AEF as a discriminator to overcome the problem of super-
position of prediction errors in the bearings’ RUL prediction process.

Methods to solve challenging problems in RUL predictions

The basic deep learning methods could solve the RUL prediction
problem in an ideal state to some extent. However, in practical
scenarios, such as insufficient attention to important features, only
a few of labeled samples available, cross-working conditions, uncer-
tainty in RUL prediction results, and real-time prediction, it

Error gradient descent:

Yao Pan et al.

RBMn-1 RBMn

————— > H ——» H ——————» H1——>» H ——» Output

becomes difficult to accurately predict RUL only using the basic
methods in the “Deep learning-based RUL prediction methods”
section. Therefore, this section reviews the useful techniques to
address the issues in actual scenarios.

Attention mechanism

The concept of attention mechanism (AM) was first proposed in
the field of computer vision, and in 2014 Google Mind added AM to
RNN models for image classification in the literature (Mnih et al.,
2014), making AM widely popular in the academic community.
Since then, AM has been widely used in computer vision, NLP,
machine translation, and other fields. In the last 2 years, some
literature has also used AM for RUL prediction. AM mimics the
attention allocation effect of human observation, and its core idea is
to shift attention from global to focused regions. In deep neural
networks with a large number of model parameters, AM cannot
only save computational resources and allocate them to more
important features but also focus on the key information of the
input and reduce the attention to other redundant information.
In summary, AM is usually embedded as a module in the deep
neural network model, as shown in Figure 5. In addition to the
conventional AM, some variants have also emerged, which are the
soft/hard AM, key—value pair AM, and multi-head self-AM
(i.e., Transformer) (Vaswani, 2017).

(Yuan et al., 2022) used the AM for feature extraction, which
weighted multiple features of the original data, helping the RUL
prediction model focus on important features and improving pre-
diction performance. Remadna et al. (2022) added the AM to the
deep convolutional variational AE to make full use of the feature
processing capability of AM. It assigned higher weights to import-
ant information in the encoding stage while providing a low-
dimensional representation of the features, which increases the
explainability of the model. Fan et al. (2022) proposed a new AM
framework that can save computational overhead while selecting
information relevant to the task of predicting RUL. The informa-
tion extracted by AM is then fed to the fully convolutional network
to predict the engines’ RUL. Zhao et al. (2020) implement soft
thresholding of signal features with the help of AM. They
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constructed a network to learn the optimal selection of thresholding
and then combined it with a deep residual network to predict the
bearings’ RUL. Chadha et al. (2022) added AM as a layer to the
Transformer framework to identify feature patterns that degrade
with RUL by segmenting the time domain features of individual
sensor data and then fused these patterns to predict the engines’
RUL. Wang et al. (2022a) placed the AM layer behind the Bi-LSTM
network structure for capturing the feature information most relevant
to the RUL degradation, and gave greater weights to the captured
information sequences to assist the Lithium batteries’ RUL online
prediction. Jiangyan et al. (2024) combined the local modeling ability
of CNN and the global modeling ability of Transformer to improve
the overall architecture of the RUL prediction model.

Transfer learning

The concept of TL first appeared in the pre-conference workshop of
Neural Information Processing Systems (NIPS-95) in 1995.
In 2009, Sinno Jialin Pan and Qiang Yang classified TL into three
major categories based on the data labeling of the source and target
domains, namely inductive TL, transductive TL, and unsupervised
TL, as shown in Figure 6.

For the equipment components’ RUL prediction problem, most
of the literature uses the transductive TL based on domain adaptive.
Define the source domain D; and the source task f, and the target
domain Dy and the target task f,. Usually, we have a sufficient
amount of labeled samples in the source domain, that is, D;=

{XS,yS}NS, where X, = {x1,x2,%3...x, } denotes the feature space of
the source domain samples, Xr~P(Xy) represents the data
distribution of source domain, y, denotes the corresponding
RUL labels, and N; denotes the number of samples in the source

Labelled data
available in the

x
v

Extraction
features

domain. For the target domain Dy = {X;}"", that is, the dataset to
predict the RUL, X7 = {x1,%2,x3...x, } denotes the feature space of
the target domain samples, X1 ~ P(X7)denotes the data distribu-
tion of the target domain, Nt denotes the number of samples in the
target domain, and Dy contains only a small number of labeled
samples, most of them or all of them have no RUL labels and need to
rely on TL to obtain y;. The goal of TL is to use the knowledge
in the source domain D; and the source task f_ to serve and help
the learning of the target prediction function f in Dr, that is,
yrRf(Xr),in case Dy#Dror f #f.

