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Abstract. Any moduli space of representations of a quiver (possibly with
oriented cycles) has an embedding as a dense open subvariety into a moduli space
of representations of a bipartite quiver having the same type of singularities. A
connected quiver is Dynkin or extended Dynkin if and only if all moduli spaces
of its representations are smooth.
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1. Introduction. A quiver Q is a finite directed graph with vertex set Qy and
arrow set Q. For an arrow a € Q; write a_ € Qy for its starting vertex, and a,. for its
terminating vertex (multiple arrows, oriented cycles, loops are allowed). Let k£ be an
algebraically closed field of arbitrary characteristic. Take a dimension vector « € NOQO
(here Ny stands for the set of non-negative integers). The space of a-dimensional
representations of Qis defined as R(Q, @) := @ o, k*“**“), 50 x € R(Q, ) assigns
an a(a;) x a(a_) matrix x(a) to each arrow a € Q). For an element g = (g(i) | i € Qo)
in the product Gl(«) := [, 0, Gl (k) of general linear groups and x € R(Q, o) define
g-x € R(Q, @) by the rule (g - x)(a) := g(a;)x(a)g(a_)~" (matrix multiplication). This
is a linear action of Gl(«) on R(Q, «), such that the orbits are in a natural bijection
with the isomorphism classes of a-dimensional representations of Q (see e.g. [15]
for the concept of the category of representations of Q). By a weight we mean an
integral vector 0 € Z2; a relative invariant of weight 6 is a polynomial function f on
R(Q, «) satisfying the property f(g - x) = [];co, det(g())*?f (x) for all g € Gl(«) and
x € R(Q, a). A point x € R(Q, ) is -semistable if there exists a relative invariant f
whose weight is a positive rational multiple of 8 and f(x) is non-zero. The 6-semistable
points constitute a Zariski open (possibly empty) subset R(Q, )’ in R(Q, a). A
0-semistable point is 0-stable if its stabiliser is k*, they constitute an open subset
R(Q, @)’ in R(Q, o)’~5. In [14], Geometric Invariant Theory is applied to construct
a morphism 7 (Q, «, 8) : R(Q, @)~ — M(Q, o, #) onto a quasi-projective algebraic
variety M(Q, «, 6), which is a coarse moduli space for a-dimensional 6-semistable
representations of Q up to S-equivalence (consult [14, 19] for the terminology).
Moreover, M(Q, «, ) contains a (possibly empty) open subset M*(Q, «, 8) which is
a coarse moduli space for e-dimensional §-stable representations up to isomorphism.
Note also that the notion of semistability (stability) and the associated moduli spaces
depend only on the equivalence class of 6, where two weights are said to be equivalent
if one is a positive rational multiple of the other.
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Figure 1. Doubling vertex v.

It is known that the moduli spaces M(Q, «, 8) are singular in general (see e.g.
the introduction of [12], or the analysis of the generalised Kronecker quiver in [1]).
One possible way to give this vague statement a concrete form is provided by our
Theorem 3.1, pointing out that Dynkin or extended Dynkin quivers are characterised
by the property that all their moduli spaces are smooth (in fact, they are all affine or
projective spaces).

In the representation theory of quivers, the classical distinction of the classes of
Dynkin (resp. extended Dynkin) quivers is based on the fact that they have finite (resp.
tame) representation type, whereas all the remaining quivers have wild representation
type. More recent works showed that exactly these classes are selected when one inquires
about good algebraic or combinatorial properties of associated objects. It is shown in
[22] that the (extended) Dynkin quivers are exactly those quivers that have the property
that all their algebras of semi-invariants are complete intersections. These quivers are
characterised in [4] in terms of their weight semigroups. It is quite natural to inquire
about a characterisation of extended Dynkin quivers by good geometric properties of
their moduli spaces; Theorem 3.1 provides the simple answer.

