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On Projectively Flat («, 3)-metrics

Zhongmin Shen

Abstract. The solutions to Hilbert’s Fourth Problem in the regular case are projectively flat Finsler
metrics. In this paper, we consider the so-called (c, 3)-metrics defined by a Riemannian metric cv and
a 1-form [, and find a necessary and sufficient condition for such metrics to be projectively flat in
dimensionn > 3.

1 Introduction

Projectively flat Finsler metrics on a convex open set in R" are the solutions to
Hilbert’s Fourth Problem. Beltrami’s theorem tells us that a Riemannian metric is
locally projectively flat if and only if it is of constant sectional curvature. For Finsler
metrics, the flag curvature is a natural extension of the sectional curvature. However
the situation is much more complicated. It is well known that every locally projec-
tively flat Finsler metric is of scalar flag curvature, namely, the flag curvature is a
scalar function on the tangent bundle, which might not necessarily be constant as in
the Riemannian case. Thus locally projectively flat Finsler metrics form a rich class of
Finsler metrics. Below are two important examples defined by a Riemannian metric
and a 1-form on the unit ball B* C R": Let
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where a € R" is a constant vector with |a| < 1. Then

(a) F := & + f3 is projectively flat on the unit ball B*(1) C R" with constant flag
curvature K = —1/4 (see [8]). i

(b) F:= (a+ 3)*/a, where a« = Ma and 3 = A\B, is projectively flat on the unit ball
B"(1) C R" with zero flag curvature K = 0 (see [6]).

These two examples inspire us to study projectively flat Finsler metrics F = a¢(8/a)

defined by a Riemannian metric « and a 1-form (. Metrics in this form are called

(v, B)-metrics. When ¢ = 1 + s, we get Randers metrics F = « + 5. Randers metrics

are the simplest («, 3)-metrics.
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It is well known that a Randers metric F = a + 3 is locally projectively flat if and
only if « is locally projectively flat and 3 is closed (see [1,3]). For a general (o, 3)-
metric F = a¢(8/ ), if § is parallel with respect to «, then F is locally projectively
flat if and only if « is locally projectively flat. This can be easily seen from (2.3) below.

The main purpose of this paper is to study and characterize locally projectively flat
(v, B)-metrics which are not of Randers type.

Theorem 1.1 Let F = a¢(s), s = B/« be an («, 3)-metric on an open subset U in
the n-dimensional Euclidean space R" (n > 3), where $(0) = 1, o« = \/a;j(x)y'y] and
B =bi(x)y" # 0. Let b := || B||o Suppose that the following conditions hold:

(a) B is not parallel with respect to o
(b) Fis not in the form F = \/a? + k(3% + €f3 for some constants k and ¢;
(c) db # 0 everywhere or b = constant on U.

Then F is projectively flat on U if and only if

(L) {1+ (k+ks))s + ks } 9" (s) = (ki + ks ) { d(s) — 59" (5) },

(1.2) b = 27’{ 1+ klbz)aij + (kb? + k3)b,-b]-} ,
(1.3) G, =& —1(kia? +kp) b,
where 7 = T7(x) is a scalar function on U and ky,k, and ks are constants with

(kz, ks) # (0,0).
When (k;, k3) = (0, 0), the solution ¢ of (1.1) with ¢(0) = 1 is given by

&(s) = V1 +kys? +es,

where € is a constant. The (o, 3)-metric defined by ¢ is of Randers type
F = 042+k162+€6-

For the above metric with € # 0, it is projectively flat if and only if 5 is closed and
& := /a2 + k3% is projectively flat, in other words, ( is closed and « can be ex-
pressed as @ = /&% — ki 3> where @ is projectively flat. We do not consider this case
in Theorem 1.1.

Consider the following functions:

1
¢ =€ +es, ¢:1—+es,

where € is a constant. Clearly, they do not satisfy (1.1). Thus F = aexp(3/a) + ¢f3
(the exponential metric) and F = «o?/(a— f3) + ¢ (the Matsumoto metric) are
projectively flat on U if and only if 3 is parallel with respect to o (Cf. [10], [5]).
We conjecture that these metrics are of scalar flag curvature if and only if « is of
constant sectional curvature and (3 is parallel with respect to . On the other hand,
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there are many functions ¢ satisfying (1.1) for some constants k;. Below are the most
important ones.

