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HIGHER SCHREIER THEORY IN CUBICAL AGDA

DAVID JAZ MYERS AND ZYAD YASSER

Abstract. Homotopy type theory (HoTT) enables reasoning about groups directly as the types
of symmetries (automorphisms) of mathematical structures. The HoTT approach to groups—first put
forward by Buchholtz, van Doorn, and Rijke—identifies a group with the type of objects of which it is the
symmetries. This type is called the “delooping” of the group. taking a term from algebraic topology. This
approach naturally extends the group theory to higher groups which have symmetries between symmetries,
and so on. In this paper, we formulate and prove a higher version of Schreier’s classification of all group
extensions of a given group. Specifically, we prove that extensions of a group G by a group K are classified
by actions of G on a delooping of K. Our proof is formalized in Cubical Agda, a dependently typed
programming language and proof assistant which implements HoTT.

§1. Introduction. An extension of a group G by a group K is a short exact sequence

0KL5EL G,

That is, a sequence of homomorphisms in which i is injective, p is surjective, and
imi = ker p. As a set, any extension E is bijective with the cartesian product K x G;
but there may be many different group structures on this cartesian product which
are, in some sense, built out of the group structures of G and K. Two extensions £
and E’ are isomorphic when there is an isomorphism E = E’ commuting with the
inclusions i and projections p; we define Ext(G. K) to be set of isomorphism classes
of extensions of G by K.

In 1926 [27], Otto Schreier gave a series of cocycle conditions which classified
all the possible extensions E of G by K. In doing so, he inaugurated the field of
Schreier theory: the study of extensions of algebraic structures, and in particular of
group-like structures. In 1934, Baer [6] examined the abelian extensions of abelian
groups in terms of presentations of G by generators and relations, and discovered
an abelian group law on Ext(G. K). While working on computing Baer groups,
Eilenberg, and Mac Lane noticed a similarity between those computations and the
ones done in the cohomology of spaces. In a series of three papers [13-15], they
developed a cohomology theory for groups and showed that H>(G: K) classified
central extensions of G by an abelian group K—those extensions for which K lies
in the center ZG of G. They also related group cohomology to the cohomology
of spaces by developing the Eilenberg—Mac Lane spaces K(G.n), and showing that
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2 DAVID JAZ MYERS AND ZYAD YASSER

H?(G: K). and hence central extensions, were in bijection with homotopy classes of
pointed maps K(G, 1) —, K(K.2).

This leads naturally to the following question: is there an object associated with
a group K which classifies all extensions by a possibly non-abelian K? Building on
work on non-abelian cohomology by Dedecker and Luks [11, 12], Grothendieck
answered this question affirmatively with his Grothendieck construction [17],
showing that there is a 2-group BAut(BK ) so that pseudo-functors from a delooping
BG of G to BAut(BK) correspond to extensions of G by K. This result was extended
to stacks by Giraud [16] and to stacks of 2-groups by Breen [§].

In this paper, we will extend this classification of extensions to all (stacks of)
higher groups [9] with an elementary and surprisingly concrete proof in homotopy
type theory (HoTT).

THEOREM 1.1 (Higher Schreier theorem). For any higher groups G and K, the type
EXT(G: K) of extensions of G by K is equivalent to the type of pointed functions
BG —. BAut(BK). or, in other words, the type of actions of G on a delooping
BK of K.

This result was first proved informally in [26]; here, we present a formal proof of
the higher Schreier theorem in Cubical Agda [31]. It straightforwardly generalizes
the elementary classification of split extensions by homomorphic actions of G on K
familiar from any undergraduate textbook on group theory.

While Schreier’s original classification was concrete in the sense that it gave explicit
cocycle conditions determining the group law of the extension, our construction is
concrete in that it directly defines a type of mathematical structures whose group
of symmetries gives the extension. We are able to do this by working in HoTT,
where any object comes naturally equipped with a notion of identification—equality,
isomorphism, structure-preserving equivalence, etc.—so that groups may be viewed
as the self-identifications or symmetries of a object natively. Rather than expressing
the group law of an extension E decomposes into the group laws of G and K via
cocycles, Theorem 1.1 shows how the structures whose symmetries form the group
E decompose into structures that whose symmetries form the group G and K,
respectively.

