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Micro- and nanodroplets have many important applications such as in drug delivery,
liquid–liquid extraction, nanomaterial synthesis and cosmetics. A commonly used method
to generate a large number of micro- or nanodroplets in one simple step is solvent exchange
(also called nanoprecipitation), in which a good solvent of the droplet phase is displaced
by a poor one, generating an oversaturation pulse that leads to droplet nucleation. Despite
its crucial importance, the droplet growth resulting from the oversaturation pulse in this
ternary system is still poorly understood. We experimentally and theoretically study this
growth in Hele-Shaw-like channels by measuring the total volume of the oil droplets that
nucleate out of it. In order to prevent the oversaturated oil from exiting the channel, we
decorated some of the channels with a porous region in the middle. Solvent exchange is
performed with various solution compositions, flow rates and channel geometries, and
the measured droplets volume is found to increase with the Péclet number, Pe, with an
approximate effective power law V ∝ Pe0.50. A theoretical model is developed to account
for this finding. With this model we can indeed explain the V ∝ Pe1/2 scaling, including
the prefactor, which can collapse all data of the ‘porous’ channels onto one universal curve,
irrespective of channel geometry and composition of the mixtures. Our workprovides a
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macroscopic approach to this bottom-up method of droplet generation and may guide
further studies on oversaturation and nucleation in ternary systems.

Key words: mixing and dispersion, porous media

1. Introduction

Micro- and nanodroplet generation is of tremendous interest due to its wide range
of applications in drug delivery (Gursoy & Benita 2004; Attama & Nkemnele 2005;
Devarajan & Ravichandran 2011), liquid–liquid extraction (Rezaee et al. 2006; Rezaee,
Yamini & Faraji 2010; Yu et al. 2010; Jain & Verma 2011), (nano)material synthesis
(Liff, Kumar & McKinley 2007; Kumar, Liff & McKinley 2008; Duraiswamy & Khan
2009), catalytic reactions (Yabushita et al. 2009; Shen et al. 2014) and cosmetics (Xu
et al. 2005; Lee et al. 2008; Yeh et al. 2009; Kuehne & Weitz 2011), etc. One way to
generate microdroplets is to utilize microfluidic devices such as T-junctions (Yeh et al.
2009), flow focusing setups (Anna, Bontoux & Stone 2003; Teh et al. 2008; Seemann et al.
2011) or co-flowing devices (Utada et al. 2005; Serra & Chang 2008; Shah et al. 2008),
where monodispersed microdroplets with well-defined properties could be generated
successively. All these devices and methods utilize a top-down approach, in which a liquid
jet or drop is split into smaller parts. This limits the smallest droplet size which can be
achieved.

This limitation can be overcome in a bottom-up approach such as solvent exchange
(Lou et al. 2000; Lohse & Zhang 2015, 2020; Zhang et al. 2015), where a large
number of micro- and nanodroplets are generated by nucleation out of an oversaturated
solution. This method, also called nanoprecipitation or solvent shifting (Fessi et al. 1989;
Galindo-Rodriguez et al. 2004; Aubry et al. 2009; Lepeltier, Bourgaux & Couvreur 2014;
Hajian & Hardt 2015), though commonly used, is much less well understood.

In solvent exchange, a good solvent of the target droplet component (the solute) is
replaced by a poor solvent, where the two solvents are miscible. A typical example is an
oil saturated aqueous ethanol solution being replaced by oil saturated water. Upon contact
of the ethanol and water solution, the two solvents start to mix with each other. Due to
the addition of water, the solubility of oil is lowered, and the subsequent oversaturation
leads to droplet nucleation and growth. The micro- and nanodroplets can nucleate in
the bulk (Vitale & Katz 2003) or on a hydrophobic surface. For solvent exchange in a
microchannel, it has been found that droplets nucleated in the bulk tends to migrate to and
then stay in the centre in a co-flowing device (Hajian & Hardt 2015), where the droplet
movement is controlled by solutal Marangoni flow and the composition of the mixture.
On the other hand, for droplets that nucleated on the surface, their average volume is
found to increases with the Péclet number Pe as ∝ h3Pe3/4 (Zhang et al. 2015), where the
flow rate Q is included in Pe and h the channel height. Later, the effect of flow geometry
(Yu et al. 2017) and solution composition (Lu et al. 2015; Lu, Peng & Zhang 2016) on
the average oil droplet size were also qualitatively investigated. The mutual interaction
between a multitude of surface droplets and the resulting effect on the growth dynamics
was also studied (Xu et al. 2017; Dyett et al. 2018). Despite all of these studies, a thorough
understanding of the oversaturation pulse – which is crucial to droplet nucleation and
growth – is still lacking, because of its transient nature and a lack of means to directly
measure it.

