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How the Roots of a Polynomial Vary with its
Coefficients: A Local Quantitative Result
Bernard Beauzamy

Abstract. A well-known result, due to Ostrowski, states that if ‖P−Q‖2 < ε, then the roots (x j ) of P and (y j )
of Q satisfy |x j − y j | ≤ Cnε1/n, where n is the degree of P and Q. Though there are cases where this estimate
is sharp, it can still be made more precise in general, in two ways: first by using Bombieri’s norm instead of
the classical l1 or l2 norms, and second by taking into account the multiplicity of each root. For instance, if x
is a simple root of P, we show that |x − y| < Cε instead of ε1/n. The proof uses the properties of Bombieri’s
scalar product and Walsh Contraction Principle.

1 The General Theory

A well-known result due to Ostrowski [6], [7] can be stated as follows:
(1) Let P =

∑n
0 an− jz j , Q =

∑n
0 bn− j z j , be two polynomials, satisfying a0 = b0 = 1,

and with respective roots x1, . . . , xn, y1, . . . , yn. Let

T = max{1, |a1|, |b1|, . . . , |ak|
1/k, |bk|

1/k, . . . , |an|
1/n, |bn|

1/n}.

Then, if the y j ’s are suitably ordered, we have, for all j,

|x j − y j | ≤ 4nTδ1/n

with

δ =
( n∑

0

|a j − b j |
2
)1/2
.

(2) Let P, Q be as before; assume moreover that 0 is not a root of P. Assume that, for
all j

|a j − b j | ≤ τ |a j|

where τ is small enough, namely

τ ≤

(
1

4n

)n

.

Then the zeros y j ’s of Q can be ordered in such a way that∣∣∣∣ y j

x j
− 1

∣∣∣∣ < 8nτ 1/n, for all j.
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4 Bernard Beauzamy

Here, we will make this result more precise, in two ways. First, in order to measure
P−Q, we will use Bombieri’s norm, and second, we will take into account the multiplicity
of the roots, which, of course, may be different from one to the other: this is why we speak
of a “local” result.

Let P =
∑n

0 a jz j be a polynomial with complex coefficients and degree n. Its Bombieri’s
norm is defined by

(1) [P] =

( n∑
0

|a j |2(n
j

) )1/2

.

This definition is better understood in its original frame, that of homogeneous many-
variable polynomials: see Beauzamy-Bombieri-Enflo-Montgomery [3] and Beauzamy-
Dégot [4].

Let x1, . . . , xn be the roots of P.
Let Q be another polynomial, with same degree, satisfying

(2) [P − Q] ≤ ε.

Theorem 1 If x is any zero of P, there exists a zero y of Q, with

(3) |x − y| ≤
n(1 + |x|2)n/2

|Q ′(x)|
ε.

If ε is small enough, namely

(4) ε ≤
1

2

|P ′(x)|

n(1 + |x|2)
n−1

2

then (3) implies

(5) |x − y| ≤
2n(1 + |x|2)n/2

|P ′(x)|
ε.

Before we turn to the proof, let us make some comments about these results.
– Estimates (3) and (5) are homogeneous (which is already an improvement upon Os-

trowski’s result). Indeed, if all coefficients of P and Q are multiplied by λ, so is ε, and
ε/|Q ′(x)| or ε/|P ′(x)| are not modified.

– Theorem 1 is empty if x is not a simple root, either for P or for Q (note that Q can
have all roots simple, and P have only one root, as the example of zn and zn + α shows).

– The term (1 + |x|2)1/2 can itself be bound by a quantity depending only on the coef-
ficients of the polynomial, for instance by (1 + R2)1/2, where R is the radius of the largest
disk, centered at 0, containing all the zeros. An estimate for R can be found in Marden [5];
others may be given, using for instance Mahler’s measure of P. Here, we will give later
(Theorem 4) a bound depending on Bombieri’s norm [P].
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Roots of polynomials 5

Proof of Theorem 1 We need a few simple facts about Bombieri’s norm, and the corre-
sponding scalar product, which is just

(6) [P,Q] =
n∑

j=0

a jb j(n
j

) ,
if P =

∑n
j=0 a jz j , Q =

∑n
j=0 b jz j .

Lemma 2 (B. Reznick [8]) For any z0,

P(z0) =
[
P, (z0z + 1)n

]
.

(See Reznick [8] or Beauzamy-Dégot [4] for a proof.)
As a consequence, we get

(7) |P(z0)| ≤ [P](1 + |z0|
2)n/2.

Indeed
|P(z0)| = |

[
P, (z0z + 1)n

]
| ≤ [P]

[
(z0z + 1)n

]
,

and an immediate computation shows that[
(αz + 1)n

]
= (1 + |α|2)n/2.