As an example of this way of thinking, consider the short exact sequence

0 — R* — Poincaré — Lorentz — 0

witnessing the Poincaré group as an extension of the Lorentz group by the group
of translational symmetries of Minskowski space. We will see this series of group
homomorphisms as the action on symmetries of a fiber sequence of types:

Affine(R*) — MinkowskiSpace — LorentzSpace

where Affine(R?*) is the type of 4-dimensional real affine spaces. LorentzSpace
is the type of Lorentz spaces (an 4-dimensional real vector space with an inner
product of signature 3 + 1), and MinkowskiSpace is the type of Minkowski spaces
(an affine space over a Lorentz space, as defined for example in [29, p. 231]); the
first function considers the real affine space as an affine space over the canonical
Lorentz space R**!, and the second projects out the underlying Lorentz space. The
corresponding classifying map LorentzSpace —. BAut(Affine(R*)) determined by

https://doi.org/10.1017/js1.2024.78 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.78

HIGHER SCHREIER THEORY IN CUBICAL AGDA 3

the higher Schreier theorem sends a Lorentz space V to the type Affine( V) of affine
spaces over V; this evidently sends R3*! to Affine(R?).

In Section 2, we give a quick introduction to Cubical Agda, the dependently typed
programming language in which our results are formalized. After that, in Section 3
we recall the theory of higher groups in HoTT. With this under our belt, we make
short work of our main theorem in Section 4; in Section 6 we show how it generalizes
the usual classification of split extensions by homomorphic actions.

§2. A brief introduction to homotopy type theory and Cubical Agda. HoTT [30]
is a novel foundation of mathematics based on Martin—Lof dependent type theory
(MLTT) [23] with inspiration from modern homotopy theory. Through its basis in
intuitionistic type theory, HoTT gives a computational perspective on mathematical
proofs: proofs may be seen as programs that compute witnesses to the truth of
a proposition. HoTT emerged from the work of Awodey and Warren [5] and
Voevodsky [32] on the homotopical interpretation of MLTT, extending Hoffman
and Streicher’s groupoid model of MLTT [18].

In type theory, there are four primitive judgements: that something is a type
(denoted A : Type), that something is an element of a type (denoted a : A), that
two types are equal by definition (denoted 4 := B) and that two elements are equal
by definition (denoted a := b). Formally, type theory is a system for moving from
some constellation of these judgements to others via given rules. For example, if
we judge A to be a type and for a free variable x : A, we judge B(x) to be a
type, then we may judge (x : A) — B(x) and [ x € 4] B(x) to be types. The
former is the type of functions, and the latter the type of pairs. We define functions
f :(x:A4) — B(x) by lambda-abstraction: if »(x) : B(x) for a free variable of
type x : A, then we judge A x — b(x) : (x: 4) — B(x). We use functions by
applying them: if @ : A and f : (x : A) — B(x), then f(a) : B(a), and we take the
W x —=b(x))(a):=b(a)and f := N\ x — f(x)). Similarly, ifa : A and b : B(a).
we judge (a,b):X[xe€A] B(x), and if p:¥X[xe€A] B(x) then fstp: 4 and
snd p : B: to these we add the defininitional equalities fst (a.b) := a.snd (a.b) := b,
and p := (fst p,snd p).

HoTT extends MLTT with a notion of path and an interpretation of types
as homotopy types. In [5], Awodey and Warren interpret types as Kan complexes
and elements as simplicial maps (or, more generally, objects and morphisms of a
Quillen model category). This is the evident sense in which HoTT gains a homotopy
interpretation; but it’s worth noting that this model also shows us how HoTT gives
us tools for working directly with mathematical structures up to their appropriate
notion of equivalence. Kan complexes include not only the singular complexes of
topological spaces (their “homotopy types”. when considered up to equivalence in
the Kan—Quillen model structure), but also the nerves of groupoids of mathematical
structures. In the nerve of a groupoid, a path is an isomorphism. By Grothendieck’s
homotopy hypothesis, Kan complexes are models of oco-groupoids—collections of
higher mathematical structures, their equivalences, the equivalences between their
equivalences, and so on. Moreover, Lumsdaine [21] and van den Berg and Garner
[7] showed that Martin—Lof identity types endow types in MLTT with the structure
of (appropriately weak) co-groupoids.
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Voevodsky’s univalence principle, which states that paths in type universes are
equivalently equivalences between types, allows us to internalize this understanding
of homotopy types as higher groupoids of mathematical structures to some extent.
The first set-theoretic model for umivalent type universes was put forward by
Voevodsky and completed by Kapulkin and Lumsdaine [19], interpreting type
universes as certain object classifiers in the Kan—Quillen model structure on
simplicial sets. We will return to this point later in this introduction; for more
on the structural interpretation of HoTT, see [4].

n [28], Shulman shows that HoTT can be interpreted in any oco-topos. When
interpreted in appropriate co-toposes (such as stacks on the site of continuous
manifolds, as in ibid.), co-groups are interpreted as stacks of co-groups and their
deloopings are interpreted as moduli stacks for principal bundles. In this way, we
will be able to deduce a Schreier theorem for all stacks, and not just for homotopy
types of spaces.