To have a quantitative understanding of the oversaturation pulse, we study the total
amount of oversaturated oil inside a Hele-Shaw-like microfluidic channel, by measuring
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Solvent exchange in porous media
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Figure 1. Side view of the experimental setup. Solvent exchange is performed in a square microfluidic channel
with or without the porous region, which is made of circular pillar arrays. Solution A (yellow) is decane
(the oil) saturated aqueous ethanol solution and is injected into the channel first. Solution B (light blue) is
decane saturated water and is injected later at a fixed pressure. In the mixture between the two solutions, oil
is oversaturated so that droplets (red) nucleate out of it, both in the bulk and on the hydrophobic walls. A
flowmeter is used to measure the flow rate of solution B. The channel height is h, the width is W (in the y
direction, not shown) and the channel length before the porous region is L. Solvent exchange is observed from
below by confocal microscopy. The inset shows the bottom view. Pillar diameter d and pillar spacings a and b
are varied to change the porosity φ = 1 − πd2/(2ab). See table 1 for the parameters.

the total volume of the oil droplets that nucleate out from it using confocal microscopy.
In this paper, we are neither interested in the nucleation process itself nor in the droplet
morphology, since they do not help to quantify the oversaturation pulse. A theoretical
model for the total nucleated oil volume is developed, based on the ternary phase diagram
and Taylor–Aris dispersion. The model accurately predicts the scaling behaviour of
the total volume V of oil with respect to the Péclet number, V ∝ Pe1/2, including the
prefactor, in which the influence of the solution composition and channel geometry is
reflected. However, to compare the prefactor with the experiments, we need to prevent
the oversaturated oil – especially the bulk droplets that nucleated out of it – from leaving
the channel. To achieve this, a porous region consisting of circular pillars is put in the
middle of the channel. For channels with such a porous region, the prefactor can collapse
different groups of data onto one universal master curve for different channel geometries
and mixtures. For channels without the porous region, the measured oil volume is smaller
than the theoretical prediction because some of the oversaturated oil – including nucleated
droplets in the bulk – leaves the channel.

2. Experimental procedure and methods

Solvent exchange is performed in a thin square channel with various height h, width W and
length L, see figure 1 for the definitions and table 1 for the parameters. The microfluidic
channel is made of a glass wafer covered on a silicon wafer which is decorated with an
inlet, an outlet and, for some of them, a porous region in the centre. The porous region
is made of an array of circular pillars with pillar diameter d ranging from 6.7 μm to
8.7 μm (see figure 1, inset), and the pillar spacings in the transverse and axial directions
a and b are varied to change the porosity φ = 1 − πd2/(2ab) (see table 1 for parameters).
The length between the inlet and the porous region is L. For ‘smooth’ channels, i.e. those
without the porous region, L is the entire length of the channel. The whole channel is made
hydrophobic by an OTS (octadecyltrichlorosilane) coating: 1 M hydrochloric acid is first
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Chip no. h (μm) L (mm) W (μm) d (μm) a (μm) b (μm) φ = 1 − πd2/(2ab)

1 15.5 4 1280 8.7 30 20 0.80
2 19.7 4 640 6.7 30 20 0.88
3 16.8 4 640 8.7 30 20 0.80
4 15.5 7 1280 8.7 30 20 0.80
5 19.7 4 640 6.7 30 20 0.88
6 15.5 13 1280 — — — 1

Table 1. Geometrical parameters of the microfluidic chips. See figure 1 for a definition of h, L, W, d, a and b.

pumped through the chip at 50 μl min−1 for 20 min by using a syringe pump (Harvard,
PHD 2000). The chip is then put into a vacuum chamber at 1.8 mbar overnight to dry. A
solution of OTS dissolved in hexadecane (Sigma-Aldrich, ≥ 99 %) at 0.4 v/v % is pumped
through the chip at 50 μl min−1 for 20 min. The chip is then sequentially cleaned by
chloroform, toluene and ethanol, and finally dried in vacuum for use.

Solution A, which is rich in oil, consists of decane (oil) saturated aqueous ethanol
solution. To make a solution A with the desired concentration, its ethanol-to-water weight
ratio we,A/ww,A is first determined. The solution is prepared by first mix ∼ 400 g mixture
of ethanol (Sigma-Aldrich, ≥ 99.8 %) and water (Milli-Q) with this specific weight
ratio we,A/ww,A, then added to decane (Sigma-Aldrich, ≥ 95 %) until phase separation
is observed, so that the solution is saturated. The weight fractions of each species are
calculated from the actual ethanol-to-water weight ratio we,A/ww,A in the solution. The
oil weight fraction wo,A of solution A is increased by increasing its ethanol-to-water
weight ratio we,A/ww,A, since the solubility of oil (decane) in ethanol is higher than
in water. Finally, solution A is labelled yellow by adding a small amount of perylene
(Sigma-Aldrich, ≥ 99 %) at 0.2 mg ml−1.

