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Chains of projectivities within the lattice S?(G) of subnormal sub-
groups of a group G have been considered by various authors, see for
example Barnes [1] and Tamaschke [2]. The starting point of the in-
vestigations of which this paper is a report, was the theorem, basically
due to Wielandt:

THEOREM 1. / / AjB is a non-abelian composition factor of a group G
with a finite composition series, then AjB is not protective in Sf{G) to any
other factor of the same composition series, and any chain of projections from
AIB to AjB induces the identity automorphism in AjB.1

This is proved by a "homotopy" argument in which the chain of
projections is deformed into a chain with a very simple form. A similar
argument proves

THEOREM 2. Let AjB be a composition factor of prime order p of a group
G with a finite composition series.

(i) / / AjB is projective to no other factor of the same composition series,
then every chain of projections from AjB to AjB induces the identity auto-
morphism.

(ii) / / AjB is projective to some other factor of the same composition
series, then every automorphism of AjB is induced by some chain of projections
in Sf{G).

This leads us to consider for A subnormal in G (which in this paper
is always assumed finite) and B normal in A, the group n{AjB, G) of
automorphisms of AjB induced by chains of projections in Sf{G). We ask
the question: for given AjB, what subgroups of the automorphism group
of AjB can be n(AjB, G) for some suitable overgroup G?

The theorems quoted above give a complete answer to this question
for AjB simple. By the same method, it can be proved that n(AjB, G)
is trivial unless for some prime p, AjB has a normal subgroup of index p.
For an elementary abelian quotient AjB, n{AjB, G) is non-trivial only if
AjB is projective in Sf(G) to a subgroup of a larger elementary abelian

1 See Zassenhaus [4] p. 23S exercises 20 and 21.
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[2] Projectivities in finite groups 309

quotient, in which case n(AjB, G) is the group of all automorphisms of
AjB. The next case to consider is the case where AjB is a cyclic ^-group
of order greater than p.

In part I, we develop a homotopy theory of finite groups in sufficient
generality for application to the general problem. In part II, we solve
the problem for cyclic quotients AjB in abelian ^-groups. We remark that
this solves the problem for a cyclic quotient in any finite abelian group since
the lattice of a finite abelian group is the direct product of the lattices of
its Sylow subgroups. If we denote by Gv the unique Sylow ^-subgroup of
the abelian group G, and if AjB is a quotient of G, then n(AjB, G) is the
direct product of the groups n((AjB)v, G,,),

PART I. HOMOTOPY THEORY OF FINITE GROUPS

1. Projectivities

A quotient in a group G is a factor group AjB where A is a subgroup
of G and B is a normal subgroup of A. Suppose L is some sublattice of the
lattice of all subgroups of G. The quotient2 AjB is called admissible with
respect to L if A, B e l . The lattice L is supposed fixed, and by "quotient"
we shall mean "quotient admissible with respect to L". Suppose AjB,
CjD are (admissible) quotients and 4 = B u C , D = B nC. Then the

map aB -> (aB) n C for all a e A of the cosets of B in A onto the cosets
of D in C is an isomorphism. Such an isomorphism is called a projection
down, its inverse is called a projection up.

A chain c of projections is a sequence <f>lt </>2, • • •, <f>n of projections
such that <j>t is a map from the image of ^ ^ (*' = 2, 3, • • • ,« ) . Since the
projection

<f>t: A^jB^ -± AJBt = (A^IB^fc

is uniquely determined by the intervals A^jB^ and AJB,, we write

• Notice that not every quotient ol L in the lattice sense is a quotient in the sense of
this paper.
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c = (A0IB0 - • AJB, -> • • • -+AJBn).

c clearly defines the isomorphism <f> — fafa • • • <f>n of AJB0 onto AJBn.
Such an isomorphism <j> is called a projectivity (in L). If

rf = (AJBn -> An+1IBn+1 ->

is a chain of projections giving the projectivity y of AJBn onto i4B+m/jBn+m,
then we define cd to be the chain

cd = (^0 /50 -* ^ / B , -> >AJBn -*An+tIBn+1 -> • An+JBn+n).

Clearly cd gives the projectivity <f>y> of .40/.B0
 o n to An+mIBn+m. We define

r~l to be the chain

-> AJB0).

c~l clearly gives the projectivity <̂ ~1.

2. The projectivity group n(A)

If c is a chain starting and finishing at the same quotient A/B, we
call c a loop, c then gives an automorphism <x(c) of A/B. It is convenient
to define <x.(c) to be the identity automorphism for c = (A/B), the trivial
loop consisting of the empty set of projections. Clearly the set of all auto-
morphisms <x(c) of AjB given by loops c starting and finishing at A\B is
a group which we denote by n{A\B). Two quotients AjB, CjD are called
projective (in L) if there exists a chain d of projections

d = {AjB -v ^ / ^ - > • • . - > 4 . / B . = C/£»).

If AjB and C/D are projective, then n{AjB) and n(CjD) are isomorphic.
Thus 3i(AjB) depends (up to isomorphism) only on the class A of projective
quotients to which AjB belongs. We therefore denote the (isomorphism
class of the) group by n(A).