In much of the literature on moduli spaces of quivers, the authors require that the
quiver has no oriented cycles. We show in Section 2 that a moduli space attached to an
arbitrary quiver can be embedded as a dense open subvariety into a moduli space of a
bipartite quiver, such that this larger moduli space has the same type of singularities
as the original one. Thus studying certain questions on these moduli spaces, one may
reduce to the case when Q has no oriented cycles (or even to the case when Q is
bipartite). Recall that if the quiver Q has no oriented cycles, then M(Q, «, 6) is a
projective variety. This is not true for quivers containing oriented cycles. So one may
think of this process as a compactification of the original moduli space, and it is notable
that such compactification is possible without adding new type of singularities.

Sections 2 and 3 are essentially independent (though the idea of Theorem 2.2 is
used to allow quivers with oriented cycles in the statements of Section 3).

2. The effect on moduli spaces of doubling a vertex. Pick a vertex v € Qp and
construct a new quiver QV as follows: replace the vertex v of Q by two new vertices v_
and v, and keep all the other vertices. For each arrow a € Q; draw an arrow a’ € O
with the same endpoints as a, except that @’ = v_ when a_ = v, and 4 = v, when
a, = v (in particular, if @ is a loop at v, then @’ is an arrow from v_ to v, ). Moreover,
0y has an extra arrow e from v_ to vy (see Figure 1).

Ifa e NOQO is a dimension vector, then denote «” the dimension vector for Q¥ with
a’(i) = a(i) foralli € Qp \ {v}, and @’ (v_) = a(v) = a’(vy). For a weight & € Z% and
a non-negative integer n, denote by 6" the weight for Q¥ defined by 6" (v_) = —n,
0V"(vy) = 0(v) + n, and 6"(i) = 6(i) for all i € Qg \ {v}. Lett: R(Q, o) —> R(Q", o)
be the morphism with «(x)(a’) = x(a) for a € Q;, and «(x)(e) = I (the a(v) x a(v)
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identity matrix). We state first a variant (taking care of weights) of Theorem 3.2 in [10]
or Proposition 1 in [5] (see also [7] for a special case).

PROPOSITION 2.1. Let f be a relative invariant on R(Q, o) with weight 0, and assume
that f is homogeneous of total degree d in the entries belonging to {x(a) | a_ = v}. Then
there is a relative invar lantf on R(QV, a’) with weight 6V¢ such that f = f oL

Proof. Denote M* the adjugate of an / x / matrix M: the (i, j)-entry of M* is (—1)+/-
times the determinant of the (/ — 1) x (/ — 1) minor of M obtained by omiting the jth
row and the ith column. When M is invertible, then M* = det(M)M~". This shows
that (AMB~')* = det(B)~' det(4)BM*A~" for A, B € Glj(k). Define the morphism
®:R(Q%, a”) - R(Q, @) by

S()(a) = x(a’) when a_ # v,
= ®(x)(a) = x(a’) - x(e)* when a_ =

Given g € Gl(«’) define g € Gl(«) by g(i) = g(i) for i # v and g(v) = g(v4). For x €
R(Q", a’) one has the formula

(& P(x))@) whena_ # v,
D(g - x)(a) = P

det(g(vy)) det(g(v-))" (g - P(x))(@) whena_ =
This shows that_i::f o @ is a relative invariant on R(Q", ) with weight 6*-¢. It has
the property that f(«(x)) = f(x) for all x € R(Q, ). ]