Domain adaptive methods in TL can be divided into three types:
reconstruction methods (Ghifary et al., 2016), discrepancy-based
methods (Du et al.,, 2021), and adversarial methods (Ganin et al.,
2016). The reconstruction method tries to reconstruct data with
more differentiated and common features (Bousmalis et al., 2016);
the discrepancy-based method measures the difference between the
source and target domains by statistical metrics, and the commonly
used numerical scales are the maximum mean discrepancy and the
maximum density divergence (MDD) (Li et al., 2020a); the adver-
sarial method trains discriminators and feature extractors in an
adversarial manner to reduce the gap between the source and target
domain (Li et al., 2021).

Generally, TL is used as an embedded technique, on the basis of
the deep learning method mentioned in the “Deep learning-based
RUL prediction methods” section, to address mainly the problems
of few labeled samples and cross-condition problems in the field of
RUL prediction.

Few labeled samples
Although industrial Internet of Things (IoT) and sensor technolo-
gies have been widely used, in the actual industrial production
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Figure 6. Transfer learning classification.
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process, the available samples are few at the early stage of equip-
ment operation, especially the labeled data that can be used for deep
learning model training. Based on this, the following literature
selects TL to solve the problem of a few labeled samples in the
target domain while choosing basic deep learning networks. Li et al.
(2022b) used the C-MAPSS and N-CMAPSS datasets to adjust the
distribution of source and target domains at the feature and seman-
tic levels, and migrate knowledge from labeled source domains
(N-CMAPSS) to unlabeled (C-MAPSS) target domains, while
allowing the model to be extended for online tasks. Xia et al.
(2021) proposed a new fault information-assisted CLSTM network
for different failure modes of bearings, which transferred the failure
modes in the source domain (CWRU bearing dataset mainly for
fault diagnosis) to the target domain (XJTU-SY bearing dataset) to
assist the RUL prediction. Zeng et al. (2021) first trained the source
domain in the offline phase to fully learn the feature space to solve
the problem of a small number of samples of rolling bearing parts
labels. Then the target domain training in the online phase is fine-
tuned to obtain high RUL prediction accuracy even in the case of
few labeled samples in the target domain. Pan et al. (2022) com-
pensated the lack of run-to-failure data for Ni-Cu—Ag bearings by
combining a branching AM and the branching CNN. They
migrated knowledge from the XJTU-SY bearing dataset with labels
to rocket motors, which retained the retention of local features and
global degradation information. Cheng et al. (2022) proposed a
two-stage RUL prediction method for cross-domain datasets by
combining two-by-two on the bearing datasets. By using a two-way
transfer AM, the problem of insufficient labeling of the target
domain data is compensated, while the migration capability and
model stability are improved.

All the abovementioned literature is based on two different
datasets, with the labeled dataset as the source domain and the
unlabeled one as the target domain, thus implementing transfer
knowledge between different datasets.

Cross-condition problem
On the other hand, because the operating conditions of equipment
components are complex and variable, there will be different operating
conditions in the single dataset. To address the problem of the poor
generalization ability of deep learning models trained under a single
operating condition, TL can also apply domain adaptive methods to
migrate the knowledge in the source domain (operating condition 1)
to the target domain (operating condition 2) to solve the problem of
RUL prediction for cross-operating-condition components. Fu (2021)
added the feature space difference minimizing metric between the
source and target domains to the loss function, which effectively solves
the problem of different data distribution between different working
conditions. Cao et al. (2021) realized the adaptive identification of
different operating states and working conditions of bearings, and
then migrated the deep learning model to reduce the distribution
differences between different working conditions and achieved a more
accurate bearings’ cross-working-condition RUL prediction. Ding
et al. (2022) proposed a multi-source domain adaptive network to
transform the vibration signal into a time—frequency signal, which
enables a more powerful generalization capability of the target domain
through feature extraction in the multi-source domain, and achieved a
high accuracy RUL prediction of bearings across working conditions.
Li et al. (2023b) proposed a partial domain adaptation method for
RUL prediction with incomplete target-domain data, which is well
suited for practical cross-domain RUL predictions.