3. The fundamental group F(A)

If in the chain c = (AojBo-^- AJBj^^- • • • -> AJBn), we have
Ar+JBr+2 = ArjBr for some r, then the projection Ar+1jBT+l -*• Ar+ijBT+t

is the inverse of the projection AJB,-* Ar+1jBr+1. If

c' = (A0jB0 - • • ATjBT = Ar+JBT+2 -* ^ r + 3 / 5 r + 3 -* • i4,/B.)

is the chain formed from c by omitting the projections

ArjBT -> Ar+1jBr+1 -> ^ r + 2 / f i , + i ! = ATjBr,

then c and c' give the same projectivity. We say that c and c' can be obtained
from one another by a transformation of type (1).
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If there exist projections A1jB1^- A2jB2, A1jB1--> AJB3 and
A2IB2-+A3jB3, then A1IB1-* A2jB2^- A3jB3 and A1jB1-^A3jB3 give
the same projectivity. This follows from the fact that, for some permutation
«, v, w of 1, 2, 3, we have Au ^ Av S Aw, BU^BV^ BK and fc r the coset
aBu of Bu in Au,

((aBu) n Bv) n B , = (aBu) n Ba.

If the chain c' is obtained from c = (A1jB1 -»••••->• AJBn) by replacing
^.•+i/#<+i -»• Ai+2IB,+i -> 4i+8/B,.+3 by Ai+1jBi+1 -» /I, .3/B,. 3 where
-4<+u s£ ̂ i+* 2? ̂ i+u,. Bi+a 2S #,+D 2i Bi + t t for some penruaati >c ;t, r, te»
of 1, 2, 3, then the transformation of replacing c by c' or { replacing c'
by c is called a transformation of type (2).

We say that the two loops c, c' starting at AjB are Vomotopic if c'
can be obtained from c by a succession of transformations u typns (1) and
(2), such that the chain obtained after each successive transformation is
again a loop starting at AjB. The classes of homotopic loops starting at
AjB clearly form a group F(AjB) which we call the fundamental group
at AjB. As in ordinary homotopy theory, this group depends (up to isomor-
phism) only on the class A of projective quotients to which AjB belongs,
not on the actual starting point AjB of the loops, and we therefore denote
the fundamental group by F(A). Clearly c -> a(c) defines a homomorphism
a.: F{A) -*-n(A). Thus n{A) can be determined if we can calculate a(c)
for a representative loop c of each element in some generating set of F(A).

We have called this group F(A) the fundamental group of the class A.
This is consistent with the terminology of topology if we make A a two
dimensional complex in the following manner. The vertices of the complex A
are the quotients AjB eA and the edges are the projections AjB ->• CjD
in A. This defines the one-skeleton of the complex. Every triangle
AjB -> CjD -*• EjF -> AjB 'no. A is spanned by a surface. These surfaces
spanning a triangle are the faces of the complex A. The fundamental
group of this complex is precisely the group F(A).3

4. The homology group H(A)

We introduce a further two types of transformations of chains. If
c = uabv where a, b are loops starting at UjV, u is a chain ending at UjV
and v is a chain starting at UjV for some UjV e A, cn& if c' = ubav, then
we say that c' is obtained from c by a transformation of type (3). The
equivalence classes of loops starting at some fixed AjB obtainable from
one another by transformations of types (1), (21: .d (3) form the abelia"

1 For the homotopy theory of complexes, seu beifert and Threlfai. L3J P- 162 —ioo.
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312 D. W. Barnes [5]

group F(AjB)jF'(AjB) which is the factor group of F(AjB) by its com-
mutator subgroup.

If c = (A1IB1 -> AJBa -+ • • • -+AJBn -> AJB,), and c' = {ArjBr

-> Ar+1jBr+1 -> > AJBn -> ^x/^! -»• > ATjBr) consists of the same
projections as c taken in the same cyclic order, then we say c' is obtained
from c by a transformation of type (4).

If c, c' are loops in A and c' can be obtained from c by a succession
of transformations of types (1), (2), (3) and (4), we say that c, c' are
homologous loops. The classes of homologous loops form an abelian group
H(A) which we call the homology group of A.

If u is a chain from A jB to CjD, then the map taking the loop c starting
at AjB to the loop urlcu starting at CjD gives an isomorphism of F(AjB)
onto F{CjD). This isomorphism is not in general unique but depends on
u to the extent of an inner automorphism. Consequently the induced map
of F(AjB)jF'(AjB) onto F(CjD)IF'(CjD) is independent of u. The element
of F{AjB)jF'(AjB) with the loop c as representative is precisely the set of
loops starting at AjB and homologous to c. The element of F(CjD)jF'(CjD)
corresponding to this under the map induced by c -> u~xcu is the set of
loops starting at CjD and homologous to c.4 Thus if we identify correspond-
ing elements of the different F(AIB)jF'(AjB), the group whose elements
are these classes of identified elements is the group H(A). H(A) ~F{A)jF'(A)
is the one-dimensional homology group of the two-dimensional complex A.

If the group n(A) is abelian, then the map c -> a(c) induces a homo-
morphism of H(A) onto n(A). In this case, n(A) can be determined if we
can find the <x(c) given by the elements of a generating set for H(A).

5. The restricted complex

The elements of A are naturally partially ordered, AjB 5: C\D if
A^C, B^DandA = BKJC,D = B nC, i.e. AjB ^ CjD if there is a
projection down from A\B to CjD. The maximal elements of A in this
partial ordering we call the peaks of A, the minimal elements we call the pits.

