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1. The following theorem was proved by Paley and Wiener (4, p. 70; 1, 
p. 136). 

THEOREM 1. If f{z) is a canonical product of order 1 with real zeros, and 
/(0) = 1, the conditions 

(1) lim I x~2log\f(x)\dx = -TT2A, 

and 

(2) \\mr~ln{r) = 2 A, 
r-»co 

are equivalent. n(r) denotes the number of zeros of absolute value not exceeding r. 

Instead of assuming the zeros to be all real Pfluger assumed that the zeros 
are close to the real axis and proved the following theorem (5 or 1, p. 143). 

THEOREM 2. Let 

f(z) = e" ft ( l - f-) expff-) 
n=l \ Zn/ \Zn/ 

be an entire function of exponential type, with /(0) = 1. Then the conditions 
oo 

(3) lim r_1«(r) = D, £ r^^sin (?n| = *C < oo 

and 

(4) lim J x~2\og\f(x)\dx = - 7 r 2 J ^ ± œ 

are equivalent, and D = 2C + 21. 

For a general order p(0 < p < 1), the following theorem was proved by 
Boas (2). 

THEOREM 3. If f{z) is of order less than 1, all its zeros are real and negative and 
/(0) = 1, the conditions 

(5) lim r~pn(r) = A, 

Received July 2, 1958. Research supported by the National Science Foundation. 

40 

https://doi.org/10.4153/CJM-1960-004-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-004-0


ZEROS OF INTEGRAL FUNCTIONS 41 

and 

(6) I ^~1_(r{log[f(—x)\ — 7rcot ira-n(x)\dx ~ w A(p — a)~1(cot irp 
Jo 

— COt 7TO-VP-(r 

(for any <r, 0 < a < 1) are equivalent. When a = p, (6) w to &e interpreted as 

/»oo 

(6') I x~ 1 - p{log|f( — x ) | — 7rcot 7rp-n(x)}Jx = — IT2 A cosecVp. 

In Theorem 4 of this note we extend the result of Boas to the case where 
the zeros do not necessarily lie on the negative real axis bu t are close to certain 
lines. 

T H E O R E M 4. Let 

(7) m = ft (i - ~) 
n=l \ Zj 

he an entire junction of order less than 1. If 

(8) £ r?{2 sin (6n + ir)a + sin 2ira} = C yé ± °° ( 0 < <r < 1) 
7 1 = 1 

/&ew Âe conditions (5) awd 

(9) I x"~1-(r{log|/(—x)| — IT cot ira-n(x)}dx 

~ ir A(p — c ) _ (cot 7rp — cot ira)rp~~(T + 
0"(1 — COS 27TO-) 

are equivalent. When p = a, (9) is to be interpreted as 

J*co 

x~1~p{\og\f( — x)\ — 7T cot 7rp-w(x)}dx = 
0 

— IT A cosec irp + 
p ( l — COS 27Tp) 

On put t ing p = <r = | in the above theorem and interpreting the result 
in terms of functions of order 1, we get Pfluger's theorem. Since (8) is satisfied 
a priori for every a > p we have the following 

COROLLARY. If 

is aw entire function of order less than 1, and p < a < 1 //zew the conditions (5) 
and (9) are equivalent. 
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Proof of Theorem 4. We prove the theorem by comparing f(z) with ano the r 
function which has real negative zeros. Let 

n=l \ ' n / 

where r„ = \zn\. W e have 

log / ( -« ) 
F{-x) 

E log 
zn + x 

T h e series on the right has non-negative te rms and so 

(10) f x _ 1 " r i o g | / ( - x ) | ^ = f x^-loglFi-x^dx + 
•70 «/0 

oo /»r 
^ I X"1_<rl0! 
n=l Jo 

Zn + X 
dx. 

\rn - x\ 

The number of zeros of F(z) in \z\ < x is w(x, T7) = n(x,f) = w(x). Subt rac t ing 

l x 'TT cot 7ra--w(x) dx 

from both sides of (10), we get 

(11) I a f 1 - ( r{log|/( — x)\ — 7T cot 7TO--W(X)} dx 
Jo 

J
-»r oo /»r 

X~1~'T{\og\F( — x)\ — 7T COt 7T(7-W(x)} ^ + ^ I X^'^log 
0 n=l */0 

Zn + ^ 
fn — X 

dx. 

We now show tha t , as r —> oo, the limit (finite or infinite) of the sum on t h e 
right is 

(12) 
a(l — COS 2ira) J^i 

T o do this pu t 

^ r n
a {2 sin (0n + ir)a + sin 27ro-}. 