Agda is a dependently typed programming language based on MLTT in which
both programs and proofs concerning the behavior of those programs are given by
elements of types. Cubical Agda extends Agda with an abstract axiomatization | of
the unit interval [0, 1] C R and a number of basic operations concerning this interval
suitable for doing synthetic homotopy theory in the resulting type theory. See [31]
for a more comprehensive introduction to the type theory (originally put forward
n [10]). [3] for use in the representation independence of data structures, and [24,
25] for synthetic homotopy theory done in Cubical Agda.

In particular, | has “endpoints™ {0, il : I, a “minimum” function A_: 1 —1— 1 a
“maximum” function _V_: | — | — |, and a “reversal” ~_ : | = | (meant to resemble
the function x — 1 — x on the unit interval) which together equip | with the structure
of a de Morgan algebra.

A path in Cubical Agda is a function out of the interval | whose value on the
endpoints i0 and il is known by definition. If a, b : A4 are elements, then elements of
the path type ¢ = b may be defined by A-abstraction just like functions:

XNi—pi):a=b
except that p(i0) := @ and p(il) := b by definition. If 4 : | — Type is a type family
varying over the interval, then we also have a type PathP A4 a b of paths lying over
this path of types, where a : Ai0 and b : 4il.

Paths act as an equality predicate in Cubical Agda. For example, we always have
a reflexivity term

refl:=\i »a:a=a
for any a : A4, as well as symmetry
sym:=\pi = p(~i):a=b—b=a.

Transitivity may be proven using another primitive notion: homogenous composition
or hcomp. We will not go into any detail on how hcomp is used here to avoid a
digression on partial elements; see [31] for more details. All we will need to know is
that hcomp gives us a way to “cap off” open boxes, as in the following definition of
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HIGHER SCHREIER THEORY IN CUBICAL AGDA 5
conjugation of apath p:a =bbypathsg:a =a’andr:b=>b"

conjgpr
a’ N by

"T T

CIT>b

As a special case of conjugation, we get we get transitivity or path composition as
p - r = conjrefl pr. For those familiar with combinatorial homotopy theory, one
can think of hcomp as a Kan-filling operation.

We can prove equations between paths by constructing paths in types of paths;
since a path is a function | — 4, a path between paths is a function | — (I — A4)
of two interval variables. It is this feature that gives cubical type theory the name;
general terms may depend on many interval variables i, j, k which can be thought
of as varying over a “cube I"”. We can in particular give paths p - sym p = refl and
(p-q)-r = p-(q-r)and the others needed to show that path composition is unital,
invertible, and associative.

With this notion of path, we can define equivalences between types as functions
having contractible fibers, following the definition given in the HoTT Book [30].

DerFmiTION 2.1. Let f: A — B be a map and b : B. The fiber of f over b is the
type of elements a : A equipped with a path from f(a) to b:

fiby(b) :=%X[acA] fa=h.

DEerINITION 2.2. A type A is contractible if when it has a center of contraction
¢ : A and a path from every x : 4 to ¢:

isContr(4) :==%[c€A] ((x:4) = (x =¢)).
A function f : A — B is an equivalence if its fibers are contractible:
isEquiv(f) := (b : B) — isContr(fib/(b)).
We denote the type of equivalences by 4 ~ B:
(A~ B):=%[ f€A4— B]isEquiv(f).

Since paths are our only form of equality or identification in Cubical Agda, we
may think of contractibility as unique existence. The principle of unique choice may
be understood as the first projection from the type of pairs isContr(4) to A.

Since paths are functions, it is easy to compute path spaces in pair types
Y[acA]Ba:

((a.b)=(d". b)) ~E[pea=a’'|PathP (\i — B(pi)) bb'.