In summary, in the field of RUL prediction of equipment com-
ponents, TL, as an embedded conditioning method, combines the use
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of various deep network architectures and methods, mainly solving
the problems of a few samples with labels in practical applications and
components’ cross-working conditions. To improve the generaliz-
ability of deep learning models, TL research will be pursued in depth
in the future, addressing issues such as the best way to quantify the
difference between the source and target domains.

Semi-supervised learning

Equipment RUL prediction belongs to regression problems, and
conventional methods generally require sufficient labeled RUL
information in the training set, which is known as supervised
learning, such as RNNs and CNNs, which can mine the feature
information affecting labeled RUL and predict unknown RUL; on
the other hand, unsupervised deep learning introduces an initial
pre-training phase to extract features related to the degradation
from the original unlabeled training data, such as RBM and
AE. They can automatically extract deep high-dimensional infor-
mation by coding and decoding from the original unlabeled train-
ing data. Therefore, even in the case of a few labeled training data,
the combination of unsupervised and supervised learning, that is,
semi-supervised learning can also provide accurate RUL prediction
results.

In actual industrial production, to ensure the proper operation
of equipment, equipment parts are usually replaced before their
failure, so the sensors collect a large amount of pseudo-failed hover
data. And semi-supervised learning can make full use of these
pseudo-failed hovering data to extract information related to deg-
radation from them. He et al. (2022a) considered not only the failed
labeled data but also the hovering unlabeled data in the process of
actual industrial production when extracting fault information,
which improves the robustness and generalization capability of
the RUL prediction model. Krokotsch et al. (2022) proposed an
improved semi-supervised learning framework for the lack of
available data for the whole life cycle of equipment components.
They used a self-supervised learning approach to extract valid
knowledge from the failure-labeled data and pseudo-failed
unlabeled data, where pseudo-labels are generated for model train-
ing. Ellefsen et al. (2019) used semi-supervised learning to pre-train
the framework and used the genetic algorithm to obtain the optimal
hyperparameters. Their results showed that the prediction results of
semi-supervised learning outperform those of supervised learning.
Nieves Avendano et al. (2022) leveraged structure learning and
pseudo-label (Lee, 2013). They added the pseudo-labels to a large
amount of unlabeled data by classifier iterations and at the same
time built the monotonic HIs. Then these HIs were used in the
enhanced RUL prediction model.

In summary, pseudo-hovering unlabeled data from the real
manufacturing process can be fully utilized by semi-supervised
learning. By pre-training or using self-supervised techniques to
add pseudo-labels to the hovering data, the relevant feature space
and training set can be increased. Also, if the hovering unlabeled
data include a variety of operating or failure conditions, TL tech-
niques can also be used to solve the cross-domain issue.

Bayesian neural networks

The performance degradation of equipment components under
different operating environments and scenarios will exhibit a cer-
tain degree of uncertainty, including aleatoric (data) uncertainty
and epistemic (model) uncertainty, as shown in Figure 7. Aleatoric
uncertainty refers to systematic error, chance error, coarse error,
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Figure 7. Aleatoric (data) uncertainty and epistemic (model) uncertainty.

and unknown error in the data due to the limitations of observation
means and processing algorithms. Epistemic uncertainty refers to
the error of prediction methods or models unable to fully simulate
the dynamics of real-world systems. Meanwhile, the accumulative
error in the process of building deep learning networks for equip-
ment component degradation also leads to the uncertainty of RUL
prediction results.

In the actual industrial production process, different systems
with different working conditions do not have the same require-
ments for the risk level of equipment components. Therefore, in the
RUL prediction of components, compared with the single-value
RUL prediction, uncertainty analysis, and modeling can be per-
formed to obtain the probability distribution or confidence interval
of RUL. It cannot only avoid the error generated by single-value
prediction to a certain extent but also provide users with more
reference value for suggestions and decisions, which is often more
practical in practical applications.

Since the standard deep neural network structure produces a
deterministic single-value prediction result for a given input and
does not have the ability to express uncertainty, Buntine and Hutter
(2010) added the Bayesian method to the neural network modeling
process and eventually developed the Bayesian neural network
method. It makes deep learning feasible for modeling uncertainty
and allows neural networks to describe uncertainty factors while
having powerful representation capabilities. According to the
Bayesian method, the parameters such as weights and biases in
the neural network structure can be considered as random vari-
ables. The deep learning model that sets the network parameters as
random variables is called the deep Bayesian model (deep Gaussian
process). The comparison of the structures of conventional artificial
neural networks and Bayesian artificial neural network models
(deep Gaussian process) is shown in Figure 8.