Solution B, which is poor in oil, is made of decane saturated water and is labelled light
blue by Rhodamine 6G (Sigma-Aldrich, 99 %) at 0.2 mg ml−1. Its oil weight fraction is
wo,B = 5.2 × 10−8 at 25 ◦C.

Solution A is first injected to fill the entire channel, then solution B is injected at a
constant driving pressure to perform the solvent exchange: an oil oversaturation pulse is
generated in the mixture of solutions A and B, which leads to oil droplet nucleation both in
the bulk and on the hydrophobic surfaces in the channel. The contact angle of oil in water is
θ = 15 ± 3◦ on the same treated silicon surface and θ = 11 ± 2◦ on the same treated glass
(see supplementary material available at https://doi.org/10.1017/jfm.2020.1137 for more
details). The flow rate Q of solution B, measured by a flowmeter (ML120V21, Bronkhorst,
Netherlands), is varied by changing the driving pressure. The Péclet number of the flow is
calculated by Peh = ūh/D, where ū = Q/(Wh) is the average velocity of solution B, and a
typical diffusivity of water in ethanol D = 0.84 × 10−9 m2 s−1 is used.

After approximately 0.3 ml (more than 1000 times of the channel volume ≈ 0.25 μl) of
solution B is injected, the injection is stopped by closing the valve, and a three-dimensional
(3-D) scan of the whole channel is recorded by confocal microscopy (Nikon A1, Nikon,
Japan) from below.

3. Experimental results

Typical mid-plane snapshots of the upstream part of the channel with the porous region
(chip no. 1, see table 1 for the geometrical parameters) are shown in figure 2(a).
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Solvent exchange in porous media
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Figure 2. (a) Typical mid-plane snapshots of the upstream part of chip no. 1, see table 1 for the geometrical
parameters. Red signals oil, light blue signals water and black the pillars. The flow rates are 1.8 μl min−1 and
10.8 μl min−1. The arrow indicates the direction of the flow. (b) Typical mid-plane snapshots of the upstream
part of chip no. 6. The flow rates are 6.5 μl min−1 and 29.6 μl min−1, respectively. The scale bar indicates
0.5 mm. Oil droplets are found both before the porous region and inside the porous region. (c) A closer look
at the porous region of chip no. 1, where the circular pillars are clearly seen. (d) Three-dimensional confocal
image of the morphology of oil in the same area, resolution is 0.28 × 0.28 × 0.85 μm3 pixel−1 in the x, y and
z directions, respectively.

The channel without porous region (chip no. 6, see table 1) is shown in figure 2(b). Black
signals pillars, light blue signals water and red signals oil (because ethanol must have
been dissolved in and washed away by the excess amount of water). In general, more
oil droplets (red) are found in the channel after the solvent exchange. Furthermore, oil
droplets are observed before and inside the porous region (black), but not behind the
porous region. However, for channels without the porous region, droplets are observed
in the entire channel (see supplementary material for the snapshots of the full channel).
A closer look at the porous region is shown in figure 2(c), where the oil droplets and
the circular pillars are clearly shown. A typical 3-D scan of the same area is shown in
figure 2(d). Note that, in this work, we only focus on the total oil volume V , not on the
droplet morphology.

Solvent exchange is performed for all the 6 chips (see table 1 for the geometrical
parameters) at different we,A and flow rates Q. After the solvent exchange, 3-D scans of
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Chip no. we,A wo,A Exponent α 95 % confidence bounds

1 0.821 0.063 0.49 ±0.05
2 0.821 0.063 0.49 ±0.04
3 0.821 0.063 0.50 ±0.04
4 0.754 0.017 0.49 ±0.05
5 0.754 0.017 0.51 ±0.04
6 0.821 0.063 0.51 ±0.05
6 0.754 0.017 0.51 ±0.01

Table 2. Control parameters of the solvent exchange, and the best fitted power laws: V ∼ Peα
h . Here, wo,A is

the oil weight fraction of the good solvent, we,A is the corresponding ethanol weight fraction and α is the fitted
exponent of the power law. The 95 % confidence bounds of the fittings are also shown. The average exponent
α is 0.50 ± 0.01.

the whole channel, similar to that shown in figure 2(d) are performed. The total volume
V of these droplets is measured by counting the number of red pixels of the 3-D confocal
image and then multiplied by the volume of one pixel, then they are plotted against Peh in
figure 4(a,b) in log–log scale. Results for channels with the porous region (chip nos. 1–5)
are shown in figure 4(a), and results for channels without the porous region (chip no. 6) are
shown in figure 4(b). It is found that, for all the chips, V increases with the Péclet number
as ∝ Peα

h , with α ≈ 0.50, see table 2 for details. Also, V increases with wo,A, i.e. the more
oil is in solution A, the more oil is nucleated. In the next subsection we will develop a
theoretical model to quantitatively account for these two observations.