Similarly, it is easy to compute paths in function types X[x : A]B(x), giving a form
of function extensionality:

(f=g)~((x:4) = (f(x) =g(x))).

Type universes Type should be types as well, and this means that they should
implement hcomp for paths (they should be fibrant). But what should paths of types
be, and how should we compose them? Cubical Agda is univalent: paths of types
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Type Logic Sets Homotopy
A proposition set space
a:A proof element point
A+ B AV B disjoint union coproduct space
A X B ANB cartesian product product space

TaBLE 1. Correspondence between type theory, logic, sets, and homotopy theory.

correspond to equivalences between them. This is accomplished through another
primitive notion: glue types Glue. Glue types work like hcomp in that they can “cap
off” open boxes of types, but where the base of such a box is a path and the walls
are equivalences:

glue 4 eg e

By ----- > By
eog /gel
Ay T) Al

By gluing the reflexive path onto an equivalence, we get Voevodsky’s univalence
principle: paths between types are equivalences:

By —Ea-g') A
eé\ gid
A— A

refl

With glue types and univalence, we can construct paths p: 4 = B between
types by constructing equivalences ¢ : A ~ B between them; composition of paths
corresponds to composition of their corresponding equivalences. In particular, the
type A = A of loops starting and ending at a type 4 is equivalent to the type Aut(A4)
of automorphisms of 4.

Being contractible is a property of types, and being an equivalence is a property
of functions. In type theory, propositions are represented as types, a practice known
as propositions as types. The judgement a : A can mean that « is a mathematical
object of type 4 and also that « is a witness to the truth of the proposition 4. We
summarize the different viewpoints of the HoTT operations in Table 1.

As with other dependently typed languages, in Cubical Agda propositions are
themselves expressed as types. However, following practice in HoTT [30], we do
not consider all types to be propositions—some types are sets, like N, and some are
types of mathematical structures, like the type of groups, for example. We identify
the propositions as those types that have at most one element.

DEerINITION 2.3. A type 4 is a proposition when for any two elements a, b : A4,
the type of paths (¢ = b) between them is contractible:

isProp(4) := (ab : A) — isContr(a = b).

https://doi.org/10.1017/js1.2024.78 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.78

HIGHER SCHREIER THEORY IN CUBICAL AGDA 7

If P: A — Type is a family of propositions (that is, for all @ : A, isProp(P a)),
then the pair type X[ a € 4 | P a acts as the subtype of 4 consisting of those elements
which satisfy P. By the computation of paths in pair types and the fact that paths in
propositions are trivial, paths in subtypes may be computed in the underlying type:

((a.p) = (d".p") ~ (a = a).

Cubical Agda has higher inductive types (HITs), or inductive types with path
constructors as well as term constructors. We may define the propositional truncation
or squash type || A|| given by the following recursive HIT:

data ||-|| (A4 : Type) : Type where
trunc: 4 — || 4|
squash: (ab:||A|) 2 a=b

Giving an element of || 4|| proves the proposition that there is some element of 4,
though there is not in general a function ||A|| — 4 which lets us extract a specific
witness. Propositional truncation therefore acts as an existential quantifier in cubical
Agda: ||4|| asserts that there exists an element of A, though it does not provide a
specific witness to that existence.

Following the HoTT Book [30]. we may define a type 4 to be a set if the path
types in A are propositions:

isSet(A4) := (ab : A) — isProp(a = b).

Thinking of paths as equality predicates, this means that a set is a type in which
equality is a proposition, as it usually considered to be.

With the type constructors so far described, we can now give an example of a
type of mathematical structures. If G is a group, then we can define the type of left
G-torsors (left G actions which are free, transitive, and inhabited) as follows:

Y[ T € Type ]isSet(T)

XxYX[aeG—= (T —T)]

x(t:T) = (a(l,t)=1)

x(gh:G)— (t:T)— (a(gh,t) =alg. alh1)))
x (t:T)— isEquivix g — a(g. 1))

x|T|

Torsg =

Since paths in pairs may be computed componentwise, and since paths in
propositions may be ignored (and types of paths in sets are propositions), we
can compute that the type of paths (7....) = (T”,...) is equivalent to the type of
G-equivariant isomorphisms between 7 and T’. Generally speaking, the structure
identity principle (SIP) (see, e.g.. [1]) guarantees that paths in types of mathematical
structures correspond to structure-preserving equivalences In particular, the type of
loops (G....) = (G.-) on G considered as a torsor over itself by left multiplication
is equivalent to the type of G-equivariant automorphisms of G, which is equivalent
to the group G itself. We will use the SIP to interpret group theory as the theory of
symmetries of mathematical structures in the following section.
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§3. Higher groups. In this section, we will provide the necessary background for
the higher Schreier theorem. We begin by revisiting the theory of higher groups as
laid out in [9].