In the Bayesian neural network structure, the objective function
for model training is the likelihood function determined from the
sample data, and the posterior probability distribution of the weights
and bias parameters are adjusted during the training process. Due to

the complexity and difficulty of training deep Bayesian neural net-
work models and the difficulty of converging to the optimal solution,
many improved Bayesian methods have been applied in deep neural
network research. In previous studies, variational inference (Blei
et al, 2017) has been applied to many Bayesian neural network
methods for approximation. Gal and Ghahramani (2016) proposed
the theory that the conventional neural network structure by adding
dropout to each layer and multiple Monte Carlo dropout inference is
mathematically equivalent to a deep Gaussian process model
(i.e., Bayesian neural network). Therefore, most of the literature
approximates the deep Bayesian model by multiple Monte Carlo
inferences to achieve uncertainty in RUL prediction. Zhu et al. (2022)
set the dropout in the convolutional layer of CNN from the perspec-
tive of active learning and obtained the bearings’ RUL prediction
uncertainty by multiple Monte Carlo dropout inferences. Then they
selected labeled samples from the alternative sample pool according
to the uncertainty, which reduced the number of training samples
under the condition of the same prediction accuracy. Biggio et al.
(2021) evaluated a variety of deep Gaussian process scaling and
solved the problem that deep Gaussian processes could not scale
when there was a very large number of data in the real industries.
Meanwhile, their method could provide both accurate RULs and
uncertainty estimation. Lin and Li (2022) proposed a new iterative
calibration method to address the problem that Bayesian uncertainty
prediction methods cannot accurately capture model bias and noise
bias. By combining the isotonic regression and standard deviation
scaling for metric quantification of uncertainty, they integrated them
into the Bayesian deep learning framework. Chen et al. (2022)
proposed a framework for using RUL prediction uncertainty to
implement component maintenance decisions, which addressed
the current problem of separating the study of RUL prediction and
maintenance decisions in PHM technology and also was in line with
actual industrial processes. Xu et al. (2021c) combined the deep
learning method and non-smooth Gaussian process to fully capture
the temporal dependence of the raw data, then they predicted the
RUL and quantified their uncertainty. By validating the C-MAPSS
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Figure 8. The top represents conventional artificial neural networks, while the bottom represents Bayesian artificial neural networks (deep Gaussian process).

dataset, they got low prediction errors, as well as valid uncertainty
intervals.

Digital twin-driven

The concept of DT was first introduced based on the National
Aeronautics and Space Administration (NASA) Apollo program
in 2003 by Dr. Michael of the University of Michigan. Its name has
changed from “mirror space” to “information mirror,” and “DT”
was first proposed and quoted in 2011. After several years of
application and precipitation, DT was named one of the 10 key
technologies in 2019. From different perspectives, there are differ-
ent understandings of DT. Among them, five commonly used
interpretations of DT as shown in Table 2.

Table 2. Five-dimensional interpretations of DT

Dimension Interpretations of DT Same point
Model DT is a 3D model or virtual Connected the
prototype (Alam and El Saddik, physical and
2017; Vassiliev et al., 2019). virtual worlds
Management DT is a type of life cycle
management or known as digital
shadowing and digital threading.
Platform DT is an Internet of Things or
industrial internet platform.
Simulation DT is an analog simulation.
Expression DT is a digital representation or

virtual body of a physical entity
(Fei et al., 2020).

However, according to Table 2 regardless of the interpretation
and definition, they all share a common feature: it connects the
physical and virtual worlds and serves the physical world according
to demand. The DT relies on knowledge mechanism, simulation
interaction, big data, and other technologies to establish digital
models, and uses technologies such as the IoT to map real-time
data from the physical space to the DT space. On the above basis,
combining artificial intelligence (AI), data mining, edge computing,
and other technologies, common applications such as the descrip-
tion of the DT, diagnosis and prediction, intelligent decision mak-
ing, and maintenance are empowered to various vertical industries
such as aerospace satellite, aerospace, oil, and gas industry, envir-
onmental protection, architectural design, military science, medical
and pharmaceutical, smart city (He et al., 2022b), smart factory
(Tao et al, 2020), national grid, equipment security, and other
various fields.