4. Theoretical model

Figure 3(a) shows the schematic of the initial oversaturation pulse (red shaded region),
which is a mixture of the two solutions due to advection and diffusion. The initial
oversaturation pulse takes a parabolic shape in laminar flow, which is the case here. It
broadens because of (Taylor–Aris) diffusion of the three components: oil, ethanol and
water. The concentration of the mixture changes continuously from that of the solution A
to that of solution B (Ruschak & Miller 1972). Figure 3(b) is the phase diagram of the
oil–ethanol–water system, it shows the concentrations of the solutions and the mixture,
with the ethanol weight fraction we and the oil weight fraction wo being the x and y axes,
respectively. Then the water weight fraction of the solution/mixture can be calculated by
ww = 1 − we − wo. The blue curve shows the concentrations of (oil) saturated solutions,
this is the so-called ‘binodal curve’. The curve is fitted from the measured data points (see
appendix A for details). Then, the concentrations of solutions A and B are on the binodal
curve, denoted by points A and B in figure 3(b). The concentrations of the mixture lie on
a curve connecting points A and B, denoted by the red curve AB – this is the so-called
‘diffusion path’ (Ruschak & Miller 1972). All the possible concentrations of the liquid –
both of the solutions and the mixture – lie on this curve. The oil concentration co in the
mixture is higher than its saturated oil concentration co,s, thus the mixture is oversaturated
with oil. The (absolute) oil oversaturation is then denoted as

�co ≡ co − co,s. (4.1)

We now use mass-per-volume concentrations c in the equations for simplicity but
keep using weight fractions w elsewhere. Notice that the weight fractions w are the
concentrations c normalized by the density of the liquid ρ: w = c/ρ.
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Solvent exchange in porous media
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Figure 3. (a) Sketch of the oversaturation pulse (red region) during solvent exchange. Solution A is on
the right-hand side, being displaced by solution B. Liquid parcel M′ is on the oversaturation pulse. The
concentrations of solutions A, B and liquid parcel M′ are represented by A, B and M in (b), respectively.
(b) Phase diagram of the decane–ethanol–water ternary system. The blue curve is the binodal curve (saturation
curve of oil) fitted from the data points (blue diamond) measured as described in Tan et al. (2016). Red line AB
is the diffusion path, black line MS is the dilution curve, which is a straight line passing through coordinate
(0, 1). (c) Oil oversaturation normalized by the oil density, �co/ρo, as a function of the normalized ethanol
concentration we = ce/ρ, at different initial conditions: black solid line for wo,A = 0.063, and red dashed line
for wo,A = 0.017. (d) Plug shaped oversaturation pulse because of Taylor–Aris dispersion which happens in a
long and thin channel; x1 = x − ūt is the distance to the centre of the plug, ū is the average flow velocity and
Lp is the length of the plug. The porous region is represented by the vertical black pillars. (e) The normalized
oil oversaturation �co/ρo as a function of normalized length κx1, for wo,A = 0.063 (black solid line), and
wo,A = 0.017 (red dashed line), respectively. The normalized length κx1 is a function of time t and space x.
( f ) The calculated prefactor s as a function of we,A. The two different initial conditions with wo,A = 0.063 and
0.017 are indicated by the red dots.

For any oversaturated liquid parcel M′ in the mixture, as represented by point M on the
diffusion path, when the oversaturated oil nucleates, it is considered that only oil nucleates
out of the mixture, and the ethanol-to-water ratio in the mixture is kept constant (Lu
et al. 2016). The concentration of the mixture moves along the so-called ‘dilution curve’
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(Lu et al. 2016) to point S on the binodal curve. The dilution curve MS is a straight line
passing through point (0, 1) in figure 3(b) (this point means pure oil in the phase diagram,
see supplementary material and appendix B for more details), as shown by the black solid
line. Therefore, the (absolute) oil oversaturation of this liquid parcel M′ is

�co(M) = (co − co,s)|M = co(M) − co(S). (4.2)

The exact shape of the diffusion path is determined by the diffusion speeds of the
three components. In a simplified case, we assume that the diffusion of each component
only depends on its own concentration gradient. To get a first-order approximation of the
problem, we further assume that the diffusion coefficients of oil and water are equal:
Do = Dw ≡ D. Then, the diffusion path AB becomes a straight line (see Ruschak & Miller
(1972) and appendix B. These two assumptions are reasonable since the oil concentration
is small in all the tested cases: wo,A ≤ 0.063, and the errors induced by them are small,
see appendix C), and co(M) becomes linearly dependent on the ethanol concentration ce
of the arbitrary liquid parcel M′. Since point M is on the diffusion path AB, we have
0 ≤ ce ≤ ce,A, where the initial condition ce,A is the ethanol concentration of solution
A; co(S) can also be expressed as a function of ce(M) by finding the intersection of the
dilution curve (passing through point M) and the binodal curve. Then the (absolute) oil
oversaturation �co of any liquid parcel in the channel can be expressed as a function of its
ethanol concentration ce