If AjB -^ CjD is a projection up, and CjD -> EjF is a projection
down, and if CjD' is a peak, CjD' ^ CjD, then AjB-^ CjD -> EjF is
homotopic with fixed end-points to A/B-t-C/D'-> EjF. Thus if AjB is
a peak or pit, then in every homotopy class in F(AjB) there is a loop
AjB = A0jB0->A1jB1^ >AJBn^AjB in which the AijBi are
alternately peaks and pits. It is convenient to study these loops, con-
sidering only those homotopies in which all intermediate loops obtained
by the successive transformations have this same form. In this, we use

• See Seifert and Threlfall [3] p. 174—176.
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transformations of type (1) only. This leads us to consider the complex A*
whose vertices are the peaks and pits of A and whose edges are the projec-
tions between these peaks and pits. The faces of A were introduced to
allow transformations of type (2). Since these cannot occur between loops
of the type we are considering, we do not define faces of A*. We call A*
the restricted complex of A. Its fundamental group F(A*), which we denote
by F* = F*(A), we call the restricted fundamental group of A. The
homologygroup/7(/l*) = H* = H*(A) of A* we call the restricted homology
group of A.

Each restricted homotopy class of loops is contained in a homotopy class,
and each homotopy class with peak or pit as starting point contains at least
one restricted class. The map in which each element of F* maps into the
element of F in which it is contained, is clearly a homomorphism of F*
onto F. Similarly there is a homomorphism of H* onto H.

Since A* is a one-dimensional complex, F* is a free group and H*
is free abelian 5. This, together with the fact that the vertices and edges
of A* are more easily enumerated than those of A makes F* and H* more
convenient tools than F and H for the determination of n{A). F* and H*
are not necessarily groups of simpler structure than F and H, for example,
if L is the lattice of all subgroups of the elementary abelian group of order
8 and the vertices of A are all the quotients of order 2, then F(A) is trivial
but F*(A) is the free group on 15 generators.

6. Covering spaces

For each of the complexes A, A* we can define in a natural way a
covering space whose monodromie group is n(A) 6.

Let K be either of the complexes A, A*. Each vertex V of K is a quotient
AjB of the group G. The points of the covering space R which lie over V
are the elements of AjB. If V1 = AJBt is joined to F2 = A2IB2 in K by
an edge, then in R each element ax eA1jB1 is joined by an edge to the
element a2 e AJB2 to which it maps under the projection A^Bj^ -> A2JBi.
Every triangle in R is spanned by a face. The points a1, a2, a3 e R can be
vertices of a face only if the points Vu F2 , F3 of K over which they lie are
vertices of a face of K. Conversely, if Vlt F8 , V3 are vertices of a face of
K and if at lies over V1, a2, a3 the images of ax under the projections Fx -> F 2

and V1 -> V3, then a3 is the image of a2 under the projection F2 ->• F 3

and «x, «2, «3 are the vertices of a face of R. If n is the order of the quotients
in A, then over each vertex of K lie n points of R, n edges of R lie over

« See Seifert and Threlfall [3] p. 165-168.
• For the theory of covering spaces, see Seifert and Threlfall [3], chapter 8, p. 181 — 203.

The monodromie group is discussed in § 58, p. 198—203.
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each edge of K and n faces of R lie over each face of K. By taking suitable
coordinate systems in the faces and edges of K and R and mapping each
point of R to the point in the corresponding face or edge of K and with
the same coordinates, we can clearly define a map of R onto K making R
a covering space for K.

The theory of covering spaces is usually developed under the as-
sumption that the covering space is connected. If the quotients in A are
not trivial, then R cannot be connected since any projection preserves the
order of an element, and in particular, maps the identity element to the
identity element. We can however apply the theory of connected covering
spaces to the connected components of R.

Take any vertex V of K and let ax, • • -, an be the points of R lying
over V. For any loop c in K starting at V, there is a uniquely defined path
pt starting at «,• and lying over c. The map which takes at into the point
at which the path p( ends is a permutation of the points a,-. The monodromie
group of R is the group of all such permutations. Since the end-point
of pt is «,a(c), the monodromie group is precisely the group n{A). Since
R is not connected, the monodromie group of K is not transitive.

A connected covering space W of the complex W is called regular if,
for every loop I in W, the paths px in W lying over I are either all closed
or all open. Since every transitive abelian permutation group is regular,
every component of R is regular if x(A) is abelian, in particular, if the
quotients AjB e A are cyclic. If on the other hand, A is a class of elementary
abelian quotients of order pn (n ^ 2) in £f{G) and TI(A) is not trivial,
then 7i(A) is the general linear group GL(n, p) and is transitive on the non-
identity elements of any quotient in A. A connected covering space is
regular if and only if its multiplicity is equal to the order of its monodromie
group. In this example, n{A) is the monodromie group of the non-identity
component of A. Since the multiplicity of the component is pn— 1 which
is not equal to \n{A)\ = (pH— l)(pn—p) • • • (/>"—£"~1), it is not a regular
covering space.