DerINITION 3.1. A pointed type is type A equipped with a point a : 4. We will
usually refer to the pointed type by the name of the type A and its basepoint by pt 4.

Ptd:=%[ A€ Type | 4

pt: ((4,a):Ptd) — 4
pt(4,a) ;= a.
A pointed function ( f, pt f) : A —, B is a function f : A — B that preserves the
basepoints pt, : f (pt,4) = ptg. We define the pointed composite by
(g.pty) o (f.pty) := (g o f.(congg pt,) - pt,)

DEerINITION 3.2, For A4 : Ptd, its loop space QA : Ptd is the type of paths from pt
to itself, pointed at reflexivity:

QA := ((pt, = pty). refl).
Loops Q acts as a functor Ptd — Ptd:
Qf :=X\p—sympt, - cong f p - pts
pto, = refl

For any pointed type A4, the type Q4 := (pt, = pt,) has a group-like structure
given by path composition. If pt , is essentially the only element in 4 (up to paths),
then this group-like structure Q24 even determines A4 in the following way. As we
saw in the previous section, the structure identity principle lets us identify the loop
space of a type of mathematical structures with with the automorphism group of a
canonical example of that structure.

A type is said to be 0-connected if there exists a path between any two elements:

is0Connected(A4) := (ab : A) — ||la = b]|.

Unlike a contractible type where there is a contractible type of paths between any
two elements, the path type a = b between elements of a 0-connected type may be
highly non-trivial. We will exploit these non-trivial path types to give an account of
groups as paths in a 0-connected type.

DEerINITION 3.3. A type A is 0-connected if there is merely a path between any
two points of A4:

isOConnected(A4) := (ab : A) — ||la = b]|.
We denote by Type., the type of O-connected types.

Thinking of the type A4 as a type of mathematical structures, 4 is 0-connected
when the theory of that structure is categorical—there is a single model up to (not
necessarily unique) isomorphism. As an example, the type of algebraically closures
of a field is 0-connected: picking a canonical algebraic closure, the loop space of the
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type of algebraic closures is then, by the structure identity principle, the absolute
Galois group of the field.

LeEMMA 3.4. A pointed function i : A —. B between pointed 0-connected types is
an equivalence if and only if Qi : QA —, QB is.

Proor. If f is an equivalence, it is straightforward to show that Qf is an
equivalence—this does not require 0-connectedness of 4 and B.

For the converse, we aim to show that the fibers fib(b) of /" are contractible for
all  : B on the assumption that Q f is an equivalence. Since being contractible is
a proposition and B was assumed 0-connected, it will suffice to show that the fiber
fib,(ptg) over the basepoint is contractible.

fibs(pt) :=X[acA](f(a) = ptp).

To show that fib,(pty) is contractible, it will therefore suffice to show that for
alla : 4, (f(a) = ptg) ~ (a = pt), since singleton types X[ a € A | (a = pt,) are
contractible. Note that for any a : 4 we have a map

X p.(cong f.p) - pty : (a = pty) = (f(a) = ptp).

Showing that this map is an equivalence is a proposition, and since A4 is 0-connected
we may prove this proposition in the case that a is pt,. But in this case, we have a
commuting triangle as follows by the definition of Q2 f:

N\ p- (cong f p)-pty
(pty = pty) — (f (pty) = ptp)

m P p-(sympty)-p

(ptp = ptp)

Since 2 f was assumed to be an equivalence, and since composition with a path is an
equivalence, we conclude that X p. (cong f p) - pt 1 1s an equivalence and therefore
that 1" is as well. -

For this reason, pointed connected types are determined by their loop spaces.
Following [9], we adopt the perspective that these loop spaces are higher groups, and
that the associated pointed connected types are their deloopings.

DErINITION 3.5. A higher group is a pointed, 0-connected type BG. We refer to
G = QBG as the group itself, while BG is its “delooping”. A (1-)group is a higher
group BG for which BG is 1-truncated, or equivalently for which G := QBG is a
set.

A homomorphism ¢ : G — H between higher groups is a pointed function By :
BG —, BH between their deloopings.