�co = �co(ce), 0 ≤ ce ≤ ce,A. (4.3)

This function of course also depends on the initial condition ce,A. Equation (4.3)
is calculated numerically (see supplementary material for more details), and the oil
oversaturation normalized by the oil density, �co/ρo, is plotted as a function of the
normalized ethanol concentration we = ce/ρ in figure 3(c), for different initial conditions
wo,A = co,A/ρ: 0.063 and 0.017, respectively. Here, ρ is the density of the liquid parcel
(see supplementary material for the calculation of ρ), and ρo = 730 kg m−3 is the density
of the oil (decane).

The oversaturation pulse shown in figure 3(a) evolves as a function of space x and
time t, so that both the oil oversaturation �co and ce also depend on space and time:
�co[ce(x, t, ce,A)]. As mentioned previously, the total oil volume V is nucleated from all
the oil oversaturation generated in the liquid. The total oil volume V in the porous medium
can then be calculated by integrating the oil oversaturation over the entire channel volume,
at the time just before the oversaturation pulse reaches the porous region

V(t, ce,A) = 1
ρo

∫
Ω

�co[ce(x, t, ce,A)] dx. (4.4)

The spatial and temporal distribution of ethanol concentration ce(x, t, ce,A) of the
parabolic shaped oversaturation pulse is non-trivial. However, the channel used here is long
and thin. The time scale for the axial advection is τa ∼ L/ū ≥ 4 s, which is much larger
than the time scale of the vertical diffusion τv ∼ (h/2)2/D = 0.12 s. In this situation, the
concentration gradient in the vertical direction is smoothed out because of Taylor–Aris
dispersion (Taylor 1953; Aris 1956, 1959), and the oversaturation pulse becomes like a
plug, as shown in figure 3(d).

The analytical solution of the ethanol concentration ce(x, t, ce,A) for pure water entering
a thin square channel which at time t = 0 contains only an aqueous ethanol solution with
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Solvent exchange in porous media

(uniform) concentration ce,A (no oil present) in this plugged regime is (Taylor 1953)

ce(x, t, ce,A) = 1
2 [1 + erf(κx1)] · ce,A, (4.5)

where x1 = x − ūt is the distance to the central position of the plug, as shown in
figure 2(d). Here, κ = (1/2)k−1/2t−1/2 is the wavenumber (with units m−1), where
k = h2ū2/(210D) for a thin square channel of thickness h (Dorfman & Brenner 2001).
The wavenumber κ has the temporal dependence and its inverse scales as the length of the
plug: Lp ∼ 1/κ .

For the solvent exchange in our case, oil is present in all of the liquid, but (4.5) still holds
here because of the previous assumption Do = Dw ≡ D. With this assumption, any portion
of the water can be replaced by oil without influencing the above equation. Substituting
(4.5) into (4.3), we have

�co = �co(κx1, ce,A). (4.6)

Equation (4.6) is solved numerically, and figure 3(e) shows how the normalized oil
oversaturation �co/ρo changes as a function of κx1 at the three different initial conditions.
It is worth noting that the oil oversaturation is not symmetric, but its peak position is to the
right (κx1 ≈ 0.55), or in other words, more to the downstream. This asymmetry originates
from the asymmetry in (�co/ρo)(we) shown in figure 3(c), whose asymmetry originates
from the shape of the binodal curve shown in figure 3(b). Also, the oil oversaturation is
higher everywhere in the channel for the case with higher initial oil concentration (larger
wo,A).

Since the oversaturation pulse becomes a plug-like shape, which means the vertical
concentration gradient is negligible, (4.4) can be further simplified as the integration along
the single dimension x. Substituting (4.6), we have

V(t, ce,A) = 1
ρo

Wh
∫ ∞

−∞
�co(κx1, ce,A) dx. (4.7)

Substituting t = L/ū into κ as the time when the oversaturation pulse is just entering the
porous region then integrating with respect to κx1 leads to

V(ce,A) = s(ce,A) · Wh3/2L1/2 · Pe1/2
h , (4.8)

where

s(ce,A) = 2√
210

1
ρo

∫ ∞

−∞
�co(κx1, ce,A) d(κx1) (4.9)

is a dimensionless prefactor which is proportional to the area under the curve
�co(κx1, ce,A), as shown in figure 3(e).