¢=1+s, d=1+es+s,

(1.4) , 1,
¢ = 1+ €s + sarctan(s), ¢=1+es+2s —55,

where € is a constant. See [6] and [9] for the metrics defined by ¢ = 1 + es + 52, [11]
for the metrics defined by ¢ = 1 + es + sarctan(s), and [7] for the metrics defined by
d=1+es+28 — 1%,

Corollary 1.2 If ¢ satisfies
(1.5) P(s) — s/ (s) = (p+157)p"" (s),
where p # 0, r are constants, then it satisfies (1.1) withk; = 1/p,ky = 0 and ks =

(r — 1)/ p. In this case, F = a¢(S/a) is projectively flat if and only if there is a scalar
function T = 7(x) such that

2T
(1.6) bilj: ?{(p+b2)aij+(r—l)bibj},
(1.7) G =&y — Lot
p
This corollary slightly generalizes the theorem in [2], where the authors assume
that ¢ = ¢(s) is analytic in s. The functions in (1.4) are particular solutions of (1.5).

For these functions, one can find some special non-trivial solutions to (1.6) and (1.7).
If ¢ = ¢(s) satisfies (1.5) with r = 0, then the (a, 3)-metric

P (1= 2) o — 22 )

N 2
¥y /1 ZIx]

is projectively flat on a ball around the origin in R". However, so far, we do not have
any explicit examples satisfying (1.1)—(1.3) with k, # 0.

2 Preliminaries

Consider a Finsler metric F = F(x, y) on an open domain U C R". The geodesics of
F satisfy the following equations:

ﬁ+2Gi(x @) —0
dt? Tdt)

where G' = G'(x, y) are called the geodesic coefficients of F, which are given by

G = 18"{ Flopy" - (P}
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F is said to be projectively flat in U if all geodesics are straight lines. This is equivalent
to saying that the geodesic coefficients G’ of F take the following form

(2.1) G =P(x,y)y".

There is another system of equations that characterizes projectively flat metrics. Ac-
cording to G. Hamel [4], F is projectively flat if and only if it satisfies

(2.2) Fonyy™ — Fa = 0.

In the study of projectively flat (v, 3)-metrics, (2.2) is more useful than (2.1).
Let ¢ = ¢(s), |s| < by, be a positive C*° function satisfying the following

B(s) — s¢'(s) + (p* — )" () >0,  (|s| < p < b,),

Let @ = +/a;jy’yJ be a Riemannian metric and 3 = b;y’ a 1-form on a manifold
M. Assume that ||3;]la < b,, then the scalar function F := a¢(s), s = 3/, is a
Finsler metric which is called an («a, 3)-metric. (v, 3)-metrics form a special class of
Finsler metrics. Most important, they are “computable” although the computation
sometimes runs into very complicated situations.

Let V3 = b;|jdx' ® dx/ denote covariant derivative of 3 with respect to . Let

1 1 ;
rij = E(bilj + b]-‘,‘), Sij = E(biU — bj|,'), Sj = bJS,‘j.

We can express the geodesic coefficients G of F in terms of the geodesic coefficients
G., of v and the covariant derivatives of 3.

(2.3) G =G +Py +Q,
where

P=a"'0(-2aQs, + 100),
Q' = aQs'y + ¥(—2aQs; + o)l

and

o_ ¢ —s(¢d" +¢'¢")
20((¢ — 56) + (b2 = £)9"")
__¢
Q="
B 1 ¢//
20— 59N+ (B2 =g

)

Y

We have the following trivial lemmas.
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Lemma 2.1 If $(0) = 1 and Q = ks, where k, is independent of s, then ¢ =
V1+ k152.

Lemma 2.2 If$(0) = 1and 2V = k; /(1 + k;b?), where k; is a number independent
of s, then ¢ = /1 + ks> + es, where € is a number independent of s.

By (2.2), one can easily get the following.

Lemma 2.3 (see [9]) An («, B3)-metric F = a¢(s), wheres = [/« is projectively
flat on an open subset U C R" if and only if

(2.4) (amc® = ymyD G2 + o’ Qsip + Wau(—2aQso + 109) (brox — sy;) = 0,

where y; == aj,y™.
To simplify equation (2.4), we shall prove the following

Theorem 2.4 Let F = a¢(s), s = [/a, be an (o, B)-metric on an open subset
U C R", where o = +/a;j(x)y'y] and 3 = bi(x)y'. Suppose that

(a) B is not parallel everywhere;

(b) F is not of Randers type at any point x € U;

(c) either db # 0 everywhere or b = constant # 0 on U.

Then F is projectively flat if and only if the function ¢ = ¢(s) satisfies

(2 5) ¢// - )\52 + u(bz _ 52)
' (6= s+ (B2 — )/ 021 y(B: — )
(2.6) 3 =0,
2.7) fop = zT{ 53+ n(bPa® — 52)},
(2.8) G = &' — (A + b — ) ¥,

where A\, i, 8,1 and T are scalar functions on U, with § = 0 if b is constant.

