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How the Roots of a Polynomial Vary with its
Coefficients: A Local Quantitative Result

Bernard Beauzamy

Abstract. A well-known result, due to Ostrowski, states that if ||P — Q||2 < ¢, then the roots (x;) of P and (y;)
of Q satisfy [xj — yj| < Cnel/n, where n is the degree of P and Q. Though there are cases where this estimate
is sharp, it can still be made more precise in general, in two ways: first by using Bombieri’s norm instead of
the classical I; or I, norms, and second by taking into account the multiplicity of each root. For instance, if x
is a simple root of P, we show that |[x — y| < Ce instead of £/". The proof uses the properties of Bombieri’s
scalar product and Walsh Contraction Principle.

1 The General Theory

A well-known result due to Ostrowski [6], [7] can be stated as follows:
(1) LetP =Y gan—;z}, Q = Y gbn_jz!, be two polynomials, satisfying ap = by = 1,
and with respective roots xi, . .., Xn, Y1, - ., Yn. Let
T = max{1, |ay, |ba, - .., [a]*, o[, ..., [aa ", [on] /™.
Then, if the y;’s are suitably ordered, we have, for all j,
x; — yj| < 4nT¥"
with .
1/2
6= (D lay—b,) "
0
(2) Let P, Q be as before; assume moreover that 0 is not a root of P. Assume that, for

all |
laj — bj| < 7laj]

1\"
<{— .
< ()

Then the zeros y;’s of Q can be ordered in such a way that

where 7 is small enough, namely

Yi
X

- 1‘ <8nr¥/", forall j.
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4 Bernard Beauzamy

Here, we will make this result more precise, in two ways. First, in order to measure
P — Q, we will use Bombieri’s norm, and second, we will take into account the multiplicity
of the roots, which, of course, may be different from one to the other: this is why we speak
of a “local” result.

LetP = zg a,—zj be a polynomial with complex coefficients and degree n. Its Bombieri’s
norm is defined by

(1) [P] = (znj "Z‘;’Dm.

0 i

This definition is better understood in its original frame, that of homogeneous many-
variable polynomials: see Beauzamy-Bombieri-Enflo-Montgomery [3] and Beauzamy-
Dégot [4].

Let Xy, ..., Xy be the roots of P.

Let Q be another polynomial, with same degree, satisfying

2 [P-Ql<e.
Theorem 1 If x is any zero of P, there exists a zero y of Q, with

n(L+[x)"

3) Xx—y|l < )

If ¢ is small enough, namely

L Pl
“ " nae pp

then (3) implies

2n(1 + [x|?)"/?
(%) X—yl < ]

Before we turn to the proof, let us make some comments about these results.

— Estimates (3) and (5) are homogeneous (which is already an improvement upon Os-
trowski’s result). Indeed, if all coefficients of P and Q are multiplied by A, so is ¢, and
e/1Q’(x)| or €/|P’(x)| are not modified.

— Theorem 1 is empty if x is not a simple root, either for P or for Q (note that Q can
have all roots simple, and P have only one root, as the example of z" and z" + « shows).

— The term (1 + |x|?)Y/2 can itself be bound by a quantity depending only on the coef-
ficients of the polynomial, for instance by (1 + R?)/2, where R is the radius of the largest
disk, centered at 0, containing all the zeros. An estimate for R can be found in Marden [5];
others may be given, using for instance Mahler’'s measure of P. Here, we will give later
(Theorem 4) a bound depending on Bombieri’s norm [P].
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Proof of Theorem 1 We need a few simple facts about Bombieri’s norm, and the corre-
sponding scalar product, which is just

" a.b:
(6) X EDY a(’n)’ ,
j=0 \j

if P = Z?:O aij, Q= er]:O ijj.
Lemma 2 (B. Reznick [8]) For any zo,
P(Zo) = [P, (702 + 1)n} .