From (4.8) we see that the power law dependence of V on Peh is indeed predicted to be
1/2. The prefactor s is shown in figure 3( f ) as a function of normalized initial condition
we,A = ce,A/ρ. The two red dots correspond to the initial conditions wo,A = 0.063 and
0.017, respectively. It is worth noting that s changes sharply within this range.

Equation (4.8) with (4.9) is the main theoretical result of our paper. It is universal in the
sense that it includes all the factors that could influence the total amount of nucleated oil:
the flow rate, the channel geometry and the solution composition.

Note that, in the model, only Taylor dispersion in the post-free region is considered,
because the porous structure immediately interrupts further development of the
oversaturation pulse. Further dispersion/mixing in the porous region is negligible: the
length of the oversaturation pulse, which covers 99 % of the oil oversaturation (see
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Figure 4. (a,b) Measured total volume of oil in the entire channel V as a function of the Péclet number Peh =
hū/D, for different initial conditions – oil weight fraction of solution A represented by wo,A, and different flow
rates as represent by Peh, in different chips. Results for the channels with the porous region (chip nos. 1–5) are
shown in (a), and results for the channel without the porous region (chip no. 6) are shown in (b). For all the
results, the total oil volume increases as V ∼ Peα

h , with α ≈ 0.50. Dashed lines are the best fit for each group.
See table 2 for the solution compositions of the solvent exchange and the best fitted power laws. (c,d) Value
of V non-dimensionalized by s · Wh3/2L1/2 and plotted as a function of Peh. Results for the channels with the
porous region (chip nos. 1–5) are shown in (c), and results for the channel without the porous region (chip no.
6) in (d). The black solid lines are calculated from (4.8). Each data point is the average of five measurements
and error bars are the standard deviation.

figure 3e), is calculated to be Lp = 3.56/κ = 0.49
√

Lh · √
Peh > 0.44 mm, much larger

than the pore size ≈ 20 μm. That means that ce does not really change on the length scale
of the pore size, thus the porous medium does not induce further dispersion/mixing. On
the other hand, although in the theoretical model the length of the post-free region L is
used to calculate the total oil volume, this does not mean that the oversaturation would
accumulate in the pulse and then all of a sudden nucleate into droplets at some time point,
for example, at t = L/ū when the centre of the oversaturation pulse is at the entrance of
the porous region. Instead, as the oversaturation pulse develops while moving downstream,
the (newly generated) oversaturation nucleates into droplets along the way, so that some of
the droplets are observed upstream of the porous region.

5. Comparison between universal theoretical result and experiments

To compare the universal theoretical result with the experimental results, the oil volumes
V measured for various chips and mixtures shown in figure 4(a,b) are normalized by
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Solvent exchange in porous media

s · Wh3/2L1/2, and then plotted against Peh in figure 4(c,d) in log–log scale. Results for
channels with the porous region (chip nos. 1–5) are shown in figure 4(c), and results for
channels without the porous region (chip no. 6) are shown in figure 4(d). It is found that,
for chips with the porous region, the calculated prefactors (s = 1.2 × 10−2 and 3 × 10−3)
can indeed collapse all data onto one master curve, regardless of the channel geometry
and composition of the mixture. This is in agreement with the calculated prefactor of
our theoretical model. However, for channels without the porous region, the measured oil
volume V is smaller than the theoretical prediction – which is not true for channels with the
porous region. This confirms that the porous region can indeed prevent the oversaturated
oil from leaving the channel, by which the comparison between experiment and theory is
enabled.

6. Conclusions and outlook

We have performed solvent exchanges in thin square channels with and without a porous
region in the middle, at different initial conditions we,A, flow rates Q and channel
geometries. The total volume of these oil droplets V is measured by confocal microscopy,
and is found to increase with Péclet number as ∝ Peα

h , with α ≈ 0.50. A theoretical model
is then developed, based on the ternary phase diagram and Taylor–Aris dispersion, to
predict the total amount of oil V nucleated from solvent exchange. The theory indeed
predicts a power law dependence V ∝ Pe1/2

h . In addition, the influence of the channel
geometry and the initial condition wo,A can also be calculated and included in the model to
give a complete prediction of the oil volume V on one universal curve, thanks to the porous
region which can prevent the oversaturated oil from leaving the channel. This model is
found to be able to predict the total nucleated oil volume V , irrespective of the channel
geometry and initial mixture.

The findings of this work contribute to a better understanding of the solvent exchange,
and could guide further design and research on this topic. First, a porous medium may
serve as a good tool to collect all the oversaturation, providing a macroscopic approach to
study this bottom-up method.