Higher groups are concrete groups: they are directly represented as the symmetries
of a given object (namely, the base point of their delooping). As we saw above, any
This contrasts with abstract groups presented axiomatically as sets equipped with
the usual operations.

These two approaches to group theory agree in the case of 1-groups: for any
concrete 1-group with delooping BG, we may define an abstract group structure on
G := QBG using composition of paths. By the functoriality of 2, a homomorphism
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By : BG — BH induces a homomorphism of abstract groups ¢ := QByp : G —, H
since any function in Cubical Agda commutes with composition of paths. This
functor gives an between the category of concrete 1-groups and the category abstract
1-groups. A formalization of this equivalence is beyond the scope of this paper. We
will take for granted that any abstract group G can be delooped by a pointed
0-connected type BG (necessarily 1-truncated, since G must be a set), and that
homomorphisms between abstract groups are equivalently given by pointed maps
between their deloopings. For a full proof of this result, see [2]; see also [20] for a
construction of deloopings using higher inductive types.

From now on, we will work only with concrete (higher) groups defined as in
Definition 3.5, and will drop the modifier “concrete”. The easiest way to construct
examples of higher groups is to take the groups of symmetries of a given element of

a type.

DEFINITION 3.6. Let 4 be a type and «a : A an element. Define
BAuty(a) :=X[x€Ad]||x =al

to be the type of elements of x which are path connected to a, and define ptga (o) =
(a, |refl]).

It follows quickly by the computation of path in subtypes that QBAut4(a) ~ (a = a)
and that BAut4(a) is 0-connected. We will also make the following special definitions
in the case that A4 is a type universe.

DerNITION 3.7. Let X be a type. We define
BAut(X) := BAutrype(X) ~ X[ Y € Type ] || Y ~ X]|.
and if pty : X is a base point, we define
BAut, (X ) := BAutp((X, pty))

By univalence, BAut(X) is a delooping of the type of self-equivalences Aut(X) :=
(X ~ X). Note that since homomorphisms G — H between higher groups are
pointed maps BG —, BH between their deloopings. BAut, (BG) deloops the higher
group of higher group automorphisms Aut. (BG) of G. For more examples of concrete
deloopings, see [22].

§4. The higher Schreier theorem. In this section, we will prove the higher Schreier
theorem. First, we must define extensions of higher groups. To do this, we will need
the general notion of a fiber sequence.

DEerINITION 4.1, Let 4, B, and C be pointed types. A fiber sequence A —, B —.
C consists of a pointed function f : B —, C together with a pointed equivalence
e:A~, fib,. Themap 4 —. B suggested by the notation 4 —, B —, C isdefined
to be the composite 4 ~, fiby —, B of e with the first projection fiby —, B.

DEFINITION 4.2. Let G and K be higher groups. An extension of G by K consists
of a fiber sequence BK —, BE —, BG with BE a 0-connected type. We denote the
type of extensions by EXT(G, K).
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LEmMA 4.3. In the definition of extension, we do not have to assume that BE is
0-connected:

EXT(G.K) ~ Y[ BE € Ptd | £[ Bp € BE —, BG | (BK ~, fibg,)

Proor. Suppose we have Bp : BE —, BG with BK ~, fibg, as on the right.
Since BG is 0-connected, all fibers of B p are merely equivalent to the fiber over the
base point, which by assumption is equivalent to BK. Therefore, BE is equivalent
to the sum of 0-connected types, indexed by a 0-connected type BG, and so it itself
0-connected. —

Our proof of the higher Schreier theorem relies on a general lemma. Recall that
for any type A there is an equivalence (4 — Type) ~ X[ B € Type | (B — A) of
type families on 4 and functions into A4 given by taking Z-types in one direction and
taking fibers in the other [30]. We can extend this equivalence to one for pointed
types.

DrriNITION 4.4, Let 4 be a pointed type. A pointed type family on A is a type
family B : A —. Type together with a point pty : B pt, over the base point of 4.