7. Lengths

Suppose c is a loop in A or A*. We define the length of c to be the
number of projections in c. Suppose T is one of the groups F, F*. H, H*
and that t is an element of T. (In the case of F, we suppose the starting
point of the loops to be some fixed peak or pit.) Then t is a class of loops.
We define the length l{t) of t to be the length of the shortest loop in t.
Since the shortest loop in t must consist of projections alternately up and
down, l(t) is an even integer, miscalled reducible if there exist/j t2, • • • , ( , e 71

such that t = txt% • • • tr and 1(1^) < l(t) for all i. Otherwise t is called ir-
reducible.
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We denote by Tin> the subgroup of T generated by all elements of T
of length less than or equal to 2M. The length l(T) of T is the length of its
longest irreducible element. If l(T) = In, then T = Tw

 ^L J C - 1 ' .

If T is F or F*, then an element of T is a class of loops with fixed end-
point. Although the group T (up to isomorphism) is independent of that
fixed end-point, l(T) may depend on the end-point. For example, suppose
G = <«, by, a* = b* = aba^b"1 = 1, and L the lattice of all subgroups of G.

Fig. 2.

We consider the quotients of order 2. The peaks of A are A1 = Gj(ay,
A2 = G/<«6>, ^ 3 = G/<«2, i>, ^ 4 = <«2, 6>/<«2J>, 4 , = <«2, &>/<&> and
the pits are 23, = <&>, £ 2 - <«2&>, Bz = <«2>, 5 4 = <«6>/<a2>, B s = <«>/<«2>
as marked on the lattice diagram. A* is the complex

\2 B2

Fig. 3.

F*(A1) is generated by the irreducible loops {Ax -*• Bt -> A2 -*• B% •

[Ax -*• Bt ->• A3 -> Bh -> ^42 ~* ^ 1 "*• ^ i )
and

Thus l(F*(A1)) = 6. -F*(̂ 43) is generated by the irreducible loops
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•A,).

A2-+B5^A3).

Thus l(F* (A,)) = 10. Thus to define F<"), F*w,l(F) or/(F*), it is necessary
to specify the point at which the loops start. This difficulty does not arise
with H and H*. Trivially, l(H) ̂  l(F) and 1{H*) ^ l(F*).

LEMMA 7.1. HjH™ ~ H*jH*™.

PROOF. Let c = (Al/B1 -»• ̂ 42/^2 - > • • • - > AJBn -> AJB-,) be a
representative loop of an element of H. We may choose c such that the
projections are alternately up and down. If Ai\Bi -> Af+1/Bi+1 is a projec-
tion up, take A'i+1/B'i+1 any peak such that A'i+1IB'i+1 2g Ai+1IBi+l, and
A'JB't any pit such that A\IB\ ̂  AJBt. Put

Then c' is a loop in A* and gives an element of H*jH*{i) which is com-
pletely determined by c. This clearly defines a homomorphism of H onto
H*/H*i2\ and Hi2) is clearly contained in the kernel. Since the loops c
and c' are homologous, c' is a representative of an element of H*(i) only
if c is a representative of an element of H™. Hence HjHm rt H*jH*™.

PART II. CYCLIC QUOTIENTS IN ABELIAN p-GROUPS

We now restrict ourselves to the case where G is a finite abelian p-
group, L is the lattice of all subgroups of G and A is a class of projective
cyclic quotients. The group G is a direct product of cyclic groups <«j>, • • •, <«*>
of orders />A», • • •, pA*. We may suppose the numbering of the u( chosen
so that X1 ̂  k2 :g • • • 2: Xk, in which case we say that G is of type
(^1-"''» K)- Let £A be the order of the quotients in A. We shall determine
the number of classes A of cyclic quotients of order px in G, show that the
groups F(A), F*(A), H(A), H*(A) andji(yl) depend only on p, X, Xlt • • •, Xk,
not on the actual class A chosen, and determine n{A) in terms of these.

8. The classes of projective cyclic quotients

LEMMA 8.1. Let G be any p-group and C a cyclic group of order p*.
Then every cyclic quotient of order px in GxC is projective to C.

PROOF. Let A/B be such a quotient. Then ACjB is abelian of type
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(•*» r), r ^X, and therefore (G n AC)jG n B, being isomorphic to a sub-
group of ACjB, is abelian of type {r1,r2),X^rx^r2. Since AC = (ACnG)C,
we may take G = AC n G without loss of generality. Since trivially
(G n B)CIG n B is projective to C, we may further suppose G n B = 1.
Thus we need only consider the case G abelian of type fa, r2), r( :£ A.
Then GxC has exponent px. Take any coset representative a of a generator
of AjB. Then <a> is a cyclic subgroup of GxC and AjB -> <«> is a projec-
tion. <«>C is an abelian group of type (A, r), r ^ A. There exists Z> <I <«>C,
|Z)| = pr such that Z) n <«> = Z> n C = 1. Then <«> -> <«>C/D -> C is a
chain of projections.

THEOREM 3. ' L«< G fo «« abelian p-group of type (klt • • •, A*).
(a) / / A2 ̂  A, £Aew G Aas o»Zy o«e c/«ss of projective cyclic quotients

of order px.
(b) If X-y = A+r, A2 < A, then G has precisely r + 1 classes of projective

cyclic quotients of order px. If G = UxV where U is cyclic of order px\ then
these classes are the sets of all cyclic quotients of order px of (UpixV)IUv'+*'
for i = 0, 1, • • •, r.