Mechanical equipment maintenance from the initial “mainten-
ance after failure” to “preventive regular maintenance,” and now
“PdM,” DT will promote the maintenance of equipment compo-
nents upgrade, to achieve “accurate condition-based maintenance”
(Tao et al,, 2018b). The aim is to achieve the goal of collaborative
optimization at all levels, ensuring the safe operation of machinery
and equipment and minimizing maintenance costs. DT has to
combine with other advanced technologies (such as deep learning
and complex high-frequency networks) to ensure real-time, high-
speed, and low latency, completely break the information silo, and
play its great advantage (Tao et al, 2018a). Lv and Xie (2021)
proposed that when using DT technology to assist physical entity
models to collaborate, precise maintenance and guarantee for faulty
physical entity equipment or components are also necessary. The
flow chart of DT-driven mechanical equipment maintenance is
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shown in Figure 9. Among them, the use of DT combined with AI
prediction to improve fault diagnosis and prediction accuracy is a
major direction (Li et al.,, 2022a).

Xiong et al. (2021) proposed that traditional model-based or
data-based PAM methods are often reactive and heuristic and
cannot diagnose faults and assess potential risks promptly, much
less provide safe emergency strategies and guarantees. To this end,
they combined DT techniques with deep LSTM neural networks,
achieved RUL accurate prediction, and provided complete health
management solutions. Wu and Li (2021) built an aero-engine DT
model based on IoT and sensor data, where they used LSTM deep
networks to dynamically update the DT model to assist the RUL
prediction of physical entity models. And then they extended the
DT model to remote operation and health maintenance manage-
ment of equipment components. Anis et al. (2020) a proposed DT
framework-based LSTM-ED network for the need for real-time
data updates and online learning. And they used the LSTM-ED
network to reconstruct the time series of sensor data for real-time
RUL prediction and update. Guo et al. (2021) established DT
models based on real-time sensor data for real-time RUL predic-
tion, providing digital solutions for accurate maintenance of
machinery and equipment, and guiding spare parts inventory
optimization.

In summary, DT technology plays a major role in real-time
prediction and accurate maintenance of equipment components:
from the digital model establishment to physical real-world
connection, to real-time model update, real-time fault diagnosis
and prediction, real-time inventory optimization, and real-time
health monitoring (Hollenbeck and Chen, 2022). In the future,
it is necessary to explore effective deep-learning methods for
fault diagnosis and RUL prediction. Deep learning methods that
can solve the challenges of multiple cross-working conditions,
few samples, online learning, and uncertainty are to be devel-
oped to embed into the DT model to provide accurate, fast, and
real-time maintenance for the operational safety of machinery
and equipment.

Deep learning/Al Model |

Fault diagnosis RUL prediction |

Combination optimization —l

Maintenance
strategy

Spare Parts
Management |

Case study
C-MAPSS dataset

This part uses the NASA C-MAPSS dataset to compare and sum-
marize the effectiveness of various deep learning methods in pre-
dicting RUL. The C-MAPSS dataset is widely used for predicting the
RUL of turbofan engines, which simulates the actual degradation
process of turbofan engines over flight cycles, from a healthy state to
run to failure. The dataset is divided into four different subsets, as
shown in Table 3. There are two types of engine failure modes,
among which FD001 and FD002 only contain HPC fault mode,
while FD003 and FD004 contain HPC and Fan fault mode; The
operating conditions are also divided into two types, with FD001 and
FDO002 only containing a single operating condition, and FD003 and
FD004 containing multiple operating conditions. In each subset, the
training set, the testing set, and the real RUL labels are provided. Each
training and testing set contains 21-dimensional sensor data for
monitoring engine operation, as well as 3-dimensional operation
setting data. For a more detailed introduction to this dataset, please
refer to Saxena and Goebel (2008).

The training data samples and the corresponding RUL label can
be used for training the deep learning model. After the model
training is completed, the RUL of each turbofan engine can be
predicted in the test set, and the predicted results are compared with
the actual RUL values provided in the dataset to verify the effect-
iveness of the prediction model.

Table 3. C-MAPSS dataset description

C-MAPSS FDOO1 FD002 FDO003 FD004
Engines in training set 100 260 100 249
Engines in test set 100 259 100 248
Operating conditions 1 6 1 6
Fault modes 1 1 2 2
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Evaluation index

To evaluate the effectiveness of the model, RMSE and score func-
tion (S-score) are usually used for evaluation.

RMSE

RUL prediction is a typical regression problem, and RMSE is one of
the most commonly used evaluation indexes in regression prob-
lems (Chen et al., 2019; Gao, 2020; Sayah et al., 2021), which is used
to reflect the deviation between the actual value and the predicted
value, as shown in Eq. (8):

1 2
RMSE =, |- _ (RULpre ~ RULqctuar) (8)
i=1

where N represents the total number of samples, RUL,,, represents
the predicted RUL, and RUL a1 represents the actual RUL.