3 The 1-form 3 is closed
In this section, we are going to prove the following

Lemma 3.1 Suppose that Q/s is not independent of s. If an («v, 3)-metric F = a(s),
s = B/, is projectively flat on an open subset in W in R" (n > 2) and 3 # 0, then (3 is
closed.

Proof Let F = a¢(S/a) be a projectively flat (o, 3)-metric on U, namely, its geode-
sics are straight lines. Fix an arbitrary point x, € U C R". There is an affine
transformation ¢ = Au + x,: (') € R" — (x') € R" such that p(0) = x, and
o, = \/aijv'vi,and By, = b;jv' at u = 0 are given by

aij = 6ij, b = bydy;,
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where b, := || By, |la # 0. The above identities hold only at u = 0. Since ¢ is affine,
in the new coordinate system (u') the geodesics of F = F(u, v) are still straight lines.
Thus (2.4) holds for F with (u', ") in place of (x*, y'). At u = 0, we have

(3.1) (8,40% — Vuv1) Gl + @®Qspo + Ta(—2aQsg + ro0) (bir — sv;) = 0,

where v, := §;,,v".
With x, fixed, we make another change of coordinates: (s, %) — (v') by

1 N

vV = ——a, vi ="
Vb —s?
where
n
a =4/ > (v)2.
a=2
Then
b _ 3 bs _
o= ——0 = —q.
/12 =2 /1?2 — 2
Let
n n
10 := E riav", Too 1= E raV* v,
a=2 a,b=2
n n
S10 = E Sla‘l/a7 Sy = E Sa‘l/a.
a=2 a=2
Note that
So = b5_10, 51 = bS]] =0.
Express
. 1 . . . .
i _ i jak i i
Ga = 2ijV v, ij = ij
Let

= b =0 =0 b 0 b
Gl = GV, Gip = Goy = Gipvav', Goo = Gpovav V',
where v, = d,0".
Plugging the above identities into (3.1) we get a system of equations in the form

P+ W,a =0,
where ®; and ¥, are polynomials in +*. We must have
®; =0, ¥, =0.
Forl =1, by (3.1) we get
(3.2) $GO) = —sCoii? + {bQBs-10 + 25A10} a2,

(33) 52A11C_Jé2 — 2$2G_(1)0 + (b2 — SZ)AOO = 0.
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Forl=a, 2 < a < n, we get from (3.1) that

(3.4) SGSO = —SCaO_é2 + {ZSA_lo + bQBS_l()}Va,
(3.5) {25b°Gly — S AV + B Q50 }a? = s(b* — s*){2GY, + Ago }V".
Here
S a
A,‘j = Gllj + b\IJT,‘j, I':=1- Z\IJbZ, Ca = m{GHS - stla}.

Co=CaV*, Ajg=A", Ay = Azpv’.
Note that contracting (3.4) with v, yields (3.2) and contracting (3.5) with v, yields
(3.3). We can use (3.3) to eliminate A;; and Ay in (3.5).

(3.6) (25G§, + bQs,0)a° = ZSG?OV“.
Dividing (3.6) by 2s yields

3 b 3
(3.7) (G + Z—?s-ao) @ = Gl

Note that except for bQ/(2s), other terms in (3.7) are independent of s . By assump-
tion, Q/s is not independent of s. We conclude that 5,0 = 0, i.e.,
(3.8) sap = 0.
In this case, (3.7) is reduced to
(3.9) Giya? = Ghyv™.
Differentiating (3.4) with respect to v and v*, we get
(3.10) 25Gy. = —25Ca6pc + { (25A1 + bQT's15)8% + (25A1c + bQL's1)6) } .

Taking trace in (3.10) overa = b = 2, ..., nyields

(3.11) 2sA1. + bQls;, = %{Gﬁc +C.}.

Plugging (3.11) into (3.10), we get

(3.12) @ _ %{Gﬁ;ﬁf £ GIOEY = —Cabpe + %{chag £ G0}

By assumption, n > 2. For any 2 < a < #, one can take b = ¢ # a. In this
case, (3.12) becomes Gj, = —C,. Note that C, = Oats = 0. We get G}, = 0
(b= c#a). Thus C, = 0, (|s| < b) By the definition of C,, we get G}, — bTQsla = 0.
By assumption, Q/s is not independent of s, we conclude that

(3.13) S1a = 0.
In this case, we also have
(3.14) G =0.