Ptdy :=X[ B€ A — Type | Bpt,.
LemmA 4.5. There is an equivalence
Ptdy ~YX[Be Ptd | (B —. A4)
between pointed families on A and pointed functions into A.
Proor.
Ptdy:=%X[ B€ A4 — Type | Bpty,
~Y[Be Type | X[ f€B — A]fibs(pty)
~Y[Be Type | X[ f€B — A]X[ptz € B](f(b) = pt,)
~Y[BePtd ] (B —, A4)

With this lemma in hand, we may derive the higher Schreier theorem.
THEOREM 4.6. Let G and K be higher groups. Then
EXT(G.K) ~ (BG —, BAut(BK)).
ProoF.
EXT(G.K) ~Y[BE € Ptd | X[ Bp € BE —, BG ] (BK = py4fibg))
N {Z[ c€BG — Type | X[ pt. € c(ptgg) ]
~ | X[e€clptgg) = BK ] (e(pt,)) = ptgg)
N {Z[ c€BG — Type | I pt. € c¢(ptgg) |
~ | Zleeclptgg) ~ BK ] (pt, = e 'ptgg)
~Y[ceBG — Type ] (c(ptgg) ~ BK)
~ BG —, BAut(BK)
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The last equivalence follows because BG is 0-connected: since ¢(ptg;) ~ BK, it
follows that ||c(7) ~ BK || for all ¢ : BG since ||t = ptgg|| by hypothesis. -

§5. Classifying ordinary extensions. In this section, we will prove that extensions
of higher groups defined as in Definition 4.2 generalize extensions of ordinary
(1-)groups. We will organize the results in this section in terms of squares of pointed
types.

DErFINITION 5.1. A square S of pointed types consists of:

A—+ B

s |

1. Pointed types A, B, C, D;
2. Pointed mapsi: 4 —, B, j:C —.B,q:A—,Candp:B —, D;
3. Apath S : po,i = jo, qin the type of pointed maps 4 —, D.

DEerINITION 5.2. Given a square of pointed types S, define its loops 25 to be the
square

Q04 -2, QB

QS = qu lgp

QC —— QD
Qj

We need a general theorem relating squares of pointed types and their loopings.

THEOREM 5.3. Let S be a square of pointed types:

A—5 B

s L

1. If S is a pullback, then so is S
2. If C, q and p are O-connected, then if Q1S is a pullback, so is S.

ProofF. The first implication may be proven directly. Note that it also implies that
Qfib, ~ fibg, for any pointed map p : B —. D by taking C to be the unit type.

For the second implication, recall that a square S is a pullback if and only
if the induced map S. : fib,(c¢) — fib,(j(c)) is an equivalence for all ¢ : C. If
C is 0-connected, it suffices to consider S, : fib,(ptc) — fib,(j(ptc)). which is a
pointed map between pointed types because both ¢ and p are pointed maps and
by the commutativity of the square. If ¢ and p are O-connected. then fib,(pt.)
and fib,(j(ptc)) are both O-connected, and so by Lemma 3.4 it follows that
S. is an equivalence whenever QS : Qfib,(pty) —. Qfib,(j(pte)) is. But as a
corollary of the first implication. this map is equivalent to (QS). : fibg, (refly.) —
fibo, (refl; (o). If QS is a pullback, then (QS). is an equivalence, proving the
desired implication. o
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We are now ready to prove the equivalence between extensions as classified in the
higher Schreier theorem and the classical notion of extensions between groups. We
begin by recalling the classical definition of extension of 1-groups as a short exact
sequence.

DEeFINITION 5.4. Let G and K be groups. An extension of G by K is a short exact
sequence

0KSELGS0

Explicitly, this consists of a group E together with homomorphisms i : K — E and
p: E — G such that:

1. poiisconstantatl: G,

2. iis injective,

3. pis surjective,

4. The induced map K — ker(p) is an equivalence.

By the definition of groups and group homomorphisms Definition 3.5, the above
description of a short exact sequence is by definition equivalent to the following. A
short exact sequence is a square of pointed types:

BK -2 BE

S = ﬂ Fp

* — BG
ptp

with BK, BE, and BG 0-connected such that

1. i := QB is injective (— 1-truncated),

2. p:= QBp is surjective (— 1-connected),

3. and QS is a pullback; equivalently, the induced map K — kerp is an
equivalence.

To compare the two notions of extension, we begin by putting the definition of
extension from Definition 4.2 in a similar form.

LEmMMA 5.5. Let G and K be higher groups. Extensions of G by K are equivalently
pointed pullback squares

BK -8 BE

S:!l Fp

*x — BG
ptp

Proor. Itis generally true that fiber sequences are equivalent to pullback squares
of the above sort, since the fiber is the pullback of a point. -
We may then put these lemmas together with the help of Theorem 5.3.