The results of this paper encourage us to propose a three-step approach to study solvent
exchange. (i) Find the concentration distribution by solving the advection–diffusion
equations. The boundary conditions are defined by the flow geometries and the initial
conditions are set by the initial solution concentrations. (ii) Based on the concentration
distribution, the oversaturation distribution can be calculated by applying the knowledge
of the phase diagram. (iii) Investigate the quantity that is of interest, such as the volume
of the nucleated phase, the dynamical interaction between the nucleated phase and the
oversaturation, etc.

This research can be considered as a demonstration of the above proposed approach,
with the total nucleated oil volume V being the subject of interest, and the aid of
Taylor–Aris dispersion in a long and thin channel to obtain the analytical solution of
the concentration distribution. For more general cases where the oversaturation pulse is
not a plug, analytical solutions of the concentration distribution may be difficult to get,
then numerical simulations should be employed to finish the first step. It is also easier
to incorporate the ternary (or multicomponent) diffusion effect in numerical simulations.
Moreover, the dynamical interaction between the nucleation and the oversaturation pulse
can also be incorporated in numerical simulations.

912 A35-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1137


Y. Li, K.L. Chong, H. Bazyar, R.G.H. Lammertink and D. Lohse

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2020.1137.

Acknowledgements. We thank X. Zhang and C. Sun for valuable discussions, and H. Le The for the scanning
electron microscope (SEM) Images. We thank the Micro-Nano Fabrication Laboratory of Peking University for
providing the chips.

Funding. We acknowledge support from the Netherlands Center for Multiscale Catalytic Energy Conversion
(MCEC), an NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the
government of the Netherlands, and D.L.’s ERC-Advanced Grant under project number 740479.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Yanshen Li https://orcid.org/0000-0002-1405-8604;
Kai Leong Chong https://orcid.org/0000-0002-3182-3689;
Hanieh Bazyar https://orcid.org/0000-0003-1689-9826;
Detlef Lohse https://orcid.org/0000-0003-4138-2255.

Appendix A. Fitted binodal from the data points

The X- and Y-coordinates in figure 3(b) are actually we = ce/ρ and wo = co/ρ. The
binodal wo,s(we) is fitted by two piecewise cubic Hermite interpolating polynomials
(PCHIPs) through the data points, which are measured by titration following the procedure
as described by Tan et al. (2016).

For the first part (first 10 points, lower half), the polynomial is

wo,s = wo,s(we) =
10∑

i=1

Pi(we), (A1)

where
Pi(w) = ai(w − wi)

3 + bi(w − wi)
2 + ci(w − wi) + di (A2)

is valid on the 9 intervals between the 10 data points. Here, wi is the ethanol weight fraction
of the ith data point. For the second part (last 5 points, upper half), the polynomial is

wo,s = wo,s(we) =
15∑

i=11

Pi(we), (A3)

where Pi(w) has the same form as (A2). Parameters are shown in table 3.

Appendix B. Transformation from a ternary phase diagram to the phase diagram in
a Cartesian coordinate

Figure 5(a) shows a typical ternary phase diagram, using the decane–ethanol–water system
as an example. The three vertices E, W, D stand for ethanol, water and decane, respectively.
Figure 5(c) shows the same phase diagram in Cartesian coordinates, with the ethanol
weight fraction we being the X-coordinate and the oil weight fraction wo being the
Y-coordinate. Here, we prove that any straight lines in the ternary phase diagram shown in
figure 5(a) are still straight lines in figure 5(c).

To prove this, we need to find the transformation matrix between these two vector spaces.
Let p and q be the basis vectors of the vector space that the ternary phase diagram is in;
p is parallel to line WE in figure 5(a), and q is parallel to line WD. Let i and j be the
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Solvent exchange in porous media

i wi ai bi ci di

1 0 2.0712 × 10−4 −4.6769 × 10−4 1.1 × 10−3 9 × 10−9

2 0.2248 0.0187 −0.0032 0.0012 2.6 × 10−4

3 0.4198 0.0562 0.0085 2.1 × 10−3 5.2 × 10−4

4 0.5787 −0.0937 0.2582 0.0091 0.0013
5 0.6770 −10.9639 2.1452 0.0571 0.0046
6 0.7473 15.1584 1.7834 0.1962 0.0154
7 0.7696 140.7443 −0.8690 0.2987 0.0209
8 0.7994 121.2367 29.3490 0.6207 0.0327
9 0.8172 −1.5503 × 104 262.6259 1.7831 0.0538
10 0.8235
11 0.7968 1.6904 × 103 −87.4670 −0.7654 0.1450
12 0.8113 7.9352 × 103 −169.5336 −2.2375 0.1205
13 0.8181 −8.0645 × 103 126.1344 −3.4412 0.1002
14 0.8213 1.3950 × 105 −1.2406 × 103 −5.1258 0.0877
15 0.8235