Since 51; = 0, it follows from (3.8) and (3.13) that s;; = 0. [ |
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4 Determining r;; and G,

In this section, we are going to derive two formulas for r;; and G!,. We shall always
assume that

(a) Fis projectively flat on U;

(b) Fisnot of Randers type at any point;
(c) b # 0 at any point;

(d) db # 0 at any point or b = constant;
(e) B 1isnot parallel everywhere.

We continue to use the coordinate system (u',v') at u = 0. Express a = \/a; Vv
and 3 = b;v'. We have at u = 0, a;; = 6;j, b; = bdy;.

In the previous section, we have shown that C, = 0 and s;;, = 0 under the as-
sumption that n > 3. Now (3.10) is reduced to
(4.1) Gj. = Aol + Ayc0y.
We can rewrite (4.1) as

(4.2) 4 (G109 + G 5%) = bU(ryp0f + r100).

Note that the left side is independent of s. If r;. # 0 for some 2 < ¢ < #, then
bV is independent of s. We can express ¥ as 2U = #ﬁbl where k; is a number

independent of s. By Lemma 2.2, ¢ is given by ¢ = V1 +k;s2 + es, where € is a
number independent of s. This case is excluded in the theorem. Thus we conclude
that
(4.3) rp = 0.
Then (4.2) is further reduced to the following
(4.4) b — (G108 + G1.03) = 0.

It follows from (3.3) that
(4.5)  ${Gl 0 — (G4 + GL)} + (b — )G, = —bU{Pr1 00 + (1P — Py}
Case I db # 0atu = 0. Observe that at u = 0,

(671, = 26y ; = 2b'r;j + 2b's;j = 2bry; = 2bry10y.

Thus ri; # 0. By (4.5), there are numbers A, 11,0 # 0 and 7 independent of s such
that
A+ (b —§)
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Actually, we may take
1 1
6 = —bry, n=—brp, A= E(Gh —2GY,), H= EGéz'

Plugging (4.6) into (4.5) yields

b
5{ Gll ab — (G b+G )} = —7r11§ab
bu bA
5Gy +1{ Ghida — (Gl + Gl } = - P
nGab - _bTMrab

Let 7 be a number such that r; = 2657, If ud — n\ = 0, then 2¥ = \/§ is
independent of s. We can express ¥ as 2U = k; /(1 +k; b?) where k; is a number
independent of s. Then ¢ = /1 + k;s* + s, where € is a number independent of s.
This is the case excluded in the theorem. Therefore we conclude that ud — n\ # 0.
By this fact, we get from the above linear system that

(4.7) rab = 26*076 4,
(4.8) Gy, = —b*urdap,
(4.9) Gl O — (Go + Gb ) = =DM 7dyp,

Contracting (4.9) with v* and " yields G} = 1(G}, +b>A7)a?. Plugging it into (3.9)
gives G4, = 1(G}; + b’ 7)v". Differentiating the above identity with respect to v7,
we get

(4.10) % = (G +b’AT)0p.

Finally, let us summarize what we have proved so far:
(4.11) s11 =0, Sap = 0, s1a = 0.
(4.12) m =201, rw=20"nT0m,  11a=0.

It is easy to see that (4.11) is equivalent to s;; = 0, and (4.12) is equivalent to r;; =
27{0bib; + n(bzé,] bib;)}. The above identities hold in (u') at u = 0. Back to the
local system (x') at x,, we get rij = 27{8bibj + n(b*a;; — bib;)} . By (3.14), (4.4),
(4.8) and (4.10), we get

G}, =0, Gab = —b3u7'5ah,
1
Gl, =k — b ur, Gi = 5k1 . Gl, =k, Gi. = ky0® + k.67,

where k; are numbers independent of s. It is easy to verify that the above identities
are equivalent to G, = &V — 7{\3* + pu(b*a* — 3*)}V', where £ = k;v/. The above
identities hold in (u',+%) at u = 0. Clearly, G!, take the same form in (x, y') at x,
(hence at any point x since X, is chosen arbitrarily).
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Case II b # 0 is constant. In this case, r;; = 0. We have proved that 5;; = 0 and
1. = 0. Since we assume that 3 is not parallel, (r,,) # 0. By (4.5), there are numbers
A, pand 1 # 0 independent of s such that

A+ (b — )

4.13 20 =
(+13) =)
Plugging (4.13) into (4.5) yields
bu
4.14 G, =2t
( ) ab 2 Tab
. b
(4.15) GO — (G +Gb) = —o
In this case, there is no restriction on 7.
Contracting (4.15) with v, and v?, we obtain that

- 1 b

(4.16) G = - (G1 a®+ —?00) .
10 =5{%n 2

Plugging (4.16) into (3.9) yields

~a 1 a\ = b)\ = a
(4.17) (Glo — EG%IV )a2 = Eroov .