(See Reznick [8] or Beauzamy-Dégot [4] for a proof.)
As a consequence, we get

@) P(20)| < [PI(L +|z0)"™2.

Indeed
IP(0)| = |[P, (Zoz + 1)"]| < [P1[(Z0z + 1)"],

and an immediate computation shows that
[(ez +1)"] = L+ |aHY2.
Another property of the scalar product is
8) [P’,R] = n[P,zR]

if degP = n, degR = n — 1 (see [4] for a proof).

Lemma3 If f(z) = az+b (a # 0) satisfies | f (z0)| < &, there exists z;, with |z; — 20| < &/]a],
such that f(z;) = 0. More generally, if f(z) = a(z —z1) - - - (z — z) satisfies | f (z0)| < &, one
of the roots, say z;, satisfies

21— 20| < (e/[al)"*.

Proof of Lemma3 This is obvious: if
g

Zo0 — 21|12 — 2| <
|20 — 21| - |20 k|*|a\’

one of the |zo — z;| must be at most equal to (¢/|a|)*/*.
Let us now prove the theorem. Since x is a root of P, we have, by (7):

9) 1QX)| = [(Q — P)(X)| < e(L + [x])"2.

Set
e/ =e(l+[x)V2
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We know by Lemma 2 that
(10) Q) = [Q, (2 +1)"].

Let us consider

F(Q) = [Q (e + )" (2 +1)],

which is an affine function of ¢, satisfying
(11) )] <.

By Lemma 3, there is a point x’, [x’ —x| < &’/|a| (where a is the coefficient of ¢ in f), such
that f(x’) = 0. Let’s compute a. By definition:

a

[Q, (xz+1)""1z]

Lo by @

= EQ/(X)v

n

by Lemma 2. So we see that a zero x’ of f satisfies

/

Ne
2 L
(12) X=X 5]

Let us now apply Walsh Contraction Principle (Walsh [9], see Beauzamy [1] for a detailed
study and proof). Consider

(13) @(Ula-'-aun) = [Q7(Ulz+1)"'(UnZ+l)}~
This is a symmetric function of uy, . . ., up, affine with respect to each of them. It satisfies

o(X,...,x,x") = 0. Therefore, in each disk containing both x and x’, and in particular in
the disk of diameter xx’, there is a point y such that

(14) e(y,...,y) =0.
Coming back to the definition of (o, we get
ey, ¥) = [Q,(y2+ 1)"] = Q(y).

So y is a zero of Q. Since it is in the disk of diameter xx’, we have also by (12):

/

X—y| < 2
Q)
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and the first part of Theorem 1 is proved. To get the second part, we write simply:

P'() —Q'()| = [[P" - Q", (e + )" ]|
=n|[P - Q,z(xz + 1)" ]|
<n[P - Ql[z(xz + )" 1]
<ne(l+[x2)
So |IQ' ()| = |P/(X)| —ne(1+ |x|2)"771. If  is taken as indicated, we get |Q’(X)| > %|P’(x)|;
the result follows.

Let us now give a more general version of Theorem 1, valid if x has multiplicity k, empty
if it has multiplicity k + 1:
Theorem 4 Letk > 1be an integer, P and Q be two polynomials of degree n, with [P — Q] <
e. If x is any zero of P, there exists a zero y of Q, with

1k
nt (1+ |X|2)”/2) 1/k

=Kl QW)

—yl <
(15) oyl (G
If ¢ is small enough, namely

— )
L PO
20 (14 )

(16)

then (15) implies

1/k
2n!  (L+[x[)"/? 1/k
— < .
) < (o o) ©
Proof of Theorem 4 It follows the same lines, so we only indicate the minor changes. We
now set
(18) f(Q) = [Q Xz + 1)"(Cz + 1)f]

which is a polynomial in ¢ of degree k, satisfying
[T = QM) <"

By Lemma 3, there is a point x’, with f(x’) = 0, such that |x’ — x| < (¢'/|a])*/¥, where
a is the coefficient of ¢¥ in (18), that is