PROOF, (a) G is the direct product of cyclic groups Ut of orders pKi.
Suppose A IB is a cyclic quotient of order px, and let a be a coset representa-
tive of a generator of A\B, Then AjB -> <«>/<«> n f i i s a projection. At
least one of <a> n [/,, <a> n U2 is trivial and therefore at least one of
<«>l7f*x~\ ( a ) ^ 1 " " 1 is a direct product. By lemma 8.1, <«>/<«> n B
is projective to C/f**""1 for t = l o r » ' = 2. But f/f l~x is projective to Z7|* *~\
Hence all cyclic quotients of order px are projective to U^~

(b) Suppose AjB is a cyclic quotient of order px. For some i, U"' xV^A
but Uft+lxV J A. Then .4 = <«1>'t;, F> for some w G V, where <«> = 17.
B ^Ap* and therefore u'^eB. Therefore A /Bis a quotient of (UvixV)jUv'*\
By lemma 8.1, all cyclic quotients of (Ut>ixV)jUpt*A of order j ^ are pro-
jective to Up'lU*'*\

We complete the proof by showing that AJB-y, A2jB% cyclic quotients
of order px, A1/B1 a quotient of (Uv'xV)jUJ''*\ A%jB2 a quotient of
{y*'xV)jU*1*'- and A1IBl-+A2jBi a projection implies i = j . If we
denote by exp G the exponent of the group G, then we have exp Ax = pXl~{ >
exp 2?! and exp A2 = pA*~'. If A1jB1 -> ̂ 42/-̂ 2 is a projection down, then
At = Bj.42andexp At = max {exp A2, exp St}. Therefore exp ylx = exp4 2

and i = j .
The groups (t/1>'xF)/C/I>'+A t = 0, 1, • • •, r are isomorphic, hence we

have:

7 The classes of projective quotients of order p in any />-group have also been determined.
See Barnes [1], theorem 2.1, Tamaschke [2], theorem 3.3.
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COROLLARY 8.2. If G is a finite abelian p-group and A a class of protective
cyclic quotients of order px in G, then the groups F(A), F*{A), H(A), H*(A)
and n{A) depend only on G and A, not on the particular class A.

9. Classification of the peaks and pits

LEMMA 9.1. AjB is a pit in G if and only if A is cyclic. Dually, AjB
is a peak if and only if G\B is cyclic.

PROOF. Trivially, if A is cyclic, then AjB is a pit. If A is not cyclic,
take a coset representative a of a generator oiAjB. Then AjB -»• («}/{a)nB
is a projection down.

LEMMA 9.2. Suppose AjB, CfB are pits, At*'1 = C^'1 and EjF is
a peak, EjF -+ A\B a projection. Then there is a projection EjF -+CJB.

PROOF. F ^ C^'1, F^B = CV* and therefore FnC = B.
CjB ->Cu FjF is a projection. Therefore \C u F : F\ = p*. But GjF is
cyclic and therefore C u F = £ .

LEMMA 9.3. Let cbea loop in A*, AjB, CjB pits such that A^~l

Let c' be a loop obtained from c by replacing AjB by CjB at some {not neces-
sarily all) occurrences of AjB in c. Let (c), (c') be the homology classes {in
A*) of c, c'. Then

(c)#*<2> = (c')tf*<2>.

PROOF. We consider only the case in which one change is made.

c= ( ^EljF1^AjB^E2IFi^---)

c' = { > E1jF1 -* CjB -+ EJF2 ->•••).

c' is a chain of projections by the previous lemma. Put

h = {E1/F1 -> AjB -> EJFi -> CjB -* EJFt).

Then (c)=(c')(A) and {h)eH*™.
We define an equivalence relation on the pits, putting AjB <~ CjD

if At*'1 = C*"1. Then the above two lemmas state that, in any loop
representing an element of H*, replacing a pit AjB by an equivalent pit
gives a loop representing an element of H* in the same coset of H*l2).
Thus working in H*IH*m, we may replace pits by equivalent pits.

Dually, we say that the peaks AjB, AjD are equivalent if A'B = A'D.
Then working in H*jH*m we may replace any peak by an equivalent peak.

We now give the classes of equivalent peaks and pits homogeneous
coordinates, and find a condition for the existence of a projection from
a peak to a pit in terms of the coordinates of the equivalence classes to
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which they belong. We call a class of equivalent pits a point and a class of
equivalent peaks we call a line. We say that the point P lies on the line I
if for some AjB e P and CjD el there is a projection AjB ~> CjD. By
the lemmas above, if P lies on I, then for every AjB e P and CjD e /, there
is a projection AjB -*• CjD. The "plane" consisting of these points and
lines with this incidence relation, we denote by 77. It is not a projective
plane.