By (4.17), there is a number 7 independent of s such that
(4.18) rab = 2677104,

and G, = 3(G}, + b’ A1)4y.

It follows from the fact rj; = 0, (4.3) and (4.18) that r;; = 27n(b*6;; — b;b;).
Plugging (4.18) into (4.14) and (4.15) yields

(4.19) Gy = —b’utda,

(4.20) Gl O — (Go + Gb ) = —b* M 7dyp.

Contracting (4.20) with v* and v yields G}, = 1(G}, + b> 7)a?. Plugging it into

(3.9) gives Gf) = 3(G}, + b>A7)v* . Differentiating the above identity with respect to

yb , we get

1
(4.21) 4, = E(G}1 + b A0
It follows from (4.4) and (4.21) that there are numbers k; and k, such that
1
Gl, =k — b1, — Ek1 a G, =k, ¢ — k0 + k.0

Together with (3.14) and (4.19) we get G|, = &V — 7(\B? + u(b*a? — 3%))b ,where
f = k,‘Vi.
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5 The Equation on ¢

To prove Theorem 1.1, we consider

B @' (s) S+ (b —§Y)
T P(s) — s (s) + (B2 —2)@(s) 0+ (b — )]

where A, 1,9 and 7 are scalar functions with (A, ) # (0,0) and (6,7) # (0,0),
possibly depending on b = || 5|/ a-

(5.1) 2V

Lemma 5.1 Assume that ¢ = ¢(s) with $(0) = 1 and b # 0 satisfies (5.1). Then
#(0) = ¢ (0) = 0 and one of the following holds:

(i) #™W(0)+3(¢"(0))* # 0 and

(b”(S) ki + k252

(5-2) d(s) — s@’(s) + (b* — s2)@"' (s) 1+ kb2 + kb?s? + kss?’

where ki = ¢''(0),k, and ks are constants depending on ¢''(0), ¢*(0) and

¢©(0).
(i) @™(0) +3(4"(0))? = 0, and then

¢”(5) ki

(5:3) 0(s) — 30/ () + (2 —2)d/'(s) 1+ kb2

where ki = ¢''(0).

The equations (5.2) and (5.3) can be rewritten as one equation independent of b:
{1+ kis* + kos* + kss* 19" (s) = (k1 + kas?) {b(s) — sp'(s)}.

Proof Rewrite (5.1) as

(5.4) (65 + (b — )" = [AS + pu(0® — )][¢ — 56 + (b* — 5*)9""].

Let = 1+ ays+ ays® + ass® + ags* + ass® + ags® + azs” + o(s7). Plugging the above
Taylor expansion into (5.4), we get some linear equations on A, 44, § and 7. We can
actually solve these equations for A, i, § and 7 based on the values of the following
quantities:

as, 1+2a2b2, 2ay +a§.

Case 1 a, = 0ora, = —1/2b*. Then by a comparison on the coefficients of the
polynomials on both sides of (5.4), we conclude that 2a, + a3 # 0 and

p = ke,

n=(1+kbe,

A = (ki + kob?)e,

§ = (1+ kb + kyb* + ksb?)e,
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where € is a number with € # 0 and k; are given by

k1 L= 2(12,
2 2
aga, — S5aga; + 12a
k2 =2 et 6 22 4,
2a4 + a3
s 1lasa; + 5a6 + 3a3
T 2a4 + a3
In this case,
(b”(S) ki + k252

d(s) — s@’(s) + (b* — s2)p"' (s) 1+ kb2 + kb?s? + kss?’

Case 2 a, # 0,—1/2b? and 2a, + a3 = 0. By a comparison on the coefficients of
the polynomials on both sides of (5.4), we get 2as — a3 = 0 and

Hn = kle,
n=(1+kbe,
— kl
1 +k1b25’

where € is a number with € # 0 and k; = 2a,. In this case,

@' (s) ok
B(s) —sp/(s) + (b2 —2)9"'(s) 1+ kib?

Case 3 a, # 0, _z_iz’ and 2a4 + a3 # 0. By a comparison on the coefficients of the
polynomials on both sides of (5.4), we still get

p= ke,

n=(1+kb’e,

A = (ki + kob?)e,

§ = (1+ kb + kyb* + ksb?)e,

where € is a number with € # 0 and k; are given in Case 1. In this case

(b”(S) i ki + k252
o(s) — sp'(s) + (b2 — s2)d""(s) 1+ ki b? + kyb2s? + kas?’
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