— K)!
a=[Q e+ 12 = T Paug)
So we get
, n! e’ 1k
= ¥ = (e mov)
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Let p(uy, ..., un) be defined as before. We now get

n—k times k times

so by Walsh’s principle, there is a point y, with ¢(y, ..., y) = 0, satisfying

< n! e’ 1k
=yl < ((n—k)! |Q<k>(x>) '

This proves the first part of the Theorem. Now:
PY) — QW) = |[PY — QW, (xz + 1)"¥]|

— P QG

n! n—k
< mdl"' X7,

and the second part follows.
How sharp is the coefficient of ¢ in estimates (3) or (5)? We do not know exactly, but
the order of magnitude is almost best possible. Indeed take P = z" — 1, withx = 1, and

Q =12"+¢,/(,",) zV/% — 1 (for n even). Then [P — Q] = . The roots of Q are the n/2

n/2
roots of
€ n e/ n
_E\/<n/2> * \/1 7 <n/2>

2/n
(50 -3y ()
X —y| ~ % (n?2> ~ %2"/2 (%)lﬂ,

whereas estimates (3) gave 2"/2¢.

and if y is the real zero

We find

2 A Bound for the Largest Zero

We now give an estimate for the largest root of P, in terms of Bombieri’s norm. This esti-
mate may be substituted in the term 1 + |x|?, in Theorems 1 and 2 above. Of course, now,
some normalization is necessary. We choose the usual one, that is a,, = 1.

Theorem 5 If P = ZS ajzj is a polynomial with a, = 1, its roots Xy, . .., X, satisfy the
estimate

(20) mjax|xj| < +/n[P]z-1.

This estimate is best possible.
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Proof Let us order the roots so that |x;| > [Xz| > -+ - > [Xa|.
Applying Bombieri’s inequality (see [2]) to the pair z — X1, (Z — X2) - - - (Z — Xp) Yields:

Yl N [ S I ™)

1
> T (1 + |x[2)2
= \/ﬁ( |Xl‘ ) ’

which gives (20).
The estimate (20) is best possible in the sense that, for every n and every € > 0, there is
a polynomial P which has a root satisfying

(21) X| > (L — )PP — 1.

Indeed, with x > 0, consider P = (z — x)(z + £)"~*. Since the pair z — x, (z + )"t is
extremal for the product (see Beauzamy [2]), we get

n—1 "2;1
[P]:\%[z—x][ﬁﬂ :%(1+x2)1/2(1+x—12> ,

SO
1 n—1
n[PI? — 1= (1+x% <1+X—2> ~1,

1 n—1
X2 > (1—¢)? ((1+x2) <1+;> —1),

is satisfied, for fixed n and ¢, if x is large enough.

and the inequality

3 Blowing Up a Multiple Zero

Theorem 4 indicates that, if you start with a multiple zero x of P, of order k, and if you
move P to Q with [P — Q] < &, then x will be moved into y, with [x — y| < Ce'/. But
when is such an estimate obtained? Are there cases where a better one holds? The answer
is: if the multiple zero stays multiple, stronger estimates can be obtained; the worst case
comes if the multiple zero “blows up” into single ones. We will describe this phenomenon
in detail in the case of P = (z — a)".

— Case 1: Q has itself a multiple zero of order n, Q = (z — b)". Then the condition
[P—Q] <ecimplies|b—a| <e.

This is clear, from the formula [P’](—1) < n[P]), which itself is obtained by elemen-
tary manipulations of the binomial coefficients. Here we indicate by a suffix (n) or (n — 1)
which norm is used, so as to avoid any confusion.

— Case 2: all roots of Q are simple (or we have no information on Q). Then (17), with
k=n,givesforQ = (z—by)---(z—by):

(22) Ibj —a] < 2Y/n(1 + |a?)t/ 2,
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This estimate is best possible in general: if Q = (z — a)" — ¢, then [P — Q] = ¢, and
lbj —a| = e/" forall j.