Suppose G = <%, • • •, uky, «f ' = 1, Aj Ĵ  A2 ^ • • • 3; lr 2r A,
A > Ar+1 2g Ar+2 2: • • • ^ At. If -4/B e P, then /I is cyclic and therefore
A = <«ilM2a • • " «»*> for some a;1( • • •, xk. P is completely determined
by At*'1 = (v^vl* • • • v*r} where v, = KJ A " \ We take the row vector
jf = (#!,•••, £r) as a coordinate vector for P. The xs are integers mod
^AJ-A+I JJ i j s a n m ^ e g e r ^£ o mod p, then <x = (tx1, tx2, • • •, txr) is again
a coordinate vector for P and all coordinate vectors for P can be obtained
in this way from any one. The points P = {AjB} of IJ are in one-to-one
correspondence with the non-trivial cyclic subgroups H = AP*"1 of

If I = {CjD} is a line of IJ, then i£ = CD is the same for all peaks
CjD e I, and I is determined by K.

K ^ GA_X(G) = {x \x e G, a;^1 = 1},

and GjK is a non-trivial cyclic group. Since the lattice of all subgroups
of G is self-dual, the lines of IT are in one-to-one correspondence with the
subgroups K < G, K 2j ^ A - I such that GjK is cyclic, such K being the
dual of the non-trivial cyclic subgroups H of O'A_i(G). Since for every such
K, GjK is isomorphic to a non-trivial subgroup of the additive group Zp?
of integers m o d ^ , where fi = X1—A+l, the lines of II are in one-to-one
correspondence with the kernels KjQA-1 of non-zero homomorphisms of
GjQx_x into Zpi*. If we put wt = utQX-x > then GjQk_x = {wl1 • • • vf/} where
the xt are integers mod p*'~w. Every homomorphism of G/i?A-i i n t o Zp?
has the form wl1 • • • w*' -> 2 ' = 1 lixip

Xl~*<modfi'', where lt are integers
mod pA<~x+1. We define the scalar product of the row vectors
/ = (/j, • • •, lT), x = (x1, • • •, xT) where lu xt are integers mod ^>A'~A+1 to
be the residue class mod p* given by

l-x = il,xip
x>-A< (modp").

Every homomorphism of GjQ^ into Zp* then has the form w\l • • • ufr' -> / • x
and has kernel

x = o}.

is non-trivial if and only if I ^ 0. We take the row vector I as a coor-
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dinate vector for the line I corresponding to K. If t j£. 0 mod p, then tl is
also a coordinate vector for I and all coordinate vectors for / may be obtained
in this way.

LEMMA 9.4. The point P with coordinate vector x lies on the line I with
coordinate vector I if and only if

PROOF. Let 4/B be a pit in P, C\D a peak in I and let K = CD.
Clearly, if there exists a projection AjB^C/D, then A %K, A" ^K.
Conversely, if A S K, A* ^ K then A r\ K = A' and AK\K ~ A/A'. But

GjK is cyclic and has only one subgroup C\K of order p. Hence AK — C. GjD
is cyclic and AD S K, so AD > K. Therefore AD = C. ADjD ~A/AnD
and A has only one subgroup B of index px. Therefore A n D — B and
there is a projection AjB -*• CjD.

K = { « ? » • • • ue
rrU

e
rtf...«»»11 • (dlt • • -, er) = o } .

Therefore A ^K if and only if I • x = 0, and ^4P ̂  if if and only if
pi • x = 0. Therefore / • x =£ 0, pi • x = 0 is a necessary and sufficient
condition for 4̂ :g if, A" ^ i£ and hence for Pel.

10. The length of H

LEMMA 10.1. Suppose u, v are vectors such that u • x = 0 implies v • x — 0.
TAe» v = ail for some integer a.

PROOF. Let V be the additive group of the row vectors x. With each
row vector u, we have associated the homomorphism a : V -*• Z^ given
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V - *~u(V)

v{V)

Fig. 5.

by u(x) = a • x. By hypothesis, ker v Si ker u. Therefore there exists a
homomorphism <f> : u(V) -*• v(V) such that v = </>u. But Z^ is cyclic and
its subgroups form a chain. Thus ker v 25 ker u implies im v <j im u.
If z0 generates im u, then <}>(z0) = otz0 for some integer a. Since ^ is a homo-
morphism, <f>(z) = oc2 for all z e im u. That is

v • x = a.{u • x)

= (0Uf) • A-

for all x e F. Therefore v = au.

LEMMA 10.2. .4 necessary and sufficient condition for there to be a line
of 77 through the points Pt, P% with coordinate vectors a, b is that for all in-
tegers a, /?,

a =̂ xpb, b 7t fipa,

that is, Plt P2 are distinct coUinear points if and only if Oa-\-<f>b = 0 implies
0 = <j> ^s 0 mod p.

PROOF. Suppose that a = ctpb for some integer a. For any line with
coordinates I passing through P 2 , pb -1=0 and therefore a • I = 0. There-
fore no line through P 2 passes through Pt.

Conversely, suppose a ^ a.pb, b ^ fipa. We have to find I such that

/ • a 7̂  0 pi • a = 0
I • b =£ 0 pi • b = 0.

By lemma 10.1, there exists x such that pa • x = 0, b • x ^= 0. By replacing
x by a suitable multiple, we can find x satisfying also pb • x = 0. If in
addition, we have a • x ^ 0, we take I = x. Similarly there exists y such
that pa- y = 0, pb- y = 0 and a-y=^0. If also b - y ^ 0, then we can
take 1 = y. If both a • jf = 0 and 6 - ^ = 0 , then we take I = x + ^ .