4>{z) = log 
^ + z 
rn — z* 

where it is assumed t h a t zn is not real and negative. If the value of za is t h e 
principal value and we integrate z~1~<Tcj)(z) around the contour consisting of 
the circle \z\ = r wi th a cut from r to 0 and back again having indenta t ions to 
avoid rn's and the origin, then <f>(z) increases by 2wi as we traverse the contour 
s tar t ing a t z = r. On integration by par t s 

JJS-1-0(j>(z) dz = — —^ + - I z~~a(j)\z) dz 
ar a J 

a J \zn + z rn — z/ 
2jri 

ar 

2 Tri 
„ + - 2iri ( — Zn) ° irirn

ff(l + e 27rtffv> 
ar a a 
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= _ ?« + 2jn {rne«wr _ I T i f r ( 1 + ^ 
OT 0" 0" 

= â H rn e - - inrn (1 + e ). 
o-r G a 

As r —> °°, the integral along |s| = r tends to zero, so we have (combining 
the integrals along the two sides of the cut and equating real parts in the 
limiting form of the equation) 

\Z>n l % \ 
/»oo 

(1 — COS27TO") I X_ 1 _ ( r log 
t / 0 r» - x 

^x = — rn
a{2 sin (0„ + 7r)<r + sin 27ro-)} 

0" 

or 

J^ O O _ | _ 

x~1-<r log — dx = - - r — r r~ff {2 sin (0n + TT)O- + sin 27ra}. 
o |rn — x | o-(l — COS27TO-) 

F(z) has only real negative zeros and n(r, F) = n(r, f) ~ Arp. Therefore 
(Theorem 3 above) the integral on the right-hand side of (11) is 

~ TT A (p — <7)-1(cot irp — cot ira) rp~a 

which is to be interpreted for a = p as — ir2 A cosecVp. Hence if we suppose 
that (8) and (5) hold, then (9) will hold. The fact that (8) and (9) imply (5) 
is immediate. 

2. The following theorem of the same general nature has been proved by 
Clunie (3). 

THEOREM 5. Let f(z) be an integral function of genus zero and lower order Xf 
0 < X < 1, which has all but a finite number of its zeros, zn, in the upper hal, 
plane. If Rzn = o(\zn\) as n —» °°, then the conditions 

(3) lim x~p \og\f(x) | = \ 7T A cosec \ irp 
£->oo 

and 

(5) lim r~p n(r) = A 
r->oo 

are equivalent. 

Let n+(r) and n-(r) count, respectively, the zeros in Im z > 0 and Im z < 0. 
Following the method of Clunie we prove the following extension of Theorem 
5. 

THEOREM 6. Let f(z) be an integral function of genus zero and lower order X, 
0 < \ < 1. If at least one of the two numbers n+(r) and ti-(r) is 0(rp) as r —» oo 
and Rzn = o(\zn\) as n —» «>, then (13) implies (5). 

Proof. Let us suppose for definiteness that ti-(r) = 0(rp). Without loss of 
generality we may assume that / (0) = 1. Let, consequently, 

/(*) = n (i-f) = n ( i - f ) n ( I -^ -PW-QM, 
w =l \ Zn/ m = i \ 0m/ n==i \ Cn/ 
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where bm and cn denote respectively, the zeros lying in the upper half plane 
and the lower half plane. If ô is fixed, 0 < ô < w, and z = r ei(ir~5) then (3, 
p. 139) for m > m0(Ô) 

\bm — z\ 
< 1. 

1 

I bm - r I 

Hence 

l-p(«)| . ff 1*2-—5 
\P(r)\ âii \bm-r 

as r —> oo, and thus as r —* °o, 

log|P(*)| < l o g | P ( r ) | + o ( l ) . 

Further, if we take ô to be sufficiently small, then, for n > wo(5), we will have 

cn 

Hence 

and thus as r —-> «» 

<2(0 <n 

< 2 . 

CB — 2 -.n-(r) 

log\Q(z)\ < log |<3(r) |+0(rP) . 

Therefore on the positive real axis and on the radius arg z = T — ô we find 
that 

lug |/(2)| = 0 ( f ) . 

By the Phragmen-Lindelof principle it follows that/(z) is of order p and mean 
type. The rest of the argument is the same as that of Clunie (3, pp. 139-40). 

In conclusion I wish to thank Professor R. P. Boas, Jr. for his valuable 
guidance. I am also indebted to the referee for suggesting improvements. 
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