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Angular mementum distribution is one of the most important factors for stellar structutre 
and evolution. Among other mechanisms, angular momentum is transfered by non-
axisymmetric oscillations (nonradial oscillations). In this mechanism the angular 
momentum is carried mainly by the Reynolds stress, which is proportional to the product 
between radial and azimuthal components of oscillation velocity; i .e . ,u^ (<j> direction is 
the direction of rotation velocity). In the linear oscillation analysis, the phase difference 
between v'r and v't is x/2 + 8 with | 5 | « 1. A finite value of 8, which arises from 
excitation or damping of the oscillation, makes the time average of v'rv'^ finite. Positive 
angular momentum is transfered from the driving zone to the damping zone by a prograde 
mode (Osaki 1986). 

Lee & Saio (1986,1987) and Lee (1988) have shown that low-frequency oscillations 
are excited in rotating massive main-sequence stars, and proposed that the oscillations thus 
excited are responsible for the light and line-profile variations observed in OB (Be) stars. 
In the present paper, we discuss the efficiency of angular momentum transfer by such 
low-frequency oscillations. The oscillation is generated by oscillatory convection (inertial 
oscillation) with negative energy in the convective core resonantly coupled with a g mode 
in the envelope (Lee & Saio 1990). They are prograde, although the phase velocity is very 
low, with respect to the core rotation. The oscillation energy flows from the core to the 
envelope, and hence positive angular momentum is carried from the core to the envelope, 
if the angular velocity of rotation of the core is equal to or faster than that of the envelope. 

Let us begin with the angular momentum conservation equation given by 
<?(p©uj „ _ dp dO 
- ^ + V - ( p ^ ) = - ^ - p - , (1) 

where tS = rsin 8 and <I> is the gravitational potential. When we decompose each 
physical quantity of a rotating star into the axisymmetric and non-axisymmetric parts, the 
velocity and the density, for example, are written as 
(vr,ue,l>,)=(0,0,Qrsine) + (u;,Ug,u;) and p=p+p', (2) 

where the bar ( ) denotes the (zonally averaged) axisymmetric part and the prime (') the 
non-axisymmetric part ( / ' = 0). Then, taking the zonal average of equation (1) and 
integrating over the solid angle, we obtain 
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dj{r,t) 1 d{?V) r W \ djap'v'*) 
dt ~ r2 dr \ P d<j> J dt ' (> 

where the angular bracket means the integration of the enclosed quantity over the whole 
solid angle, and 

jXr,t) = (copvt), and ¥ = (o j (pU^ + u,/7u;)). (4) 

Usually, the second and third terms in the right hand side of equation (3) have only small 
contributions if the tidal effects play no important role. Neglecting these terms, we have 

j r ( r , 0 s f W ^ ^ r = - 4 j r r V , (5) 
0 at 

which represents the change in the equilibrium angular momentum within the sphere of the 
radius r. We assume that the non-axisymmetric parts of the physical quantities are 
caused by non-radial oscillations with m * 0. Then, equation (3) describe the angular 
momentum transfer by non-axisymmetric waves. We also assume that the functional form 
of the amplitude of non-axisymmetric oscillations can be represented by eigenfunctions for 
linear wave equations. Then, knowing that the Euleiian velocity perturbation generated by a 
non-radial oscillation is related to the displacement vector £(r, 6,<p,t) as 
u'=i(cr + mr})$-rsine(£-VQ)e,, (6) 
we can evaluate the right-hand-side of equation (3) by using the eigenfunctions of the non-
radial oscillation. As in a previous study (e.g., Lee & Saio 1986), we employ the series 
expansion in terms of the spherical harmonic functions to represent the non-radial 
oscillation of rotating stars. For example, the radial component of the displacement vector 
is given as 

- ^ S / W C e . ^ e * ' , (7) 
r ftM 

where <r is the oscillation frequency in an inertia! frame, £ = |m|+ 2y - 2 for even modes 
and £ = |m|+ 2/ - 1 for odd modes and ; = 1,2,3,- • •. 

The equilibrium model we employ is thclOM^ zero-age main-sequence model, for 
which log(Z/L@) = 3.73, log£„ =4.41 and # = 3.71^0. The model has a convective 
core, in which V - V^ = 10~3 is assumed. The outer boundary of the convective core is 
located at x s r IR = 0.235. We assume the angular frequency of rotation depends only 
on the coordinate r, and that 

Q = I ^ 1 + ^ -\, (8) 
^ l + cxpfa*-*,)]/' K> 

where Q.t is the angular velocity of rotation at the surface, a = 20, xc = 0.235, and a 

parameter b(> 1) is to specify the differential rotation. (The frequencies a and Q. are 

dimensionless ones normalized by yJGM/R* = 2.78 x 10"V\) We show an example of 
angular momentum transfer by the B, mode of m = -2 (see Lee & Saio 1986), which is 
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an even prograde wave excited by a resonance coupling between an oscillatory convective 
mode in the core and a gravity mode in the envelope. The oscillatory convective mode has 
negative energy of oscillation, while the gravity mode has positive energy of oscillation 
(Lee & Saio 1990). For ?^ = 0.162 and b = l.l2, we calculate the $ mode by taking 
accout of the non-adiabatic effects. Its frequency is (cfR, CT, ) = (0.383, -2.97 x 10""4). The 
eigenfunctions of |riS2(r)| and |rS4(r)| are shown by the solid and the dotted lines in the 
upper panel, and the qunatity 
j(r,t) is given as a function of 
r/R in the lower panel, where 
J(r,t) is normalized by its 
maximum value. As shown by the 
figure, 3{r,t) change its sign at the 
outer boundary of the core and is 
negative throughout the envelope, 
which means there is a net angular 
momentum flux from the core to the 
envelope. The rapid increase in 
j(r,t) near the surface means that a 
large amount of angular momentum 
deposition to the stellar rotation 
occurs because of large non-adiabatic 
effects (radiative dissipation) there. 
Since the angular momentum 
density is low, the rotation velocity 
near the surface would be changed 
on a short time scale. The rotation 
law can be modified until the phase 
velocity becomes equal to the 
rotation velocity. 
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