Any loop c = {A1jB1 -*• C1jD1 ->• A^B^^f- • • • - » • AJBj) in yl* gives
a loop c = (Px i i P2 ll • • • i j P t) in 77, where P< is the point of 77 to
which AJBf belongs and /, is the line of 77 to which CJDt belongs. Con-
versely, to every loop in 77, there corresponds at least one loop in A*.
We define cx ~ c2 if cx and c2 belong to the same coset of 7f *(2) in 7f *. Then
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these classes of equivalent loops form a group H ~ H*jH*m. We define
the length of the loop c = (Px i t P 2 Jj. • • • !?. Px) to be n, the length of an
equivalence class to be the length of its shortest member and define Bin}

to be the subgroup of H generated by the classes of length less than or equal
to n. We can work with the loops in 77 in the same way as with loops in A,
A*. We observe that replacing in c the line l( passing through the points
Pt and P i + 1 by any other such line l\ does not change the equivalence
class of c.

LEMMA 10.3. H = #<»>.

PROOF. Suppose c = (Px - * P 2 - > > ? „ - * P2) is an irreducible
loop in II of length greater than 3. If there is a line through Plt P 3 , then

c = (Px -> P a -> P 3 -> Px) (Pt -> P3 -> • • • -+ PJ

which is a product of a loop of length 3 and a loop of length n—1, contrary
to the assumption that c is irreducible. Thus if a{ is a coordinate vector
for P4, either a3 = apat or ax = <tpaz for some a. If also there is no line
through Pt and P 4 , then either a4 = Ppat or aj = Ppat for some /9. Since
Pt, P3 and P4 are distinct points, in each of these four cases we must have
either a3 = y£a4 or a4 = ypa% for some y, contrary to the existence of a
line through P 3 and P 4 . Therefore

c = (Px -> P 2 -^ P 3 ^ P 4 ^ JRX) (Px -^ P4 -* ^ Pj),

a product of a loop of length 4 and a loop of length n—2. Hence no loop
of length greater than 4 is irreducible.

Let c = (Px -* P 2 -> P 3 -> P 4 -> Px) be any loop of length 4, and
let the coordinates of Pt be a{. Either c is reducible or Pt and P s are not
collinear, and P 2 and P 4 are not collinear. Without loss of generality, we
may suppose a3 = o.pax and a4 = fSpa2. Since P1=/= P 2 , a a + a 2 ^ 0. Put
b = a-^+a^. Then the point Q with coordinates b is collinear with each of
the P , . Therefore

c = (Q -> Pi - P 2 -* g)«? -* P 2 -> P 3 -><?)
(Q -> i»8 -* -P4 ~> (?) W "> -P4 "* Pi -* 0).

Therefore every loop of length 4 is reducible and H = if(3).

THEOREM 4. Suppose G is an abelian p-group of type (Aj, • • •, Ak),
Xt ^ A2 ^ • • • ^ Aj., «»rf /e< A be a class of protective cyclic quotients of order
pKlf

(1) A2 < A, or
(2) A3 ^ A, or
(3) A2 = A and p =£ 2,

then H(A) = Hm(A) and H(A*) = H™(A*).
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PROOF. H{A)IH»>(A) ~ H(A*)fH™(A*) ~ B. H™ is trivial. If A2 < A,
then there is only one point and one line in 77 and the result follows. For the
cases (2), (3), we prove H = Hm by showing that every loop of length 3
in II is reducible. The loop (P1 -*• P2 -*• P3 -*• Pt) is reducible if there is
a line passing through all three points. If at = (aa, ai2, • • •, air) is the
coordinate vector of Pt, then to find such a line, we must find a row vector
x such that

axx =

as • x =

with at> acg, 0C3 ^ 0mod p, that is, we must find (a^, • • •, xr) such that

Put bit = aitp
Xl~x', B = (6tf). Then B is a matrix over the ring Ztll of

integers mod^*. If

X = I • I and k = p^~

\xrl

then the equations are BX = k where B, X, k are matrices over ZplL.
We define the degree of the residue x mod p*1 to be the index of the

highest power of p which divides x if x ^ 0 mod ^ , and put degree x = fi

over Z,,,, such that
itric

M

0
0

es P,

0
V

0

Q over Z ^ with inverses

0
0
w

where degree « ^ degree v ^ degree w. Put Y = (?-1.Y. Then the equations
BX = 1c have a solution if and only if the equations PBQY = Pk have a
solution. These equations have the form

uVl = e

VV2 =<f>

where

Y = I : I and I 6 I = Pk= [ ' : ) and IA =
\yj \y>/

whence 0, j>, y> have degree ^ /i— 1. Thus the equations certainly have a
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solution for all alf a2, a3 if />* does not divide w. But p* divides w if and
only if there exist a, /?, y not all s 0 mod p such that

Thus there exists a solution unless for some numbering of Plt Pt, P3,
fia^. Suppose a3 = aa1+^a2-
If we can find a point @ such that each of the sets

, Q; P2 , Pa, Q is a set of three collinear points, then

3 + Pt) = (0 -> 2 \ - * P 2 ^ 0 )

we

Pi.

have aa
Case 1

P», Q:

, = a
: r 2
Pi.

ax-
: 3 .
Pz

and each of the loops on the right is reducible. Since r ^ 3, the additive
group of row vectors is an abelian group with at least three generators.
Therefore there exists a non-trivial cyclic subgroup <£>> such that
<6> n <ax, a2> = 0. Suppose u, v are any two of ax, a2, a3 and Ob+(j>u-{-
yv = 0. Then 06 6 <6> n <ax, a2> and therefore 6b — 0, p divides 6 and
4>u+ipv = 0. But u, v correspond to distinct collinear points. Therefore
p divides <j>, y>. Therefore the point Q with coordinates b has the required
property.