Next, we recall the concept of the local quiver setting of € € M(Q, «, 0) from [1].
The fibre 7 ~!(£) contains a unique closed orbit (closed in R(Q, «)?~*), say the orbit
of x. Then the representation ¥ of Q corresponding to x decomposes as @?_, m; V;,
where V1, ..., V, are pairwise non-isomorphic 6-stable representations, and m; € N
stands for the multiplicity of V; as a summand. Denote by ; the dimension vector
of V;. Then t := (B1, my;...; By, my) is called the 6-semistable representation type of &
(note that it may happen that 8; = g, for some i # j, when there are non-isomorphic 6-
stable representations of dimension vector 8; = ;). The local quiver setting associated
to & depends on the representation type t of &, and it consists of a quiver Q¢ with
vertexset {1, ..., g}, together with the dimension vector ug := (my, ..., my). The quiver
Q¢ has 8] — (B, Bj) o arrows from i to j, where §; = 0, if i # j, 8] = 1, and («, )o =
> ico, ¥DBG) — 3 4co, @(a-)B(ay) is the Ringel bilinear form on 72 . By the local
quiver settings of M(Q, a, 0), we mean the (finite) set of local quiver settings (Qx, i¢)
that occur as the local quiver setting associated to some point & € M(Q, «, 6).

THEOREM 2.2. For a sufficiently large non-negative integer n, the map t induces an
isomorphism from the moduli space M(Q, «, 0) onto a Zariski open dense subvariety
of M(Q",a”,0%"). This isomorphism maps M*(Q, «, 0) onto a dense open subset
of M*(Q', ", 0%"). Moreover, for sufficiently large n, the local quiver settings of
MO, av, 0V") and M(Q, a, 6) coincide.

The proof will be divided into three Lemmas. In order to simplify notation,
set R :=R(Q, a), R* := R(Q, a)’ %, R* :=R(Q,a)’ 5, M := M(Q, a,0), M* =
M(Q,a,0), 7 :=n(Q,,0), G:= Gl(a) and denote R, R, R, M, M*, &, G the

corresponding objects for OV, «¥, and 6",
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We say that a dimension vector § is 6-semistable (resp. 6-stable), if M(Q, B, 0)
(resp. M*(Q, B, 0)) is non-empty. By Proposition 6.7 in [6], « is §-semistable (stable)
if and only if o’ is 6V"-semistable (stable) for sufficiently large n. First, we need to
strengthen this statement as follows:

LEMMA 2.3. (i) For sufficiently large n we have «(R*) = R¥ N u(R).
(i1) If the conclusion of (i) holds for n, then (R*) = R* N «(R).

Proof. (1) This could be proved by modifying the proof of Proposition 6.7 in [6]. We
give a different proof based on Proposition 2.1, yielding a bound of different nature
for the necessary n. Introduce a grading on the coordinate ring of R by specifying
the degree of an entry of x(a) to be 1 when a_ = v, and 0 when a_ # v. Assume
that f(x) # 0 for some homogeneous relative invariant f/* of weight o := m6 (m € N).
By Proposition 2.1, f(1(x)) # 0, hence «(x) is o”“-semistable, where d is the degree of
f. Moreover, multiplying /" by the rth power of the relative invariant y > det(y(e)),
we obtain a relative invariant with weight o*¢*" not vanishing on ¢(x). This shows
that «(x) is o""-semistable for all n > d. Since o = m#, this clearly implies that ¢(x) is
0V"-semistable for all n > d/m.

Now take a finite set f1, ..., f; of relative invariants with weight equivalent to 6,
whose common zero locus in R is the complement of R*. We may assume that 6 is
indivisible, so the weight of f; is m;0, where m; € N. Since the action of G preserves the
grading introduced at the beginning of the proof, the homogeneous components of
a relative invariant are also relative invariants of the same weight, so we may assume
that all the f; are homogenecous; write d; for the degree of f;. Fix a natural number n
with n > d;/m; forall i=1,...,q. If x € R is O-semistable, then fi(x) #£ 0 for some
ie{l,...,q}, hence ((x) is #V"-semistable by the considerations above.

Conversely, if «(x) is 6”"-semistable, then f(:(x)) # 0 for some relative G-invariant
£ with weight equivalent to 6*”. Identify G with the subgroup H := {g € G | g(v_) =
g(v4)} in the obvious way, and view R as an H = G-variety. Then ¢ is G-equivariant,
showing that f o is a relative invariant on R with weight equivalent to 6, and f o
does not vanish on x, hence x is §-semistable.