Table 3. Parameters of the PCHIP spline fitting of the first 8 points of the binodal. Here, i is the number
of the data points, wi is the ethanol weight fraction of the ith data point and ai, bi, ci and di are the
coefficients.

basis vectors of the Cartesian coordinates. These two bases are put together in figure 5(b),
with (p, q) shown in red dashed arrows and (i, j) shown in black solid arrows. Then we
have

(p, q) = (i, j)

⎡
⎢⎣

1
2

√
3

2
1 0

⎤
⎥⎦ . (B1)

This is a linear transformation, with

T =

⎡
⎢⎣

1
2

√
3

2
1 0

⎤
⎥⎦ (B2)

being the transformation matrix.
With the assumption of no ternary diffusion and De = Do ≡ D, Ruschak & Miller

(1972) first proved that the diffusion path in the ternary phase diagram is a straight line.
By definition, the dilution curve is also a straight line. Because linear transformation
transforms straight lines to straight lines, diffusion path AB and dilution curve DM in
figure 5(c) are still straight lines.

On the dilution curve DM in figure 5(a), the ratio of ethanol weight fraction to water
weight fraction is kept constant, that is

we/ww = c, (B3)

where c is a positive constant.
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Figure 5. Transformation from the ternary phase diagram to a right-triangle phase diagram in Cartesian
coordinates. (a) The ternary phase diagram of the decane–ethanol–water system. The three apexes are E
for ethanol, W for water and D for decane. Blue curve is the binodal curve fitted from the data points (blue
diamonds) taken from Skrzecz et al. (1999). Red line AB is the diffusion path when we,A = 0.837, and black
line DM is the dilution curve. (b) Basis (p, q) of the ternary phase diagram shown in red dashed arrows and
basis (i, j) of the Cartesian coordinates shown in black solid arrows. (c) Right-triangle phase diagram of the
same system. Diffusion path AB and dilution curve DM are still straight lines. Here, we is replaced by x and
wo is replaced by y.

In Cartesian coordinates, we is the X-coordinate and wo is the Y-coordinate. For easier
notation, let x = we and y = wo, then ww = 1 − x − y, and

0 ≤ x ≤ 1,

0 ≤ y ≤ 1,

0 ≤ 1 − x − y ≤ 1.

⎫⎪⎪⎬
⎪⎪⎭

(B4)

Equation (B3) can be transformed to

y = 1 − (1 + c)x. (B5)

This is a straight line passing through (0, 1) in figure 5(c). Its slope satisfies −∞ ≤
−(1 + c) ≤ −1. This is why the phase diagram in figure 5(c) is a right triangle.

Appendix C. Influence of non-equal diffusivities

Normally, the diffusivities of water and oil in the mixture are not equal. Here, we briefly
discuss the influence of non-equal diffusivities of water and oil Dw /= Do on the prefactor
s.

With the assumption that ternary diffusion effects are neglected, and in the meantime
we ignore the advection term in the advection–diffusion equations, the transport equations
for water and oil become (Ruschak & Miller 1972)

∂ww

∂t
= Dw

∂2ww

∂x2 , (C1)

∂wo

∂t
= Do

∂2wo

∂x2 . (C2)

912 A35-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1137
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Figure 6. Diffusion path (red curve) for the case when Dw = 0.84 × 10−9 m2 s−1 and Do = 0.43 ×
10−9 m2 s−1, with initial conditions wo,A = 0.063, ww,A = 0.119. Notice now the diffusion path (red curve
AB) changes to a curve rather than a straight line as shown in figure 3(b). The blue diamonds are the measured
data on the binodal, and the blue curve is the binodal. The black line is the dilution curve.

Solutions of (C1) and (C2) have the form

ww = ww,A + ww,B

2
+ ww,A − ww,B

2
erf

x
2tDw

, (C3)

wo = wo,A + wo,B

2
+ wo,A − wo,B

2
erf

x
2tDo

, (C4)

where x and t are the distance (as defined in figure 3d) and time, respectively. Here, ww,A
and ww,B are the water weight fractions of solutions A and B, wo,A and wo,B are the oil
weight fractions of solutions A and B. With −∞ < x < +∞ and we = 1 − ww − wo, the
diffusion path can be computed.

Using the same diffusivity of water Dw = 0.84 × 10−9 m2 s−1 and taking the oil
diffusivity Do = 0.43 × 10−9 m2 s−1 as calculated by Perkins & Geankoplis (1969), we
obtain the diffusion path for initial conditions wo,A = 0.063, ww,A = 0.119, as shown
in figure 6. The diffusion path is no longer a straight line, but curved. The value of s
is calculated to be s = 1.2 × 10−2 and 3 × 10−3 for the two initial conditions wo,A =
0.063 and 0.017, all less than 4 % change as compared to the case when assuming
Dw = Do.
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