Another property of the scalar product is

(8) [P ′,R] = n[P, zR]

if deg P = n, deg R = n− 1 (see [4] for a proof).

Lemma 3 If f (z) = az+b (a 6= 0) satisfies | f (z0)| ≤ ε, there exists z1, with |z1−z0| ≤ ε/|a|,
such that f (z1) = 0. More generally, if f (z) = a(z− z1) · · · (z− zk) satisfies | f (z0)| ≤ ε, one
of the roots, say z1, satisfies

|z1 − z0| ≤ (ε/|a|)1/k.

Proof of Lemma 3 This is obvious: if

|z0 − z1| · · · |z0 − zk| ≤
ε

|a|
,

one of the |z0 − z j |must be at most equal to (ε/|a|)1/k.
Let us now prove the theorem. Since x is a root of P, we have, by (7):

(9) |Q(x)| = |(Q− P)(x)| ≤ ε(1 + |x|2)n/2.

Set
ε ′ = ε(1 + |x|2)n/2.
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6 Bernard Beauzamy

We know by Lemma 2 that

(10) Q(x) =
[
Q, (xz + 1)n

]
.

Let us consider

f (ζ) =
[
Q, (xz + 1)n−1(ζz + 1)

]
,

which is an affine function of ζ , satisfying

(11) | f (x)| ≤ ε ′.

By Lemma 3, there is a point x ′, |x ′− x| ≤ ε ′/|a| (where a is the coefficient of ζ in f ), such
that f (x ′) = 0. Let’s compute a. By definition:

a =
[
Q, (xz + 1)n−1z

]
=

1

n

[
Q ′, (xz + 1)n−1

]
by (8)

=
1

n
Q ′(x),

by Lemma 2. So we see that a zero x ′ of f satisfies

(12) |x ′ − x| ≤
nε ′

|Q ′(x)|
.

Let us now apply Walsh Contraction Principle (Walsh [9], see Beauzamy [1] for a detailed
study and proof). Consider

(13) ϕ(u1, . . . , un) =
[
Q, (u1z + 1) · · · (unz + 1)

]
.

This is a symmetric function of u1, . . . , un, affine with respect to each of them. It satisfies
ϕ(x, . . . , x, x ′) = 0. Therefore, in each disk containing both x and x ′, and in particular in
the disk of diameter xx ′, there is a point y such that

(14) ϕ(y, . . . , y) = 0.

Coming back to the definition of ϕ, we get

ϕ(y, . . . , y) =
[
Q, (yz + 1)n

]
= Q(y).

So y is a zero of Q. Since it is in the disk of diameter xx ′, we have also by (12):

|x − y| ≤
nε ′

|Q ′(x)|
,
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and the first part of Theorem 1 is proved. To get the second part, we write simply:

|P ′(x)− Q ′(x)| = |
[
P ′ − Q ′, (xz + 1)n−1

]
|

= n|
[
P − Q, z(xz + 1)n−1

]
|

≤ n[P − Q]
[
z(xz + 1)n−1

]
≤ nε(1 + |x|2)

n−1
2 .

So |Q ′(x)| ≥ |P ′(x)| − nε(1 + |x|2)
n−1

2 . If ε is taken as indicated, we get |Q ′(x)| ≥ 1
2 |P
′(x)|;

the result follows.
Let us now give a more general version of Theorem 1, valid if x has multiplicity k, empty

if it has multiplicity k + 1:

Theorem 4 Let k ≥ 1 be an integer, P and Q be two polynomials of degree n, with [P−Q] ≤
ε. If x is any zero of P, there exists a zero y of Q, with

(15) |x − y| ≤

(
n!

(n− k)!

(1 + |x|2)n/2

|Q(k)(x)|

)1/k

ε1/k.

If ε is small enough, namely

(16) ε ≤
(n− k)!

2n!

|P(k)(x)|

(1 + |x|2)
n−k

2

then (15) implies

(17) |x − y| ≤

(
2n!

(n− k)!

(1 + |x|2)n/2

|P(k)(x)|

)1/k

ε1/k.

Proof of Theorem 4 It follows the same lines, so we only indicate the minor changes. We
now set

(18) f (ζ) =
[
Q, (xz + 1)n−k(ζz + 1)k

]
which is a polynomial in ζ of degree k, satisfying

| f (x)| = |Q(x)| ≤ ε′.

By Lemma 3, there is a point x ′, with f (x ′) = 0, such that |x ′ − x| ≤ (ε ′/|a|)1/k, where
a is the coefficient of ζk in (18), that is

a =
[
Q, (xz + 1)n−kzk

]
=

(n− k)!

n!
Q(k)(x).

So we get

(19) |x ′ − x| ≤

(
n!

(n− k)!