(i) If x € R*, then we know already that ¢(x) is 6'"-semistable, so to conclude
1(x) € R* it is sufficient to show that the stabiliser of «(x) in G is just the centre k.
If g € G stabilises «(x), then g(v)i(x)(e)g(v_) = «(x)(e) = I, hence g(v;) = g(v_). So
g belongs to the subgroup H = G of G mentioned above. Since ¢ is G-equivariant,
we have Stabgz(¢(x)) = Stabg(i(x)) = Stabg(x) = k*, as we claimed. Conversely, if y €
R* N «(R), then y = «(x) for some x € R* by (i), and the above calculation of stabilisers
shows that x € R". O

LEMMA 2.4. (i) If the conclusion of Lemma 2.3(i) holds for n, then there exists a
unique morphism F: M — Mwith For =% o .

(i) For sufficiently large n, the image of F is a dense open subvariety of M.

(ii1) If the conclusion of (ii) holds for n, then F gives an isomorphism between M
and the dense open subvariety F(M) in M.

(iv) If the conclusion of (ii) holds for n, then F(M?) is a dense open subset of M.

Proof. (i) Consider the morphism 7 o1 : R® — M. It is G-invariant, hence by

the universal property of the quotient morphism 7 (see e.g. [19, Theorem 3.21(i) and
Proposition 3.11(1)]), there exists a unique morphism F : M — Mwith For =7 ot.
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(ii) Clearly, U := G - (R) is the dense G-stable affine open subset in R consisting
of the points x € R with det(x(e)) # 0. Write U% := U N R*. Then U is dense in R,
hence 7 (U*) is a dense subset of #(R*) = M. On the other hand,

A(U%) = #(G - (R) NRY) = #((R) N R¥) = #(U(R*)) = F(M) (1)

showing that F(M) is dense in M.

Now choose 7 large enough so that «(R(Q, )’ %) = R(Q, B*)’""~% N (R(O, B))
holds for all dimension vectors 8 < «, where we write 8 < «, if 8(i) < «a(i) for all
i € Qp. We shall show that U* is 7-saturated, that is, U* = 7~ 1(7(U*)). Suppose
that y € R with 7 (y) € #(U*). Then there is an x € R* with 7(y) = 7 («(x)) by (1).
It follows by [14] that the S-equivalence class of V), coincides with the S-equivalence
class of V), where we denote by V. the representation of the quiver Q¥ belonging to
z € R. Thatis, ¥, and ¥, have the same #""-stable composition factors (i.e. Jordan—
Holder factors in the category of 6V"-semistable representations of QV). By the choice
of n and by Lemma 2.3(ii), the 6""-stable composition factors of ¥,y (and hence of
Vy) are Vi, « oo Vis,)» Where Vi, ..., Vy, are the 6-stable composition factors of
V.. It follows that replacing y by an appropriate element in its G-orbit, we have that
y(e) is an upper triangular matrix with all diagonal entries equal to 1. Consequently,
det(y(e)) #0,s0y € U*.

Thus U* is #-saturated. It is also open and G-stable. Hence #(U*) is the
complement in M of the image under # of a closed G-stable subset of R*.
Consequently, 7 (U*) = F(M) is open in M (see the definition of a good quotient
in [19, Chapter 3]).

(ii1) Consider the morphism ¥ : U — R defined by

W(x)(a) = x(a’) - x(e)~"  for a'e Q) witha_ = v,

x(a’) forae Q) witha_ # v.
Since W o is the identity morphism of R, and ¥ maps any G-orbit into a G-
orbit, we conclude from Lemma 2.3(i) that W (U*) = R*, moreover, the morphism
ToW:US - M is G-invariant. Since U® is open and #-saturated, the map
T|ys : U® — F(M) is a good G-quotient by Proposition 3.10(a) in [19], hence is a
categorical quotient by Proposition 3.11(i) in [19]. This guarantees the existence of a
unique morphism G : 7(U*) - M with G o 77 |ys = o ¥|ys. Moreover, since W o ¢
is the identity morphism of R, we get that G o F is the identity morphism of M.
Consequently, F is an isomorphism between M and the dense open subvariety F(M)
in M.