S-score

In the field of RUL prediction, many research papers use the score
function as the evaluation index, and this evaluation indicator was
also adopted by the 2008 International PHM Data Challenge
(Li et al., 2018; Al-Dulaimi et al., 2020; Zheng et al., 2022). Com-
pared with RMSE, the biggest feature of the score function is that it
imposes more severe penalties for predicting values that are too
large. This meets the requirements of practical engineering, as in
important fields such as aerospace, predicting failure time later than
the actual failure time may lead to incorrect maintenance decisions,
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resulting in very serious losses (Che et al., 2019; Li et al., 2020b). The
mathematical expression (Egs. (9) and (10)] of the score function is
as follows:

N
S—score= Z Si ©)
i=1
RULpre ~RULycp01
G — { e Tt~y RULys~RULuu <0, (10)
e 1 —1, RULye—RULgcpua 20,

where e represents the natural logarithm.

Method analysis

To further compare the application of deep learning methods in
RUL prediction, Table 4 summarizes some deep learning methods
validated on the C-MAPSS dataset in recent years and presents the
experimental results of various methods on the first subset (FD001).
Table 4 also provides a brief introduction to the used methods.
Although various methods may not be consistent in data process-
ing, the C-MAPSS dataset specifies the training and testing sets, so
RUL prediction methods based on different deep learning could be
compared on this publicly available dataset.

In Table 4, there are 11 deep learning methods applied to the
C-MAPSS dataset in the past 3 years. It can be seen that all the deep
learning methods mentioned in the “Deep learning-based RUL
prediction methods” section have been applied to this dataset.
Among them, CNN is mainly used for extracting spatial features,

Table 4. RUL prediction method based on deep learning and its performance on C-MAPSS (FD001)

Method Author Year RMSE  S-score  Method introduction

LSTM Gao Hui (Gao, 2020 13.45 - LSTM extracts features and learns temporal dependencies, and finally inputs them
2020) into the fully connected network.

NPBGRU Al-Dulaimi A 2020 10.44 191.8 Applied the noise layers at the input of each path in the first two parallel paths
(Al-Dulaimi et (BiGRU and CNN).
al., 2020)

1D-CNN + BiLSTM + AM Zheng Y (Zheng 2022 9.74 - The dilated convolution increases the receptive field of the last layer and fused the
et al., 2022) 1D-CNN and BiLSTM.

LSTM + DBN Li Jingfeng (Li 2020 1243 172 LSTM performs time-series prediction on a single sensor, integrating the prediction
et al., 2020b) results into DBN for health indicator extraction, and combining the health

indicator prediction curve and failure threshold to obtain RUL prediction
results.

AE + DBN Al-Khazraji H 2022 11.27 219 AE for the feature extraction characteristic and DBN for superiority in learning
(Al-Khazraji long-range dependencies.
et al., 2022)

AE XU Yu-hui (Yu-hui 2021  14.07 291.67 RUL prediction based on multi-time scale similarity of health indicators using AE.
etal, n.d.)

GRU + AM YuanY (Yuanetal, 2022 13.12 249.32 Feature attention mechanism extracts spatial correlation and GRU extracts
2022) temporal correlation.

FCN + AM Fan L (Fan et al., 2022 13.99 336.45 Loss boundary to mapping ability approach for signal selection, FCN + AM for RUL
2022) prediction.

Transformer + AM Chadha G S 2022 121 184 Transformer learns temporal dependencies, and AM increases the weights of
(Chadha et al., important features.
2022)

CNN + Transformer Jiangyan Z 2024 1112 189.01  Parallel multi-scale CNN and Transformer module.
(Jiangyan et al.,
2024)

Transformer + Transfer Li X (Li et al., 2022 10.56 664 Domain adaptation for RUL prediction and a novel method by aligning

learning 2022b) distributions at both the feature level and the semantic level, FD0O03 — FD0O01.
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RNN is mainly used for extracting temporal features, and DBN and
AE are used for unsupervised feature dimensionality reduction.
Also, it could be noted that adding AM to the deep learning model
decreases the RMSE compared with those not added, because AM
could help the model pay more attention to the important features
which related to the RUL. Also, by combining the advantages of
different methods, more in-depth feature expressions related to
equipment degradation can be learned, thus improving the predic-
tion accuracy, such as the hybrid single model, and the combination
of AM and deep learning models. It is worth noting that the
improvement of RUL prediction accuracy by various models in
Table 4 is limited. We believe that a simple combination of multiple
methods is not the key to improving prediction performance. How
to flexibly utilize different methods for complementary advantages
and thereby improve model prediction accuracy is a problem
worth studying. In addition, more data generated in actual indus-
trial production will also promote model validation and facilitate
Al-driven production, where there will be more paper really con-
cerning the challenging problems in practical scenarios.