Case 2: r = 2, X2 = A, £ # 2. Then aa == (0J, 02), a2 = (<̂ i, ^2). Here
0a and ^2

 a r e residues mod/>. For some numbering of a,, a2, we have
<̂ j = tQx for some integer t, and 0X ̂  0. Put b = a2—faj = (0, <f>z—iO2)
and let Q be the point with coordinates b. Then Q is collinear with each
of the points P1 ( P2 , P s , and

(Q -> P% -> P 3 - • Q) (Q -+ P3 -> Px -> ? ) .

It is sufficient to prove each of these three loops reducible.
If u, v are any two of ax, a2, a3, then in each case, one of the three

vectors u, v, b is expressible in terms of the other two, as is obvious if
u, v are a,, a2 or ax, a3. For u = a2, v = a 3 = aai+^aj , we have either
a. = rt for some r, in which case a3 = (r-\-P)ai—rb, or t = sa for some s,
in which case b = (l+s/S)a2—sa3. Thus in each case, 9u+<f>v+y>b = 0
for some 0, <f>, rp not all congruent 0 mod p. But pb = 0. Further, 0u+<f>v = 0
implies 0 = ^ = 0 mod p since u, v correspond to distinct collinear points.
Hence y ^ 0 mod £. But £(0, 1) = 0 and so if 0 = <j> = 0 mod ^, then —y6
has second component 0 and so y>b = 0. Hence 0, ^ are not both congruent
0 mod p and we may suppose v = Ou+y>b, y> ?£ 0 mod />. We have thus
reduced the problem to the case a3 = aa1+a2, a2 = (0, 1).

For x = (a;, 1), we have a2 • x = p"-1. Since ax = (01( 02) with 0t ^ 0,
we can choose x such that
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if a = 0 mod p
where a/8 =5 1 mod £ if a ̂  0 mod p.

Then
( *'^-1 if a 25 0 mod *

a 8 ' J r = ( 2 ; , - i if a ^

Since p ^ 2, the line with coordinates x passes through Plt P 2 , P3 and
the loop (P1 -> P 2 -* Pz -*• Pj) is reducible.

11. The determination of n(A)

THEOREM 5. Let G be an abelian p-group of type (Ax, A2, • • •, Xk),
Ai ^ A2 Sg • • • ^ Xk, and let A be a class of protective cyclic quotients of
order px. If A2 22 A, then n(A) is the group of all automorphisms of the cyclic
group of order px. If A2 < A, then n(A) is the group of all automorphisms of
the group <£> of order px of the form

x -> zl+tv*~''' (t integer).

PROOF. (1) We consider first the case G = (x, y}, xp* = yp* = 1,
fi^X. ByTheorem4 (l),H* = #*<2>. Letc = {A -+ GjB - • C - - GjD -+ A)
be any loop of length 4 in A*. Without loss of generality, we may take
A = <*>, B = <y>. Since C n B = 1, C»*~l g B and therefore C = <z«/r>
for some r. Since \D\ = p* and D'""1 ^ A, D = (otF'y'y for some s, where
e = A—,«. If e 2g 1, then for any values r, s, we have <an/r> r\ (af'yy = 1
and there is a loop with these values of r, s.lte = 0, then (xyry n {x'y} = 1
if and only if rs ̂  1 mod p and for any values of r, s such that rs^l mod />,
there is a corresponding loop. In this loop c,

a; -> {a;y« | aU t} -* xyr -> {a;i+t«>#
2/''+' | all <} -> as1-""'.

Thus xa(c) = xr~"v'. If e = 0, then every automorphism of (x~) is given
by some values of r, s. If e 2s 1, then every automorphism of the form
x -> a:1-1"'"' is given by some values of r, s, and since these automorphisms
form a group, n(A) contains only these automorphisms.

(2) If A2 2? A, then by (1), all automorphisms of the cyclic group
of order p* are given by loops of length 4 within i3A(G), and therefore
n(A) is the group of all automorphisms of the cyclic group of order px.

(3) Suppose A2 < A. Since n{A) does not depend on the class A, we
need only consider the class A contained in Q\(G). Hence we may suppose
Ax = A. By Theorem 4 (1), H(A) = Hm{A) and it is sufficient to find
<x(c) for all loops c of length 4. If A\B is a pit, then B = 1. Let
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c = (A -»- GjB -> C -* GjD -> A)

be any loop of length 4 in A*. Then c is homotopic (in A) to

A -+ {A u C)I(A uC)nB^-C-*(Av C)j(A uC)nD-+A.

Thus to determine the «.(c) given by loops of length 4 in A, it is sufficient
to determine the <x(c) given by loops of length 4 within the two-generator
subgroups of G. Since every two-generator subgroup of exponent p* of G
is isomorphic to a subgroup of the group of type (A, A2), the result follows
from (1).
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