(iv) We know from Lemma 2.3(ii) that F(M®) = M* N F(M), so being the
intersection of two open sets, F(M?) is open in M. To see the density, it remains
to show that if M* is non-empty, then M° is non-empty. Since M° is open, if it is
non-empty, then it intersects non-trivially with the dense open subset F(M) € M, so
F(M?*) is non-empty, implying in turn that M* is non-empty. U

Finally, we turn to the statement about the local quiver settings of M.
LEMMA 2.5. For sufficiently large n, the local quiver settings of M and M coincide.

Proof. First, we claim that for sufficiently large n, the 6”"-semistable dimension
vectors 8 <« are exactly the dimension vectors y”, where y is a 6-semistable
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dimension vector with y < «. Indeed, choose n large enough such that the conclusions
of Lemma 2.3 and Lemma 2.4 hold for all 6-semistable dimension vectors y < «. Then
yV is 6V"-semistable for some y < « if and only if y is 6-semistable. So it is sufficient
to show that for sufficiently large n, if 8 < @’ is a 6V"-semistable dimension vector,
then B(v_) = B(vy). Assume to the contrary that S(v_) # B(vy), say B(v_) > B(vy),
and choose n > Zier max{a(i)0(i), 0}. Then

D 0" DB() = n(Bv2) — BW-) + @B + Y BB < —n

ieQp i€Qo\{v}

+ Y max{a()0(0). 0} <0,
i€eQoy

hence B is not 6¥"-semistable. The case B(v_) < B(vy) is dealt with similarly. So
y > yV is a one-to-one correspondence between the set of 6-semistable dimension
vectors < « and the set of 0V"-semistable dimension vectors < a’. Moreover, for a
6V"-stable dimension vector y?, either there are infinitely many isomorphism classes
of 6V"-stable representations in R(Q", yv), or there is only one isomorphism class of
0V-"-stable representations (since M(Q?, y?, 6¥"") is irreducible). Since M*(Q, y, 0)isa
dense open subvariety of M(Q", y¥, 6"") by the statements we have proved already, in
the first case there are infinitely many isomorphism classes of 0-stable representations
in R(Q, y), whereas in the second case there is a single isomorphism class of 6-stable
representations in R(Q, y). Now let t be the 0V"-semistable representation type of

some £ € M. Then by the above considerations, T = (yysmis...;v, . my) for some
0-stable dimension vectors yy, ..., y, for Q. Furthermore, there exists a point n € M
whose 0-semistable representation type is p := (y1, mi;. .. ; ¥4, my). Note, finally, that

the local quiver settings associated to & and n are the same, since we have the equality
visvilo =" v )or for all i, j. Conversely, it is straightforward to show that the local
quiver setting associated to 7(x) € M(Q, «, 0) is the same as the local quiver setting
associated to #(1(x)) € M. Il

COROLLARY 2.6. For sufficiently large n, the singularities occurring in the moduli
space M(Q, «, 0) are the same (up to analytic isomorphism) as the singularities occurring
in M(Q, a®, 8%").