ε ′

|Q(k)(x)|

)1/k

.
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Let ϕ(u1, . . . , un) be defined as before. We now get

ϕ(x, . . . , x︸ ︷︷ ︸
n−k times

, x ′, . . . , x ′︸ ︷︷ ︸
k times

) = 0,

so by Walsh’s principle, there is a point y, with ϕ(y, . . . , y) = 0, satisfying

|x − y| ≤

(
n!

(n− k)!

ε ′

|Q(k)(x)|

)1/k

.

This proves the first part of the Theorem. Now:

|P(k)(x)− Q(k)(x)| = |
[
P(k) − Q(k), (xz + 1)n−k

]
|

=
n!

(n− k)!
|
[
P − Q, zk(xz + 1)n−k

]
|

≤
n!

(n− k)!
ε(1 + |x|2)

n−k
2 ,

and the second part follows.
How sharp is the coefficient of ε in estimates (3) or (5)? We do not know exactly, but

the order of magnitude is almost best possible. Indeed take P = zn − 1, with x = 1, and

Q = zn + ε
√( n

n/2

)
zn/2 − 1 (for n even). Then [P − Q] = ε. The roots of Q are the n/2

roots of

−
ε

2

√(
n

n/2

)
±

√
1 +
ε2

4

(
n

n/2

)
and if y is the real zero (√

1 +
ε2

4

(
n

n/2

)
−
ε

2

√(
n

n/2

))2/n

.

We find

|x − y| ∼
ε

n

√(
n

n/2

)
∼
ε

n
2n/2

(
2

πn

)1/4

,

whereas estimates (3) gave 2n/2ε.

2 A Bound for the Largest Zero

We now give an estimate for the largest root of P, in terms of Bombieri’s norm. This esti-
mate may be substituted in the term 1 + |x|2, in Theorems 1 and 2 above. Of course, now,
some normalization is necessary. We choose the usual one, that is an = 1.

Theorem 5 If P =
∑n

0 a jz j is a polynomial with an = 1, its roots x1, . . . , xn satisfy the
estimate

(20) max
j
|x j | ≤

√
n[P]2 − 1.

This estimate is best possible.
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Proof Let us order the roots so that |x1| ≥ |x2| ≥ · · · ≥ |xn|.
Applying Bombieri’s inequality (see [2]) to the pair z − x1, (z − x2) · · · (z − xn) yields:

[P] ≥

√
1!(n− 1)!

n!
[z − x1]

[
(z − x2) · · · (z − xn)

]
≥

1
√

n
(1 + |x1|

2)1/2,

which gives (20).
The estimate (20) is best possible in the sense that, for every n and every ε > 0, there is

a polynomial P which has a root satisfying

(21) |x| ≥ (1− ε)
√

n[P]2 − 1.

Indeed, with x > 0, consider P = (z − x)(z + 1
x )n−1. Since the pair z − x, (z + 1

x )n−1 is
extremal for the product (see Beauzamy [2]), we get

[P] =
1
√

n
[z − x]

[
z +

1

x

]n−1

=
1
√

n
(1 + x2)1/2

(
1 +

1

x2

) n−1
2

,

so

n[P]2 − 1 = (1 + x2)

(
1 +

1

x2

)n−1

− 1,

and the inequality

x2 ≥ (1− ε)2

(
(1 + x2)

(
1 +

1

x2

)n−1

− 1

)
,

is satisfied, for fixed n and ε, if x is large enough.

3 Blowing Up a Multiple Zero

Theorem 4 indicates that, if you start with a multiple zero x of P, of order k, and if you
move P to Q with [P − Q] ≤ ε, then x will be moved into y, with |x − y| ≤ Cε1/k. But
when is such an estimate obtained? Are there cases where a better one holds? The answer
is: if the multiple zero stays multiple, stronger estimates can be obtained; the worst case
comes if the multiple zero “blows up” into single ones. We will describe this phenomenon
in detail in the case of P = (z − a)n.

– Case 1: Q has itself a multiple zero of order n, Q = (z − b)n. Then the condition
[P − Q] ≤ ε implies |b− a| ≤ ε.

This is clear, from the formula [P ′](n−1) ≤ n[P](n), which itself is obtained by elemen-
tary manipulations of the binomial coefficients. Here we indicate by a suffix (n) or (n− 1)
which norm is used, so as to avoid any confusion.

– Case 2: all roots of Q are simple (or we have no information on Q). Then (17), with
k = n, gives for Q = (z − b1) · · · (z − bn):

(22) |b j − a| ≤ 21/n(1 + |a|2)1/2ε1/n.
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10 Bernard Beauzamy

This estimate is best possible in general: if Q = (z − a)n − ε, then [P − Q] = ε, and
|b j − a| = ε1/n for all j.