Conclusions
Methods comparison

Some deep learning methods and techniques are discussed in the
“Deep learning-based RUL prediction methods” and “Methods to
solve challenging problems in RUL predictions” sections. Here, the
pros and cons of different methods are clearly categorized in
Table 5.

As can be seen in Table 5, different methods and techniques
have their own advantages and disadvantages, and the appropriate
method can be selected based on the actual scenario and the
characteristics of the collected dataset. Different methods and
techniques can also be combined to neutralize their drawbacks.

Prospect

The literature reviewed in the “Methods to solve challenging prob-
lems in RUL predictions” section has suggested corresponding
solutions to address the difficult issues of RUL prediction for
equipment components (few labeled samples, cross-condition,
uncertainty, real-time, etc.) to some extent, but the optimization
still needs to be iterated in future practical applications. Therefore,
some highlights and challenges in the aforementioned solutions are
provided below in order to improve RUL prediction outcomes and
performance.

Few labeled samples and cross-condition problem
The following points need to be noted when using TL methods to
solve few labeled samples and cross-working condition problems.

(1) All existing methods require that the source domain must
contain all failure modes in the target domain (Xia et al.,
2021; Xu et al., 2021b). Therefore, there is a significant restric-
tion requirement on the dataset that serves as the source
domain. Moreover, when the source domain cannot contain
all the fault features of the target domain and cannot satisfy the
transfer requirements, it is also necessary to consider the multi-
source domain data.

(2) All existing methods are difficult to measure the transfer ability
of the source and target domains. Currently, there is no accur-
ate difference measure to determine whether the source and
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Table 5. Advantages and disadvantages of different methods and techniques

Methods Advantages Disadvantages
Supervised RNN  Capture the temporal Unable to capture
learning relationships of spatial relationships

features;
considering
contextual
information

of features; RUL
label required.

CNN

Capture the spatial
relationships of
features; weight
sharing, saving
computational
costs, reducing the
risk of overfitting

Unable to capture
bidirectional
temporal
relationships of
features; RUL label
required.

Unsupervised DBN
learning AE

No RUL label required;
feature
dimensionality
reduction

Need to calculate the
distance between
features; need to
establish HI.

Attention mechanism

Focus attention on
features related to
lifespan
degradation; better
prediction effect

High computational
complexity.

Transfer learning

Model transfer
between multiple
operating
conditions and
datasets

The transferability
between working
conditions and
datasets cannot be
uniformly
quantified and
measured. A
complete RtF
dataset as the
original domain is
still needed.

Semi-supervised
learning

Fully utilize health
data

Incomplete
annotation of data
may lead to poor
predictive
performance of the
model.

Bayesian method

Consider errors in
data, models, and
calculations

The computational
complexity is high
and difficult to
achieve accurately,
so Monte Carlo
approximate
methods are
generally used.

Digital twin

Real-time prediction,
in line with actual
scenarios

Currently, the
implementation
and application of
digital twin
frameworks are very
difficult, which
means difficulties in
project
implementation.

target domains are migratable from each other; therefore, it
may lead to inaccurate migration of the two domains.

(3) Although TL methods have made great progress in RUL pre-
diction under different working conditions, there is still some
error between the prediction results and the true values, and the
error may be caused by the imbalance of labeled and unlabeled
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samples. Therefore, how to develop TL methods with less error
is the future trend.

(4) The high number of model parameters involved in TL leads to
high model computation costs. Therefore, future research will
further explore model compression techniques to address this
limitation. Also, how to achieve adaptive extraction of migrata-
ble features and maintain their corresponding interpretable
physical meaning (Sanakkayala et al., 2022) is a question worthy
of consideration.

Uncertainty

The RUL prediction uncertainty methods reviewed in this paper
only consider deep learning networks that incorporate multiple
Monte Carlo dropout inferences and do not incorporate a mixture
of deep learning and filtering techniques. The following ideas are
suggested in light of the aforementioned.