Proof. There is an étale morphism from a neighbourhood of the image 0 of the zero
representation in the algebraic quotient R(Qs, i¢)// Gl(ue) into a neighbourhood of
& € M(Q, a, 0) by Theorem 4.1 in [1] (in loc. cit. char(k) = 0 is assumed and the [18,
Luna Slice Theorem] is used; the results extend to positive characteristic by [11], using
[2]). Recall that an étale morphism induces isomorphisms of local ring completions.
Therefore our statement follows from Theorem 2.2. O

Doubling step-by-step all the vertices in Q one ends up with a bipartite quiver. This
construction was used in the literature to reduce the following problems for arbitrary
quivers to the case of quivers without oriented cycles: computation of the canonical
decomposition of dimension vectors in [21], description of generators of the algebra
of semi-invariants ([10, Theorem 3.2]), description of 6-semistable (stable) dimension
vectors ([6, Proposition 6.7]). Theorem 2.2 is the moduli space counterpart of these
results, accomplishing a proposal attributed to Le Bruyn in [20, p. 374].
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Figure 2. Qand y € R.

EXAMPLE 2.7. (This example shows that although we may double simultaneously
all the vertices, we still have to adjust the weight step-by-step going through the vertices,
in order to avoid the appearance of singularities of new type.) Let Q be the quiver with
two vertices 1,2, and one arrow a;; from i to j for all (i, ) € {1, 2} x {1, 2}. Take
the dimension vector « := (1, 1), and weight 6 := (0, 0). Then M := M(Q, «, 0) is an
affine space of dimension 3. Now double both vertices 1 and 2, to get the quiver Q
with four vertices (;: ;i ), an arrow a;; from i_ to jy for all (i,)) € {1, 2} x {1, 2},
and the new arrow e; from i_ to i, for i =1,2. The corresponding dimension
vector is & = (} }), and consider the weight 6 := (:i i). Let y denote the point
in R:=R(Q,a) with y(ax) = y(az1) = 1, y(an) = y(e1) = y(axn) = y(e2) =0 (see
Figure 2).

Then y is f-semistable, and M := M(Q, &, 8) is singular at the point &
corresponding to y, as one can see from the local quiver setting of & (smooth quiver
settings were classified in [3]). More explicitly, it is easy to see that M can be identified
with the projective variety {(zo : z1 : 22 : 23 : z4) € P* | 2125 — 2324 = 0} such that & is
identified with the singular point (1:0:0:0:0). On the other hand, for a point
x € R(Q, a) define «(x) € R by u(x)(aij) = x(a;;) for all i,j € {1,2} and «(x)(e;) = 1
for i =1, 2. It is easy to see that ¢ induces an isomorphism between the affine space
M = A3 and the dense open subvariety of M given by z4 # 0 in the above explicit
description of M. Finally, we note that replacing the weight & byo = (:é ;) one gets

a smooth moduli space M(Q, &, o).

REMARK 2.8. (i) As a special case, all the varieties parametrising semi-simple
representations of quivers (cf. [16]) can be viewed as open dense subvaricties of
projective moduli spaces of bipartite quivers. In particular, the smooth quiver settings
classified in [3] provide examples of smooth projective moduli spaces of representations
of quivers. So in a certain sense the quotient spaces of [16] are brought into the realm of
representation spaces of finite-dimensional path algebras (i.e. quivers without oriented
cycles), despite the fact that the original construction of [16] yields only trivial quotient
spaces in the case of finite-dimensional path algebras.

(i) When Q has no oriented cycles, then M(Q, «, 0) is a projective variety, hence
the morphism induced by ¢ in Theorem 2.2 is an isomorphism between M(Q, «, 6) and
M(QY, o, 8¥") (for sufficiently large 7). So any moduli space of representations of a
quiver without oriented cycles can be realised as a moduli space of representations of
a bipartite quiver.
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3. Moduli characterisation of tame quivers. By a connected quiver we mean a
quiver whose underlying graph is connected. The study of representations of a quiver
trivially reduces to the study of representations of the connected components.

THEOREM 3.1. The following are equivalent for a finite connected quiver Q:

(1) The moduli spaces M(Q, «, 0) are smooth (possibly empty) for all dimension
vectors o and weights 6.

(2) Forall o, 0 the moduli space M(Q, «, 0) is either empty or is a projective space
or is an affine space.