THEOREM 5.6. Let G and K be groups. Then the type of extensions of G by K is
equivalent to the type of short exact sequences K — E — G.
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ProOOF. By appealing to Lemma 5.5, it suffices to show that for any square of
pointed 0-connected types

BK -8 BE

S = !l lB”

* — BG
Ptp

S is a pullback if and only if QS is a pullback, i := QB; is injective, and p := QBp
is surjective. If S is a pullback, then QS is a pullback by Theorem 5.3; i is injective
because Bi has the O-truncated fiber G; p is surjective because Bp has 0-connected
fiber BK. Conversely, if p is surjective then Bp is 0-connected, and since BK is also
0-connected, Theorem 5.3 again shows that if S is a pullback, so is S. -

§6. Split extensions and semi-direct products. In this section, we will recover the
classical classification of split extensions by homomorphic group actions. Recall
that BAut, (BK) deloops the type Aut,(BK) of pointed automorphisms of BK, or
equivalently higher group automorphisms of K. Therefore, a homomorphic action
of G on K—that is, an action of G on K via homomorphisms—is equivalently a
pointed map BG —, BAut,(BK). We will show that such pointed maps classify
split extensions.

We begin by defining the iolomorph of a higher group K, a classical notion (for
1-groups) which is in a precise sense the universal semi-direct product with K.

DerNITION 6.1. Consider the function 7 : BAut,(BK) —, BAut(BK) which
sends a pointed type (4. pt,) merely equivalent to (BK, ptgy) to its underlying
type A. By the higher Schreier theorem, this corresponds to an extension:

BK —. BHol(K) —. BAut.(BK)
of Aut,(BK) by K where
BHol(K) ~ Y[ A€ Ptd | A x ||4 ~ BK||

is equivalently the type of doubly pointed types merely equivalent to BK. This
extension is called the holomorph of K.

We will show that an extension is split if and only if its classifying map factors
through the map = : BAut,.(BK) —, BAut(BK) classifying the holomorph of K.

First, we need an abstract lemma related pointed sections to pointed dependent
functions.

DEerFINITION 6.2. Let B : Ptd4 be a pointed family of types on 4. The type of
pointed dependent functions is defined as follows.

((a:A4) —»«Ba):=%[f€(a:A4) = Ba] (f(pty) = pty)

If f:B —, A is a pointed function, then a pointed section of f is a pointed
function s : 4 —, B together with a path f o, s = (id,.refl,;,) in the type of
pointed functions 4 —, A.
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LEMMA 6.3. Let A be a pointed type. The equivalence of Lemma 4.5 between pointed
families on A and pointed functions into A extends to an equivalence between pointed
dependent functions of a pointed family on A and pointed sections of a pointed function
into A.

Now we define split exact sequences of higher groups and prove our desired
classification.

DErFINITION 6.4. Let BK i* BE ﬂ* BG be an extension of higher groups. A
splitting of this extension is a pointed map Bs : BG —, BE together with a path
Bp o. Bs = (idg,. refly, . ) in the type of pointed maps BG —. BG.

A split extension is an extension with a choice of splitting.

THEOREM 6.5. Let BK i* BE B—p>* BG be an extension of higher groups
classified by amap ¢ : BG —, BAut(BK). Then splittings of this extension correspond
to pointed factorizations of ¢ through n : BAut,(BK) — BAut(BK).

PrOOF. We may consider ¢ to be a pointed family by transporting ptgx over pt, :
c(ptgg) = BK. By Lemma 6.3, splittings of the extension are therefore equivalent
to pointed dependent functions (¢ : BG) —, ¢(¢). It remains to show that

(t:BG) =, c(t) X[ ¢ €BG —, BAut,(BK) ] (mo. ¢ = ¢).
We compute as follows:
Y[¢€BG —. BAut.(BK) ] (mo. ¢ =c¢)

Y[ ¢€BG — BAut.(BK) ] X[ pt; € ¢(ptgg) = (BK. ptgg) |

Y[penoi=c]((\i— piptgg) - pt. = congmpt;)
Y[se(t:BG)—c(t)]

Y[ ptz € (c(ptpg). s (ptgg)) = (BK. ptgk) |

(pt, = congmpt;)
~Y[se(t:BG)— c(t)] (transport pt, (s ptgg) = ptgx)
~¥[se(r:BG) — c(t)] (s ptgg = transport (sym pt.) ptgx)

12
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