(1) Existing studies have addressed the interval prediction problem
for RUL, but little research has been done on uncertainty
quantification (Wei et al., 2022) and calibration (Thelen
et al., 2022). Therefore, future models should consider more
spatiotemporal dependencies while incorporating uncertainty
quantification into physical and inferential causal models, thus
expanding the applicability of the modeling framework.

(2) The distribution uncertainty of RUL is highly dependent on the
single-point prediction results of multiple Monte Carlo infer-
ences. Suboptimal single-value predictions will affect the accuracy
of mechanical equipment maintenance strategy development.
Therefore, future work will focus on reducing single-value pre-
diction errors and improving prediction accuracy.

Real-time

The RUL prediction model based on the hybrid DT and deep
learning, to some extent, satisfies the concept of real-time RUL
prediction and practical industrial precise condition-based main-
tenance. Based on the shortcomings of the existing research and
future development trends, the following points are proposed.

(1) Deep learning and other AI techniques are one of the underlying
core technologies of the DT. The massive data processing and
system optimization techniques, mainly embodied in the DT
space, both require deep learning as the main central brain of the
twin space for mechanical equipment fault diagnosis and RUL
prediction (Agrawal etal., 2022). The combination of deep learning
and DT is crucial to the current state of research, and future
research will be devoted to the combination of the two to bring
different degrees of intelligent transformation to various industries.

(2) DT-driven RUL prediction methods do help in the real-time
maintenance of mechanical equipment, but sufficient data
must be available for DT modeling. Therefore, in the future,
it is necessary to balance the costs for data collection-storage
and the benefits of the industry when building DT models for
complex systems in the on-site application process.

In summary, as DT technology develops and becomes more sophis-
ticated, mechanical equipment’s fault self-diagnosis, RUL self-
prediction, and remote operation and maintenance will eventually
be merged with deep learning models to create a fully functional
intelligent PHM whole process (Liu et al., 2021).

Integration and diversity
(1) Most of the literature treats RUL prediction of mechanical
equipment as a single prediction task without considering the
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problem of fault diagnosis because fault diagnosis is a discrete
task while RUL prediction is a continuous task. The usual
practice is to train two deep learning models, one for fault
diagnosis and one for RUL prediction, but this wastes more
training time and computational resources, resulting in low
efficiency in both diagnosis and prediction. Ruan et al. (2022)
integrates fault diagnosis and RUL prediction into a single deep
network, which improves efficiency as well as saves computing
resources. Therefore, this ensemble and integrated framework
will be the future research and application direction.

(2) The performance degradation of manufacturing components
shows some dependence on the decline in product quality.
However, the traditional RUL prediction and maintenance
strategy of the manufacturing system are limited to the depend-
ence on the manufacturing components’ performance degrad-
ation. And most research only considers the impact of one
component on equipment RUL. Han et al. (2021) proposed a
system PdM method based on the component functional
importance based on the RUL prediction model that considers
the components dependence for product quality requirements.

(3) Compared with equipment failure data, the various effects and
economic losses caused by equipment defects are more condu-
cive to guide the development and optimization of mainten-
ance strategies, which are rarely discussed. Li et al. (2022c)
proposed a novel integrated PdM strategy to improve the
performance of manufacturing systems from the perspective
of product defect information.

In summary, the equipment RUL prediction will undoubtedly
become more accurate with the continued development of intelli-
gent digital services, and the mechanical equipment guarantee will
undoubtedly realize condition-based maintenance. Real-time
remote prediction, management, maintenance, and deployment
to meet the actual industrial needs will also become a reality.

Summary

As the systems and component mechanisms of large-scale equip-
ment become increasingly complex, RUL prediction models based
on deep learning have been widely researched and applied by
academia and industry with their strong model-fitting ability and
not solely rely on expert experience. However, there is a lack of
summary and comparison of relevant research work and results
based on deep learning. Therefore, in order to master and further
understand the RUL prediction methods and technology based on
deep learning, this paper reviews the commonly used deep learning
methods to predict the equipment components RUL, as well as the
new techniques to address the real-world application issues, includ-
ing DTs, TL techniques, and Bayesian techniques. Then, we mainly
conducted the case study on the C-MAPSS dataset and compared
different RUL prediction methods. Finally, we compare the pros
and cons of different methods and discuss the difficulties and some
future directions for the RUL prediction in practical scenarios.
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