(3) The underlying graph of Q is Dynkin or extended Dynkin.

Proof. The implication (2) = (1) is trivial.

(1) = (3): (The argument is a generalisation of an example from [1], and
part of it appears in [20].) Recall the Ringel bilinear form on Z2 defined by
(o, B) = X ic, ¢DB(I) — X e, @(a-)B(ar). A dimension vector « is a Schur root (cf.
[13]) if the generic point in R(Q, «) corresponds to an indecomposable representation
of Q. Suppose that Q is not Dynkin or extended Dynkin. Then there exists a
Schur root y with (y,y) < 0 (this follows, for example, from the representation
theoretic interpretation of the Ringel form, and [15, Lemma 1.3 and Corollary 2.7]).
There exists a weight 6 such that there is a 6-stable point in R(Q, y) (see [21,
Theorem 6.1] for an explicit 6, or [14, Proposition 4.4]). Denote by V" a representation
of Q corresponding to a 6-stable point in R(Q, «). Then the 3y-dimensional
representation W :=1V @V &V is O-semistable. Let y € R(Q,3y) be a point
corresponding to W, so y € R(Q, 3y)?~%, write £ := 7 (Q, 3y, 6)(y). By Proposition
4.2 in [1], the point & is smooth in M(Q, 3y, 0) if and only if the ring of invariants of
the local quiver setting of & is a polynomial ring (this is proved in loc. cit. under the
assumption that char(k) = 0 using the Luna Slice Theorem in [18]; the results extend to
positive characteristic by [11], using [2]). The local quiver setting of & is the one-vertex
quiver with 1 — (y, y) > 2 loops and dimension 3. It is well known that the ring of
conjugation invariants of m-tuples of 3 x 3 matrices with m > 2 is not a polynomial
ring (see [17] for the case char(k) = 0, and [8] for positive characteristic). Consequently,
M(Q, 3y, 0) is singular at its point corresponding to W.

(3) = (2): If Q is a Dynkin quiver, then R(Q, o) contains a dense open
orbit, hence a moduli space M(Q, «,0) is either a single point or is empty. If
Q is extended Dynkin and contains no oriented cycles, then its path algebra is a
tame concealed-canonical algebra, and as a special case of a more general result,
we get from Corollary 7.3 in [9] that any non-empty moduli space M(Q,«a, 6)
is isomorphic to a projective space. If Q is a tame quiver that contains oriented
cycles, then the underlying graph of Q is A, for some r e Ny, with the cyclic
orientation (i.e. Q has r+ 1 vertices 0, 1,...,r, with an arrow from 0 to 1, 1 to
2,2 to 3, etc., r—1 to r, and r to 0). Take a dimension vector « and weight
0, and apply Theorem 2.2 with a vertex v with «(v) minimal possible. Then the
underlying graph of QY is 4,,;, with a path of length r+ 1 from v_ to v, plus
the arrow e from v_ to v;. Choose n as in Theorem 2.2. As we pointed out
above, M(QV, a¥, 6V") is a projective space. This shows already the smoothness of
M(Q, a, 0) by Theorem 2.2. Moreover, the image of the embedding F from the proof
of Theorem 2.2 is the non-zero locus of one of the natural homogeneous coordinates
on M(QV, ¥, 0"") (constructed as the projective spectrum of an algebra spanned
by relative invariants) by [9, Theorem 6.1], implying that M(Q, «, 0) is an affine
space. ]
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REMARK 3.2. Dynkin and extended Dynkin quivers are distunguished by the
possible dimensions of their moduli spaces: whereas any non-empty moduli space of
a Dynkin quiver is a single point, an extended Dynkin quiver has a d-dimensional
moduli space for all non-negative integers d (see e.g. [9]). Moreover, the above proof
shows that a quiver which is neither Dynkin nor extended Dynkin has a singular
moduli space of arbitrarily large dimension.
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