– Case 3: mixed case Q = (z − b)k(z − b1) · · · (z − bn−k). Then, first, the estimate
|b− a| ≤ ε1/n can be improved, and we get

(23) |b− a| ≤ ε1/n−k+121/n−k+1(1 + |a|2)1/2.

Indeed, we consider P(k−1) and Q(k−1) (which both have a and b respectively as zeros) and
apply (22).

Then, also, we can obtain an estimate of the same form for b1, . . . , bn−k, namely

(24) |b j − a| ≤ C(a, n)ε1/n−k+1, j = 1, . . . , n− k.

In order to prove (24), we first assume a = 0, that is

(25)
[
zn − (z − b)k(z − b1) · · · (z − bn−k)

]
≤ ε,

and we know by (23) that

(26) |b| = 0(ε1/n−k+1).

We write ε ′ = ε1/n−k+1. Let’s also write

zn − (z − b)k(z − b1) · · · (z − bn−k) = c1zn−1 + c2zn−2 + · · · + cn

(z − b1) · · · (z − bn−k) = c ′1zn−k + c ′2zn−k−1 + · · · + c ′n−k.

Then:

|c1| = |kb + b1 + · · · + bn−k| ≤

√(
n

1

)
ε.

Also, we have:

|c j+1| =

∣∣∣∣
(

k

j + 1

)
b j+1 +

(
k

j

)
b jc ′1 + · · · +

(
k

l

)
blc ′j−l+1 + · · · +

(
k

1

)
bc ′j + c ′j+1

∣∣∣∣
≤

√(
n

j + 1

)
ε.

If we assume |c ′l | = 0(ε ′l), l = 1, . . . , j, we deduce from this formula that |c ′j+1| = 0(ε ′ j+1),
and so we have shown by induction that

(27) |c ′j | = 0(ε ′ j), j = 1, . . . , n− k.

We need a lemma.

Lemma 6 Let R = zm + am−1zm−1 + · · · + a0 be a polynomial where the coefficients
am−1, . . . , a0 depend on some parameter α and satisfy

|am−1| = 0(α), |am−1| = 0(α2), . . . , |am−k| = 0(αk), . . . , a0 = 0(αm),

when α→ 0. Then all zeros of R are 0(α), α→ 0.
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This lemma is well-known and follows from estimates found for instance in Marden [5].
Let’s give a quick proof. We have |am−k| ≤ Cαk, k = 1, . . . ,m. Let z be a zero of R. Then:

1 = −
am−1

z
· · · −

ak

zm−k
· · · −

a0

zm
,

and so

1 ≤ C
∞∑
1

(
|α|

|z|

)k

,

which implies |z| ≤ (1 + C)|α|. So the lemma is proved, and (24) follows from (27).
Let us now consider the general case, a 6= 0.
We define τaP = P(z − a). Our estimate will follow from the estimate in the case a = 0

and the following.

Lemma 7 For all P, Q, of degree n,

[τaP − τaQ] ≤ C(a, n)[P − Q],

where

C(a, n) = max
0≤l≤n

{(
n

l

)
(1 + |a|2)l

}1/2

.

Proof of Lemma 7 We have

[τaP]2 =
n∑

k=0

1(n
k

)
k!2

∣∣∣∣n−k∑
j=0

P(k+ j)(0)
a j

j!

∣∣∣∣2

≤
n∑

k=0

n−k∑
j=0

(n− k)! |a|2 j

n! k! j!2
|P(k+ j)(0)|2

=
n∑

l=0

l∑
j=0

(n− l + j)! l! |a|2 j

(l − j)! j!2 (n− l)!

|P(l)(0)|2

l!2
(n

l

)
≤

(
max

0≤l≤n

l∑
j=0

(n− l + j)! l! |a|2 j

(l − j)! j!2 (n− l)!

)
[P]2.

But

l∑
j=0

(n− l + j)! l!

(l − j)! j!2 (n− l)!
|a|2 j =

l∑
j=0

(
n− l + j

j

)(
l

j

)
|a|2 j

≤

(
n

l

) l∑
j=0

(
l

j

)
|a|2 j

=

(
n

l

)
(1 + |a|2)l,
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12 Bernard Beauzamy

and the lemma follows.

Remark We do not think that the above constant C(a, n) is sharp. One might think that
(1 + |a|2)n/2 is the right constant.

So we see that, starting with P = (z − a)n and moving it to Q with [P − Q] ≤ ε, the
estimate |x− y| ≤ ε1/n can always be improved if one of the zeros of Q is multiple. The only
case where it is sharp is the case where the multiple zero of P has blown up into n distinct
simple zeros for Q.

As we already mentioned in [1], the combination of Bombieri’s scalar product and
Walsh Contraction Principle provides very efficient tools for the study of quantitative prop-
erties of polynomials: the proofs are simpler than the existing ones and the results are
sharper. Other results on these lines will be published elsewhere.
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