— Case 3: mixed case Q = (z — b)“(z — by) --- (z — bh—). Then, first, the estimate
|b — a| < %" can be improved, and we get

(23) |b _ a| < 81/n—k+121/n—k+1(1 + |a‘2)1/2-
Indeed, we consider P&—1 and Q=1 (which both have a and b respectively as zeros) and
apply (22).
Then, also, we can obtain an estimate of the same form for by, ... , by_x, namely
(24) b —a| <C(a,n)e’" 1 j=1,....n—k

In order to prove (24), we first assume a = 0, that is

(25) [2"— @ - bz —Db1) -2 —bai)] <e,
and we know by (23) that
(26) Ib| = 0(e¥/" K+,

We write ¢’ = /"% Let’s also write
"~ @Z—-b)*@z—-by)--- (@2 —bnk) =" T+ 2+ -+
(Z=D1)--@—bp) =" K+l

Then:
o] = [Kb+by +- - +by_y| < <rl‘>a

Also, we have:

k , K\ : k k
|Cja1| = ‘(J +1)b1+1+ (j>b1c1/+...+ (|>b'cj’_,+1 + .o+ (1>bcjf+c§+1
< .n €.
(%)

If we assume |¢/| = 0(e"), | =1, ..., j, we deduce from this formula that ICja| = 0(e’1*h),
and so we have shown by induction that

(27) e/l =0("), j=1,...,n—k

We need a lemma.

Lemma 6 Let R = z™ + an_1z™ ! + ... + ag be a polynomial where the coefficients
am-_1,-- -, ap depend on some parameter « and satisfy

|am—1 = 0(), [am_1] = 0(a?),. ., [am—i| = 0(X), .., a = O(a™),

when « — 0. Then all zeros of R are 0(a), « — 0.
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This lemma is well-known and follows from estimates found for instance in Marden [5].

Let's give a quick proof. We have |ay,_x| < CaX, k= 1,...,m. Letz be a zero of R. Then:
1— _Gm-1 o & _ %
- Z Zm—k Zm’
and so

which implies |z| < (1 +C)|«]|. So the lemma is proved, and (24) follows from (27).

Let us now consider the general case, a # 0.

We define 7,P = P(z — a). Our estimate will follow from the estimate in the casea = 0
and the following.

Lemma 7 Forall P, Q, of degree n,

[P — 7aQ] < C(a,n)[P - Q],

N 1/2
C(a,n) = max { (I>(1 + a|2)'} :

Proof of Lemma7 We have

where

[P = Zn:L nZ:P(kﬂ)(O)a_J 2
a - (n)k!Z . j!
k=0 \k pars
n o n—k )
(=R Sy o2
<22 Thwge PO
0 =
= oy (n—=1+ e ‘a|21‘ |p(|)(0)‘2
- j j n
=0 j=0 (=)= |!2(|)

| . ;
(n—1+ ) ap
< (ime 2 (- s

But

M-+ o T+ 1) (1o
Z(._j)!j!zm_.)!al’—2< j )(i)'aj

j=0 j=0

< (% ()

]

= (V)a+ran,
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and the lemma follows.

Remark We do not think that the above constant C(a, n) is sharp. One might think that
(1 + |al>)"/? is the right constant.

So we see that, starting with P = (z — a)" and moving it to Q with [P — Q] < ¢, the
estimate |x —y| < /" can always be improved if one of the zeros of Q is multiple. The only
case where it is sharp is the case where the multiple zero of P has blown up into n distinct
simple zeros for Q.

As we already mentioned in [1], the combination of Bombieri’s scalar product and
Walsh Contraction Principle provides very efficient tools for the study of quantitative prop-
erties of polynomials: the proofs are simpler than the existing ones and the results are
sharper. Other results on these lines will be published elsewhere.
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